Properties

Label 8379.2.a.bm.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,2,0,0,6,0,10,2,0,0,0,0,6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{2} -1.82843 q^{4} -1.82843 q^{5} +1.58579 q^{8} +0.757359 q^{10} -1.82843 q^{11} -2.82843 q^{13} +3.00000 q^{16} -7.65685 q^{17} -1.00000 q^{19} +3.34315 q^{20} +0.757359 q^{22} -3.82843 q^{23} -1.65685 q^{25} +1.17157 q^{26} -0.828427 q^{29} -8.82843 q^{31} -4.41421 q^{32} +3.17157 q^{34} +6.82843 q^{37} +0.414214 q^{38} -2.89949 q^{40} +3.65685 q^{41} -1.34315 q^{43} +3.34315 q^{44} +1.58579 q^{46} -11.8284 q^{47} +0.686292 q^{50} +5.17157 q^{52} +2.00000 q^{53} +3.34315 q^{55} +0.343146 q^{58} -5.17157 q^{59} -3.34315 q^{61} +3.65685 q^{62} -4.17157 q^{64} +5.17157 q^{65} -12.0000 q^{67} +14.0000 q^{68} -15.6569 q^{71} +12.3137 q^{73} -2.82843 q^{74} +1.82843 q^{76} +13.6569 q^{79} -5.48528 q^{80} -1.51472 q^{82} -9.82843 q^{83} +14.0000 q^{85} +0.556349 q^{86} -2.89949 q^{88} -5.17157 q^{89} +7.00000 q^{92} +4.89949 q^{94} +1.82843 q^{95} +11.1716 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{5} + 6 q^{8} + 10 q^{10} + 2 q^{11} + 6 q^{16} - 4 q^{17} - 2 q^{19} + 18 q^{20} + 10 q^{22} - 2 q^{23} + 8 q^{25} + 8 q^{26} + 4 q^{29} - 12 q^{31} - 6 q^{32} + 12 q^{34}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) −1.82843 −0.817697 −0.408849 0.912602i \(-0.634070\pi\)
−0.408849 + 0.912602i \(0.634070\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) 0.757359 0.239498
\(11\) −1.82843 −0.551292 −0.275646 0.961259i \(-0.588892\pi\)
−0.275646 + 0.961259i \(0.588892\pi\)
\(12\) 0 0
\(13\) −2.82843 −0.784465 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −7.65685 −1.85706 −0.928530 0.371257i \(-0.878927\pi\)
−0.928530 + 0.371257i \(0.878927\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 3.34315 0.747550
\(21\) 0 0
\(22\) 0.757359 0.161470
\(23\) −3.82843 −0.798282 −0.399141 0.916890i \(-0.630692\pi\)
−0.399141 + 0.916890i \(0.630692\pi\)
\(24\) 0 0
\(25\) −1.65685 −0.331371
\(26\) 1.17157 0.229764
\(27\) 0 0
\(28\) 0 0
\(29\) −0.828427 −0.153835 −0.0769175 0.997037i \(-0.524508\pi\)
−0.0769175 + 0.997037i \(0.524508\pi\)
\(30\) 0 0
\(31\) −8.82843 −1.58563 −0.792816 0.609461i \(-0.791386\pi\)
−0.792816 + 0.609461i \(0.791386\pi\)
\(32\) −4.41421 −0.780330
\(33\) 0 0
\(34\) 3.17157 0.543920
\(35\) 0 0
\(36\) 0 0
\(37\) 6.82843 1.12259 0.561293 0.827617i \(-0.310304\pi\)
0.561293 + 0.827617i \(0.310304\pi\)
\(38\) 0.414214 0.0671943
\(39\) 0 0
\(40\) −2.89949 −0.458450
\(41\) 3.65685 0.571105 0.285552 0.958363i \(-0.407823\pi\)
0.285552 + 0.958363i \(0.407823\pi\)
\(42\) 0 0
\(43\) −1.34315 −0.204828 −0.102414 0.994742i \(-0.532657\pi\)
−0.102414 + 0.994742i \(0.532657\pi\)
\(44\) 3.34315 0.503998
\(45\) 0 0
\(46\) 1.58579 0.233811
\(47\) −11.8284 −1.72535 −0.862677 0.505756i \(-0.831214\pi\)
−0.862677 + 0.505756i \(0.831214\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0.686292 0.0970563
\(51\) 0 0
\(52\) 5.17157 0.717168
\(53\) 2.00000 0.274721 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(54\) 0 0
\(55\) 3.34315 0.450790
\(56\) 0 0
\(57\) 0 0
\(58\) 0.343146 0.0450572
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) −3.34315 −0.428046 −0.214023 0.976829i \(-0.568657\pi\)
−0.214023 + 0.976829i \(0.568657\pi\)
\(62\) 3.65685 0.464421
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) 5.17157 0.641455
\(66\) 0 0
\(67\) −12.0000 −1.46603 −0.733017 0.680211i \(-0.761888\pi\)
−0.733017 + 0.680211i \(0.761888\pi\)
\(68\) 14.0000 1.69775
\(69\) 0 0
\(70\) 0 0
\(71\) −15.6569 −1.85813 −0.929063 0.369921i \(-0.879385\pi\)
−0.929063 + 0.369921i \(0.879385\pi\)
\(72\) 0 0
\(73\) 12.3137 1.44121 0.720605 0.693346i \(-0.243864\pi\)
0.720605 + 0.693346i \(0.243864\pi\)
\(74\) −2.82843 −0.328798
\(75\) 0 0
\(76\) 1.82843 0.209735
\(77\) 0 0
\(78\) 0 0
\(79\) 13.6569 1.53652 0.768258 0.640140i \(-0.221124\pi\)
0.768258 + 0.640140i \(0.221124\pi\)
\(80\) −5.48528 −0.613273
\(81\) 0 0
\(82\) −1.51472 −0.167273
\(83\) −9.82843 −1.07881 −0.539405 0.842046i \(-0.681351\pi\)
−0.539405 + 0.842046i \(0.681351\pi\)
\(84\) 0 0
\(85\) 14.0000 1.51851
\(86\) 0.556349 0.0599927
\(87\) 0 0
\(88\) −2.89949 −0.309087
\(89\) −5.17157 −0.548186 −0.274093 0.961703i \(-0.588378\pi\)
−0.274093 + 0.961703i \(0.588378\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.00000 0.729800
\(93\) 0 0
\(94\) 4.89949 0.505344
\(95\) 1.82843 0.187593
\(96\) 0 0
\(97\) 11.1716 1.13430 0.567151 0.823614i \(-0.308046\pi\)
0.567151 + 0.823614i \(0.308046\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 3.02944 0.302944
\(101\) −13.4853 −1.34184 −0.670918 0.741532i \(-0.734100\pi\)
−0.670918 + 0.741532i \(0.734100\pi\)
\(102\) 0 0
\(103\) −7.65685 −0.754452 −0.377226 0.926121i \(-0.623122\pi\)
−0.377226 + 0.926121i \(0.623122\pi\)
\(104\) −4.48528 −0.439818
\(105\) 0 0
\(106\) −0.828427 −0.0804640
\(107\) −2.82843 −0.273434 −0.136717 0.990610i \(-0.543655\pi\)
−0.136717 + 0.990610i \(0.543655\pi\)
\(108\) 0 0
\(109\) −10.1421 −0.971440 −0.485720 0.874114i \(-0.661443\pi\)
−0.485720 + 0.874114i \(0.661443\pi\)
\(110\) −1.38478 −0.132033
\(111\) 0 0
\(112\) 0 0
\(113\) 7.17157 0.674645 0.337322 0.941389i \(-0.390479\pi\)
0.337322 + 0.941389i \(0.390479\pi\)
\(114\) 0 0
\(115\) 7.00000 0.652753
\(116\) 1.51472 0.140638
\(117\) 0 0
\(118\) 2.14214 0.197200
\(119\) 0 0
\(120\) 0 0
\(121\) −7.65685 −0.696078
\(122\) 1.38478 0.125372
\(123\) 0 0
\(124\) 16.1421 1.44961
\(125\) 12.1716 1.08866
\(126\) 0 0
\(127\) −16.9706 −1.50589 −0.752947 0.658081i \(-0.771368\pi\)
−0.752947 + 0.658081i \(0.771368\pi\)
\(128\) 10.5563 0.933058
\(129\) 0 0
\(130\) −2.14214 −0.187878
\(131\) −21.6569 −1.89217 −0.946084 0.323921i \(-0.894999\pi\)
−0.946084 + 0.323921i \(0.894999\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.97056 0.429391
\(135\) 0 0
\(136\) −12.1421 −1.04118
\(137\) 8.17157 0.698145 0.349072 0.937096i \(-0.386497\pi\)
0.349072 + 0.937096i \(0.386497\pi\)
\(138\) 0 0
\(139\) 4.65685 0.394989 0.197495 0.980304i \(-0.436720\pi\)
0.197495 + 0.980304i \(0.436720\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.48528 0.544233
\(143\) 5.17157 0.432469
\(144\) 0 0
\(145\) 1.51472 0.125791
\(146\) −5.10051 −0.422121
\(147\) 0 0
\(148\) −12.4853 −1.02628
\(149\) 1.82843 0.149791 0.0748953 0.997191i \(-0.476138\pi\)
0.0748953 + 0.997191i \(0.476138\pi\)
\(150\) 0 0
\(151\) 13.3137 1.08345 0.541727 0.840554i \(-0.317771\pi\)
0.541727 + 0.840554i \(0.317771\pi\)
\(152\) −1.58579 −0.128624
\(153\) 0 0
\(154\) 0 0
\(155\) 16.1421 1.29657
\(156\) 0 0
\(157\) −0.656854 −0.0524227 −0.0262113 0.999656i \(-0.508344\pi\)
−0.0262113 + 0.999656i \(0.508344\pi\)
\(158\) −5.65685 −0.450035
\(159\) 0 0
\(160\) 8.07107 0.638074
\(161\) 0 0
\(162\) 0 0
\(163\) −11.9706 −0.937607 −0.468803 0.883303i \(-0.655315\pi\)
−0.468803 + 0.883303i \(0.655315\pi\)
\(164\) −6.68629 −0.522112
\(165\) 0 0
\(166\) 4.07107 0.315976
\(167\) −3.17157 −0.245424 −0.122712 0.992442i \(-0.539159\pi\)
−0.122712 + 0.992442i \(0.539159\pi\)
\(168\) 0 0
\(169\) −5.00000 −0.384615
\(170\) −5.79899 −0.444762
\(171\) 0 0
\(172\) 2.45584 0.187256
\(173\) 2.82843 0.215041 0.107521 0.994203i \(-0.465709\pi\)
0.107521 + 0.994203i \(0.465709\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −5.48528 −0.413469
\(177\) 0 0
\(178\) 2.14214 0.160560
\(179\) −6.48528 −0.484733 −0.242366 0.970185i \(-0.577924\pi\)
−0.242366 + 0.970185i \(0.577924\pi\)
\(180\) 0 0
\(181\) −0.343146 −0.0255058 −0.0127529 0.999919i \(-0.504059\pi\)
−0.0127529 + 0.999919i \(0.504059\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −6.07107 −0.447565
\(185\) −12.4853 −0.917936
\(186\) 0 0
\(187\) 14.0000 1.02378
\(188\) 21.6274 1.57734
\(189\) 0 0
\(190\) −0.757359 −0.0549446
\(191\) −6.17157 −0.446559 −0.223280 0.974754i \(-0.571676\pi\)
−0.223280 + 0.974754i \(0.571676\pi\)
\(192\) 0 0
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) −4.62742 −0.332229
\(195\) 0 0
\(196\) 0 0
\(197\) 0.514719 0.0366722 0.0183361 0.999832i \(-0.494163\pi\)
0.0183361 + 0.999832i \(0.494163\pi\)
\(198\) 0 0
\(199\) 14.6569 1.03900 0.519498 0.854471i \(-0.326119\pi\)
0.519498 + 0.854471i \(0.326119\pi\)
\(200\) −2.62742 −0.185786
\(201\) 0 0
\(202\) 5.58579 0.393015
\(203\) 0 0
\(204\) 0 0
\(205\) −6.68629 −0.466991
\(206\) 3.17157 0.220974
\(207\) 0 0
\(208\) −8.48528 −0.588348
\(209\) 1.82843 0.126475
\(210\) 0 0
\(211\) −0.485281 −0.0334081 −0.0167041 0.999860i \(-0.505317\pi\)
−0.0167041 + 0.999860i \(0.505317\pi\)
\(212\) −3.65685 −0.251154
\(213\) 0 0
\(214\) 1.17157 0.0800871
\(215\) 2.45584 0.167487
\(216\) 0 0
\(217\) 0 0
\(218\) 4.20101 0.284528
\(219\) 0 0
\(220\) −6.11270 −0.412118
\(221\) 21.6569 1.45680
\(222\) 0 0
\(223\) −17.7990 −1.19191 −0.595954 0.803018i \(-0.703226\pi\)
−0.595954 + 0.803018i \(0.703226\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −2.97056 −0.197599
\(227\) 17.6569 1.17193 0.585963 0.810338i \(-0.300716\pi\)
0.585963 + 0.810338i \(0.300716\pi\)
\(228\) 0 0
\(229\) −4.34315 −0.287003 −0.143502 0.989650i \(-0.545836\pi\)
−0.143502 + 0.989650i \(0.545836\pi\)
\(230\) −2.89949 −0.191187
\(231\) 0 0
\(232\) −1.31371 −0.0862492
\(233\) −6.00000 −0.393073 −0.196537 0.980497i \(-0.562969\pi\)
−0.196537 + 0.980497i \(0.562969\pi\)
\(234\) 0 0
\(235\) 21.6274 1.41082
\(236\) 9.45584 0.615523
\(237\) 0 0
\(238\) 0 0
\(239\) −13.6569 −0.883388 −0.441694 0.897166i \(-0.645622\pi\)
−0.441694 + 0.897166i \(0.645622\pi\)
\(240\) 0 0
\(241\) −19.7990 −1.27537 −0.637683 0.770299i \(-0.720107\pi\)
−0.637683 + 0.770299i \(0.720107\pi\)
\(242\) 3.17157 0.203876
\(243\) 0 0
\(244\) 6.11270 0.391325
\(245\) 0 0
\(246\) 0 0
\(247\) 2.82843 0.179969
\(248\) −14.0000 −0.889001
\(249\) 0 0
\(250\) −5.04163 −0.318861
\(251\) −3.48528 −0.219989 −0.109995 0.993932i \(-0.535083\pi\)
−0.109995 + 0.993932i \(0.535083\pi\)
\(252\) 0 0
\(253\) 7.00000 0.440086
\(254\) 7.02944 0.441066
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −26.0000 −1.62184 −0.810918 0.585160i \(-0.801032\pi\)
−0.810918 + 0.585160i \(0.801032\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −9.45584 −0.586427
\(261\) 0 0
\(262\) 8.97056 0.554203
\(263\) 11.3137 0.697633 0.348817 0.937191i \(-0.386584\pi\)
0.348817 + 0.937191i \(0.386584\pi\)
\(264\) 0 0
\(265\) −3.65685 −0.224639
\(266\) 0 0
\(267\) 0 0
\(268\) 21.9411 1.34027
\(269\) 8.00000 0.487769 0.243884 0.969804i \(-0.421578\pi\)
0.243884 + 0.969804i \(0.421578\pi\)
\(270\) 0 0
\(271\) 25.6274 1.55675 0.778377 0.627797i \(-0.216043\pi\)
0.778377 + 0.627797i \(0.216043\pi\)
\(272\) −22.9706 −1.39279
\(273\) 0 0
\(274\) −3.38478 −0.204482
\(275\) 3.02944 0.182682
\(276\) 0 0
\(277\) 13.0000 0.781094 0.390547 0.920583i \(-0.372286\pi\)
0.390547 + 0.920583i \(0.372286\pi\)
\(278\) −1.92893 −0.115690
\(279\) 0 0
\(280\) 0 0
\(281\) 26.9706 1.60893 0.804464 0.594001i \(-0.202452\pi\)
0.804464 + 0.594001i \(0.202452\pi\)
\(282\) 0 0
\(283\) −13.6274 −0.810066 −0.405033 0.914302i \(-0.632740\pi\)
−0.405033 + 0.914302i \(0.632740\pi\)
\(284\) 28.6274 1.69872
\(285\) 0 0
\(286\) −2.14214 −0.126667
\(287\) 0 0
\(288\) 0 0
\(289\) 41.6274 2.44867
\(290\) −0.627417 −0.0368432
\(291\) 0 0
\(292\) −22.5147 −1.31757
\(293\) −4.82843 −0.282080 −0.141040 0.990004i \(-0.545045\pi\)
−0.141040 + 0.990004i \(0.545045\pi\)
\(294\) 0 0
\(295\) 9.45584 0.550541
\(296\) 10.8284 0.629390
\(297\) 0 0
\(298\) −0.757359 −0.0438726
\(299\) 10.8284 0.626224
\(300\) 0 0
\(301\) 0 0
\(302\) −5.51472 −0.317336
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) 6.11270 0.350012
\(306\) 0 0
\(307\) −14.4853 −0.826719 −0.413359 0.910568i \(-0.635645\pi\)
−0.413359 + 0.910568i \(0.635645\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) −6.68629 −0.379756
\(311\) 22.6274 1.28308 0.641542 0.767088i \(-0.278295\pi\)
0.641542 + 0.767088i \(0.278295\pi\)
\(312\) 0 0
\(313\) −25.2843 −1.42915 −0.714576 0.699558i \(-0.753380\pi\)
−0.714576 + 0.699558i \(0.753380\pi\)
\(314\) 0.272078 0.0153542
\(315\) 0 0
\(316\) −24.9706 −1.40470
\(317\) 9.79899 0.550366 0.275183 0.961392i \(-0.411262\pi\)
0.275183 + 0.961392i \(0.411262\pi\)
\(318\) 0 0
\(319\) 1.51472 0.0848080
\(320\) 7.62742 0.426386
\(321\) 0 0
\(322\) 0 0
\(323\) 7.65685 0.426039
\(324\) 0 0
\(325\) 4.68629 0.259949
\(326\) 4.95837 0.274619
\(327\) 0 0
\(328\) 5.79899 0.320196
\(329\) 0 0
\(330\) 0 0
\(331\) −22.4853 −1.23590 −0.617951 0.786216i \(-0.712037\pi\)
−0.617951 + 0.786216i \(0.712037\pi\)
\(332\) 17.9706 0.986263
\(333\) 0 0
\(334\) 1.31371 0.0718829
\(335\) 21.9411 1.19877
\(336\) 0 0
\(337\) 10.4853 0.571170 0.285585 0.958353i \(-0.407812\pi\)
0.285585 + 0.958353i \(0.407812\pi\)
\(338\) 2.07107 0.112651
\(339\) 0 0
\(340\) −25.5980 −1.38825
\(341\) 16.1421 0.874146
\(342\) 0 0
\(343\) 0 0
\(344\) −2.12994 −0.114839
\(345\) 0 0
\(346\) −1.17157 −0.0629841
\(347\) 30.4558 1.63496 0.817478 0.575960i \(-0.195372\pi\)
0.817478 + 0.575960i \(0.195372\pi\)
\(348\) 0 0
\(349\) 14.0000 0.749403 0.374701 0.927146i \(-0.377745\pi\)
0.374701 + 0.927146i \(0.377745\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 8.07107 0.430189
\(353\) −21.3137 −1.13441 −0.567207 0.823575i \(-0.691976\pi\)
−0.567207 + 0.823575i \(0.691976\pi\)
\(354\) 0 0
\(355\) 28.6274 1.51939
\(356\) 9.45584 0.501159
\(357\) 0 0
\(358\) 2.68629 0.141975
\(359\) 11.8284 0.624281 0.312140 0.950036i \(-0.398954\pi\)
0.312140 + 0.950036i \(0.398954\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0.142136 0.00747048
\(363\) 0 0
\(364\) 0 0
\(365\) −22.5147 −1.17847
\(366\) 0 0
\(367\) 18.3431 0.957504 0.478752 0.877950i \(-0.341089\pi\)
0.478752 + 0.877950i \(0.341089\pi\)
\(368\) −11.4853 −0.598712
\(369\) 0 0
\(370\) 5.17157 0.268857
\(371\) 0 0
\(372\) 0 0
\(373\) −36.2843 −1.87873 −0.939364 0.342921i \(-0.888584\pi\)
−0.939364 + 0.342921i \(0.888584\pi\)
\(374\) −5.79899 −0.299859
\(375\) 0 0
\(376\) −18.7574 −0.967337
\(377\) 2.34315 0.120678
\(378\) 0 0
\(379\) 0.485281 0.0249272 0.0124636 0.999922i \(-0.496033\pi\)
0.0124636 + 0.999922i \(0.496033\pi\)
\(380\) −3.34315 −0.171500
\(381\) 0 0
\(382\) 2.55635 0.130794
\(383\) −16.0000 −0.817562 −0.408781 0.912633i \(-0.634046\pi\)
−0.408781 + 0.912633i \(0.634046\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −1.65685 −0.0843317
\(387\) 0 0
\(388\) −20.4264 −1.03699
\(389\) −15.6569 −0.793834 −0.396917 0.917855i \(-0.629920\pi\)
−0.396917 + 0.917855i \(0.629920\pi\)
\(390\) 0 0
\(391\) 29.3137 1.48246
\(392\) 0 0
\(393\) 0 0
\(394\) −0.213203 −0.0107410
\(395\) −24.9706 −1.25641
\(396\) 0 0
\(397\) −17.3137 −0.868950 −0.434475 0.900684i \(-0.643066\pi\)
−0.434475 + 0.900684i \(0.643066\pi\)
\(398\) −6.07107 −0.304315
\(399\) 0 0
\(400\) −4.97056 −0.248528
\(401\) 23.3137 1.16423 0.582116 0.813106i \(-0.302225\pi\)
0.582116 + 0.813106i \(0.302225\pi\)
\(402\) 0 0
\(403\) 24.9706 1.24387
\(404\) 24.6569 1.22672
\(405\) 0 0
\(406\) 0 0
\(407\) −12.4853 −0.618872
\(408\) 0 0
\(409\) −17.3137 −0.856108 −0.428054 0.903753i \(-0.640801\pi\)
−0.428054 + 0.903753i \(0.640801\pi\)
\(410\) 2.76955 0.136778
\(411\) 0 0
\(412\) 14.0000 0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) 17.9706 0.882140
\(416\) 12.4853 0.612141
\(417\) 0 0
\(418\) −0.757359 −0.0370437
\(419\) 15.8284 0.773269 0.386635 0.922233i \(-0.373637\pi\)
0.386635 + 0.922233i \(0.373637\pi\)
\(420\) 0 0
\(421\) 24.8284 1.21006 0.605032 0.796201i \(-0.293160\pi\)
0.605032 + 0.796201i \(0.293160\pi\)
\(422\) 0.201010 0.00978502
\(423\) 0 0
\(424\) 3.17157 0.154025
\(425\) 12.6863 0.615376
\(426\) 0 0
\(427\) 0 0
\(428\) 5.17157 0.249977
\(429\) 0 0
\(430\) −1.01724 −0.0490559
\(431\) 28.8284 1.38862 0.694308 0.719678i \(-0.255710\pi\)
0.694308 + 0.719678i \(0.255710\pi\)
\(432\) 0 0
\(433\) −8.48528 −0.407777 −0.203888 0.978994i \(-0.565358\pi\)
−0.203888 + 0.978994i \(0.565358\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 18.5442 0.888104
\(437\) 3.82843 0.183139
\(438\) 0 0
\(439\) 19.7990 0.944954 0.472477 0.881343i \(-0.343360\pi\)
0.472477 + 0.881343i \(0.343360\pi\)
\(440\) 5.30152 0.252740
\(441\) 0 0
\(442\) −8.97056 −0.426686
\(443\) 22.3431 1.06155 0.530777 0.847511i \(-0.321900\pi\)
0.530777 + 0.847511i \(0.321900\pi\)
\(444\) 0 0
\(445\) 9.45584 0.448250
\(446\) 7.37258 0.349102
\(447\) 0 0
\(448\) 0 0
\(449\) 2.14214 0.101094 0.0505468 0.998722i \(-0.483904\pi\)
0.0505468 + 0.998722i \(0.483904\pi\)
\(450\) 0 0
\(451\) −6.68629 −0.314845
\(452\) −13.1127 −0.616769
\(453\) 0 0
\(454\) −7.31371 −0.343249
\(455\) 0 0
\(456\) 0 0
\(457\) −3.34315 −0.156386 −0.0781929 0.996938i \(-0.524915\pi\)
−0.0781929 + 0.996938i \(0.524915\pi\)
\(458\) 1.79899 0.0840613
\(459\) 0 0
\(460\) −12.7990 −0.596756
\(461\) 28.4558 1.32532 0.662660 0.748920i \(-0.269427\pi\)
0.662660 + 0.748920i \(0.269427\pi\)
\(462\) 0 0
\(463\) −9.34315 −0.434213 −0.217106 0.976148i \(-0.569662\pi\)
−0.217106 + 0.976148i \(0.569662\pi\)
\(464\) −2.48528 −0.115376
\(465\) 0 0
\(466\) 2.48528 0.115128
\(467\) −8.51472 −0.394014 −0.197007 0.980402i \(-0.563122\pi\)
−0.197007 + 0.980402i \(0.563122\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −8.95837 −0.413219
\(471\) 0 0
\(472\) −8.20101 −0.377482
\(473\) 2.45584 0.112920
\(474\) 0 0
\(475\) 1.65685 0.0760217
\(476\) 0 0
\(477\) 0 0
\(478\) 5.65685 0.258738
\(479\) −17.8284 −0.814602 −0.407301 0.913294i \(-0.633530\pi\)
−0.407301 + 0.913294i \(0.633530\pi\)
\(480\) 0 0
\(481\) −19.3137 −0.880629
\(482\) 8.20101 0.373546
\(483\) 0 0
\(484\) 14.0000 0.636364
\(485\) −20.4264 −0.927515
\(486\) 0 0
\(487\) −11.6569 −0.528222 −0.264111 0.964492i \(-0.585079\pi\)
−0.264111 + 0.964492i \(0.585079\pi\)
\(488\) −5.30152 −0.239988
\(489\) 0 0
\(490\) 0 0
\(491\) 25.4853 1.15013 0.575067 0.818106i \(-0.304976\pi\)
0.575067 + 0.818106i \(0.304976\pi\)
\(492\) 0 0
\(493\) 6.34315 0.285681
\(494\) −1.17157 −0.0527116
\(495\) 0 0
\(496\) −26.4853 −1.18922
\(497\) 0 0
\(498\) 0 0
\(499\) −13.9706 −0.625408 −0.312704 0.949851i \(-0.601235\pi\)
−0.312704 + 0.949851i \(0.601235\pi\)
\(500\) −22.2548 −0.995266
\(501\) 0 0
\(502\) 1.44365 0.0644333
\(503\) 42.1127 1.87771 0.938856 0.344309i \(-0.111887\pi\)
0.938856 + 0.344309i \(0.111887\pi\)
\(504\) 0 0
\(505\) 24.6569 1.09722
\(506\) −2.89949 −0.128898
\(507\) 0 0
\(508\) 31.0294 1.37671
\(509\) −6.48528 −0.287455 −0.143728 0.989617i \(-0.545909\pi\)
−0.143728 + 0.989617i \(0.545909\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) 10.7696 0.475025
\(515\) 14.0000 0.616914
\(516\) 0 0
\(517\) 21.6274 0.951173
\(518\) 0 0
\(519\) 0 0
\(520\) 8.20101 0.359638
\(521\) 7.02944 0.307965 0.153983 0.988074i \(-0.450790\pi\)
0.153983 + 0.988074i \(0.450790\pi\)
\(522\) 0 0
\(523\) 1.79899 0.0786643 0.0393322 0.999226i \(-0.487477\pi\)
0.0393322 + 0.999226i \(0.487477\pi\)
\(524\) 39.5980 1.72985
\(525\) 0 0
\(526\) −4.68629 −0.204332
\(527\) 67.5980 2.94461
\(528\) 0 0
\(529\) −8.34315 −0.362745
\(530\) 1.51472 0.0657952
\(531\) 0 0
\(532\) 0 0
\(533\) −10.3431 −0.448011
\(534\) 0 0
\(535\) 5.17157 0.223587
\(536\) −19.0294 −0.821946
\(537\) 0 0
\(538\) −3.31371 −0.142864
\(539\) 0 0
\(540\) 0 0
\(541\) 23.0000 0.988847 0.494424 0.869221i \(-0.335379\pi\)
0.494424 + 0.869221i \(0.335379\pi\)
\(542\) −10.6152 −0.455963
\(543\) 0 0
\(544\) 33.7990 1.44912
\(545\) 18.5442 0.794344
\(546\) 0 0
\(547\) 33.7990 1.44514 0.722570 0.691298i \(-0.242961\pi\)
0.722570 + 0.691298i \(0.242961\pi\)
\(548\) −14.9411 −0.638253
\(549\) 0 0
\(550\) −1.25483 −0.0535063
\(551\) 0.828427 0.0352922
\(552\) 0 0
\(553\) 0 0
\(554\) −5.38478 −0.228777
\(555\) 0 0
\(556\) −8.51472 −0.361105
\(557\) 36.4558 1.54468 0.772342 0.635207i \(-0.219085\pi\)
0.772342 + 0.635207i \(0.219085\pi\)
\(558\) 0 0
\(559\) 3.79899 0.160680
\(560\) 0 0
\(561\) 0 0
\(562\) −11.1716 −0.471244
\(563\) 16.4853 0.694772 0.347386 0.937722i \(-0.387069\pi\)
0.347386 + 0.937722i \(0.387069\pi\)
\(564\) 0 0
\(565\) −13.1127 −0.551655
\(566\) 5.64466 0.237263
\(567\) 0 0
\(568\) −24.8284 −1.04178
\(569\) 6.20101 0.259960 0.129980 0.991517i \(-0.458509\pi\)
0.129980 + 0.991517i \(0.458509\pi\)
\(570\) 0 0
\(571\) −29.2843 −1.22551 −0.612754 0.790273i \(-0.709938\pi\)
−0.612754 + 0.790273i \(0.709938\pi\)
\(572\) −9.45584 −0.395369
\(573\) 0 0
\(574\) 0 0
\(575\) 6.34315 0.264527
\(576\) 0 0
\(577\) −4.31371 −0.179582 −0.0897910 0.995961i \(-0.528620\pi\)
−0.0897910 + 0.995961i \(0.528620\pi\)
\(578\) −17.2426 −0.717199
\(579\) 0 0
\(580\) −2.76955 −0.114999
\(581\) 0 0
\(582\) 0 0
\(583\) −3.65685 −0.151451
\(584\) 19.5269 0.808029
\(585\) 0 0
\(586\) 2.00000 0.0826192
\(587\) −18.6274 −0.768836 −0.384418 0.923159i \(-0.625598\pi\)
−0.384418 + 0.923159i \(0.625598\pi\)
\(588\) 0 0
\(589\) 8.82843 0.363769
\(590\) −3.91674 −0.161250
\(591\) 0 0
\(592\) 20.4853 0.841940
\(593\) −10.5147 −0.431788 −0.215894 0.976417i \(-0.569267\pi\)
−0.215894 + 0.976417i \(0.569267\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −3.34315 −0.136941
\(597\) 0 0
\(598\) −4.48528 −0.183417
\(599\) −33.1127 −1.35295 −0.676474 0.736466i \(-0.736493\pi\)
−0.676474 + 0.736466i \(0.736493\pi\)
\(600\) 0 0
\(601\) −31.3137 −1.27731 −0.638656 0.769492i \(-0.720509\pi\)
−0.638656 + 0.769492i \(0.720509\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −24.3431 −0.990509
\(605\) 14.0000 0.569181
\(606\) 0 0
\(607\) 42.1421 1.71050 0.855248 0.518219i \(-0.173405\pi\)
0.855248 + 0.518219i \(0.173405\pi\)
\(608\) 4.41421 0.179020
\(609\) 0 0
\(610\) −2.53196 −0.102516
\(611\) 33.4558 1.35348
\(612\) 0 0
\(613\) 8.62742 0.348458 0.174229 0.984705i \(-0.444257\pi\)
0.174229 + 0.984705i \(0.444257\pi\)
\(614\) 6.00000 0.242140
\(615\) 0 0
\(616\) 0 0
\(617\) 37.8284 1.52292 0.761458 0.648215i \(-0.224484\pi\)
0.761458 + 0.648215i \(0.224484\pi\)
\(618\) 0 0
\(619\) 20.6569 0.830269 0.415135 0.909760i \(-0.363735\pi\)
0.415135 + 0.909760i \(0.363735\pi\)
\(620\) −29.5147 −1.18534
\(621\) 0 0
\(622\) −9.37258 −0.375806
\(623\) 0 0
\(624\) 0 0
\(625\) −13.9706 −0.558823
\(626\) 10.4731 0.418589
\(627\) 0 0
\(628\) 1.20101 0.0479255
\(629\) −52.2843 −2.08471
\(630\) 0 0
\(631\) −5.34315 −0.212707 −0.106354 0.994328i \(-0.533918\pi\)
−0.106354 + 0.994328i \(0.533918\pi\)
\(632\) 21.6569 0.861463
\(633\) 0 0
\(634\) −4.05887 −0.161198
\(635\) 31.0294 1.23137
\(636\) 0 0
\(637\) 0 0
\(638\) −0.627417 −0.0248397
\(639\) 0 0
\(640\) −19.3015 −0.762959
\(641\) 10.8284 0.427697 0.213849 0.976867i \(-0.431400\pi\)
0.213849 + 0.976867i \(0.431400\pi\)
\(642\) 0 0
\(643\) 46.6274 1.83881 0.919403 0.393317i \(-0.128673\pi\)
0.919403 + 0.393317i \(0.128673\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −3.17157 −0.124784
\(647\) −35.1421 −1.38158 −0.690790 0.723055i \(-0.742737\pi\)
−0.690790 + 0.723055i \(0.742737\pi\)
\(648\) 0 0
\(649\) 9.45584 0.371174
\(650\) −1.94113 −0.0761372
\(651\) 0 0
\(652\) 21.8873 0.857173
\(653\) 27.9411 1.09342 0.546710 0.837322i \(-0.315880\pi\)
0.546710 + 0.837322i \(0.315880\pi\)
\(654\) 0 0
\(655\) 39.5980 1.54722
\(656\) 10.9706 0.428329
\(657\) 0 0
\(658\) 0 0
\(659\) 38.4853 1.49917 0.749587 0.661906i \(-0.230252\pi\)
0.749587 + 0.661906i \(0.230252\pi\)
\(660\) 0 0
\(661\) −44.2843 −1.72246 −0.861229 0.508217i \(-0.830305\pi\)
−0.861229 + 0.508217i \(0.830305\pi\)
\(662\) 9.31371 0.361988
\(663\) 0 0
\(664\) −15.5858 −0.604846
\(665\) 0 0
\(666\) 0 0
\(667\) 3.17157 0.122804
\(668\) 5.79899 0.224370
\(669\) 0 0
\(670\) −9.08831 −0.351112
\(671\) 6.11270 0.235978
\(672\) 0 0
\(673\) −2.82843 −0.109028 −0.0545139 0.998513i \(-0.517361\pi\)
−0.0545139 + 0.998513i \(0.517361\pi\)
\(674\) −4.34315 −0.167292
\(675\) 0 0
\(676\) 9.14214 0.351621
\(677\) 16.0000 0.614930 0.307465 0.951559i \(-0.400519\pi\)
0.307465 + 0.951559i \(0.400519\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 22.2010 0.851370
\(681\) 0 0
\(682\) −6.68629 −0.256031
\(683\) −38.9706 −1.49117 −0.745584 0.666412i \(-0.767829\pi\)
−0.745584 + 0.666412i \(0.767829\pi\)
\(684\) 0 0
\(685\) −14.9411 −0.570871
\(686\) 0 0
\(687\) 0 0
\(688\) −4.02944 −0.153621
\(689\) −5.65685 −0.215509
\(690\) 0 0
\(691\) 12.0000 0.456502 0.228251 0.973602i \(-0.426699\pi\)
0.228251 + 0.973602i \(0.426699\pi\)
\(692\) −5.17157 −0.196594
\(693\) 0 0
\(694\) −12.6152 −0.478867
\(695\) −8.51472 −0.322982
\(696\) 0 0
\(697\) −28.0000 −1.06058
\(698\) −5.79899 −0.219495
\(699\) 0 0
\(700\) 0 0
\(701\) 48.4558 1.83015 0.915076 0.403281i \(-0.132130\pi\)
0.915076 + 0.403281i \(0.132130\pi\)
\(702\) 0 0
\(703\) −6.82843 −0.257539
\(704\) 7.62742 0.287469
\(705\) 0 0
\(706\) 8.82843 0.332262
\(707\) 0 0
\(708\) 0 0
\(709\) 17.9706 0.674899 0.337449 0.941344i \(-0.390436\pi\)
0.337449 + 0.941344i \(0.390436\pi\)
\(710\) −11.8579 −0.445018
\(711\) 0 0
\(712\) −8.20101 −0.307346
\(713\) 33.7990 1.26578
\(714\) 0 0
\(715\) −9.45584 −0.353629
\(716\) 11.8579 0.443149
\(717\) 0 0
\(718\) −4.89949 −0.182848
\(719\) −32.9706 −1.22959 −0.614797 0.788685i \(-0.710762\pi\)
−0.614797 + 0.788685i \(0.710762\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.414214 −0.0154154
\(723\) 0 0
\(724\) 0.627417 0.0233178
\(725\) 1.37258 0.0509765
\(726\) 0 0
\(727\) −13.0000 −0.482143 −0.241072 0.970507i \(-0.577499\pi\)
−0.241072 + 0.970507i \(0.577499\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 9.32590 0.345167
\(731\) 10.2843 0.380378
\(732\) 0 0
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) −7.59798 −0.280447
\(735\) 0 0
\(736\) 16.8995 0.622924
\(737\) 21.9411 0.808212
\(738\) 0 0
\(739\) −8.00000 −0.294285 −0.147142 0.989115i \(-0.547008\pi\)
−0.147142 + 0.989115i \(0.547008\pi\)
\(740\) 22.8284 0.839190
\(741\) 0 0
\(742\) 0 0
\(743\) −38.8284 −1.42448 −0.712238 0.701938i \(-0.752319\pi\)
−0.712238 + 0.701938i \(0.752319\pi\)
\(744\) 0 0
\(745\) −3.34315 −0.122483
\(746\) 15.0294 0.550267
\(747\) 0 0
\(748\) −25.5980 −0.935955
\(749\) 0 0
\(750\) 0 0
\(751\) −10.6274 −0.387800 −0.193900 0.981021i \(-0.562114\pi\)
−0.193900 + 0.981021i \(0.562114\pi\)
\(752\) −35.4853 −1.29402
\(753\) 0 0
\(754\) −0.970563 −0.0353458
\(755\) −24.3431 −0.885938
\(756\) 0 0
\(757\) 20.6569 0.750786 0.375393 0.926866i \(-0.377508\pi\)
0.375393 + 0.926866i \(0.377508\pi\)
\(758\) −0.201010 −0.00730102
\(759\) 0 0
\(760\) 2.89949 0.105176
\(761\) −20.7990 −0.753963 −0.376981 0.926221i \(-0.623038\pi\)
−0.376981 + 0.926221i \(0.623038\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 11.2843 0.408251
\(765\) 0 0
\(766\) 6.62742 0.239458
\(767\) 14.6274 0.528165
\(768\) 0 0
\(769\) −8.31371 −0.299800 −0.149900 0.988701i \(-0.547895\pi\)
−0.149900 + 0.988701i \(0.547895\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.31371 −0.263226
\(773\) 2.82843 0.101731 0.0508657 0.998706i \(-0.483802\pi\)
0.0508657 + 0.998706i \(0.483802\pi\)
\(774\) 0 0
\(775\) 14.6274 0.525432
\(776\) 17.7157 0.635958
\(777\) 0 0
\(778\) 6.48528 0.232509
\(779\) −3.65685 −0.131020
\(780\) 0 0
\(781\) 28.6274 1.02437
\(782\) −12.1421 −0.434202
\(783\) 0 0
\(784\) 0 0
\(785\) 1.20101 0.0428659
\(786\) 0 0
\(787\) −40.2843 −1.43598 −0.717990 0.696054i \(-0.754937\pi\)
−0.717990 + 0.696054i \(0.754937\pi\)
\(788\) −0.941125 −0.0335262
\(789\) 0 0
\(790\) 10.3431 0.367993
\(791\) 0 0
\(792\) 0 0
\(793\) 9.45584 0.335787
\(794\) 7.17157 0.254510
\(795\) 0 0
\(796\) −26.7990 −0.949865
\(797\) −24.4853 −0.867313 −0.433657 0.901078i \(-0.642777\pi\)
−0.433657 + 0.901078i \(0.642777\pi\)
\(798\) 0 0
\(799\) 90.5685 3.20408
\(800\) 7.31371 0.258579
\(801\) 0 0
\(802\) −9.65685 −0.340995
\(803\) −22.5147 −0.794527
\(804\) 0 0
\(805\) 0 0
\(806\) −10.3431 −0.364322
\(807\) 0 0
\(808\) −21.3848 −0.752314
\(809\) −14.7990 −0.520305 −0.260152 0.965568i \(-0.583773\pi\)
−0.260152 + 0.965568i \(0.583773\pi\)
\(810\) 0 0
\(811\) 16.1421 0.566827 0.283414 0.958998i \(-0.408533\pi\)
0.283414 + 0.958998i \(0.408533\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.17157 0.181264
\(815\) 21.8873 0.766679
\(816\) 0 0
\(817\) 1.34315 0.0469907
\(818\) 7.17157 0.250748
\(819\) 0 0
\(820\) 12.2254 0.426929
\(821\) −35.1421 −1.22647 −0.613234 0.789901i \(-0.710132\pi\)
−0.613234 + 0.789901i \(0.710132\pi\)
\(822\) 0 0
\(823\) −1.97056 −0.0686895 −0.0343447 0.999410i \(-0.510934\pi\)
−0.0343447 + 0.999410i \(0.510934\pi\)
\(824\) −12.1421 −0.422991
\(825\) 0 0
\(826\) 0 0
\(827\) −47.1127 −1.63827 −0.819135 0.573601i \(-0.805546\pi\)
−0.819135 + 0.573601i \(0.805546\pi\)
\(828\) 0 0
\(829\) −9.85786 −0.342378 −0.171189 0.985238i \(-0.554761\pi\)
−0.171189 + 0.985238i \(0.554761\pi\)
\(830\) −7.44365 −0.258373
\(831\) 0 0
\(832\) 11.7990 0.409056
\(833\) 0 0
\(834\) 0 0
\(835\) 5.79899 0.200682
\(836\) −3.34315 −0.115625
\(837\) 0 0
\(838\) −6.55635 −0.226485
\(839\) −45.2548 −1.56237 −0.781185 0.624299i \(-0.785385\pi\)
−0.781185 + 0.624299i \(0.785385\pi\)
\(840\) 0 0
\(841\) −28.3137 −0.976335
\(842\) −10.2843 −0.354419
\(843\) 0 0
\(844\) 0.887302 0.0305422
\(845\) 9.14214 0.314499
\(846\) 0 0
\(847\) 0 0
\(848\) 6.00000 0.206041
\(849\) 0 0
\(850\) −5.25483 −0.180239
\(851\) −26.1421 −0.896141
\(852\) 0 0
\(853\) −51.6274 −1.76769 −0.883845 0.467781i \(-0.845054\pi\)
−0.883845 + 0.467781i \(0.845054\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.48528 −0.153304
\(857\) 21.1716 0.723207 0.361604 0.932332i \(-0.382229\pi\)
0.361604 + 0.932332i \(0.382229\pi\)
\(858\) 0 0
\(859\) −36.9411 −1.26041 −0.630207 0.776427i \(-0.717030\pi\)
−0.630207 + 0.776427i \(0.717030\pi\)
\(860\) −4.49033 −0.153119
\(861\) 0 0
\(862\) −11.9411 −0.406716
\(863\) −12.8284 −0.436685 −0.218342 0.975872i \(-0.570065\pi\)
−0.218342 + 0.975872i \(0.570065\pi\)
\(864\) 0 0
\(865\) −5.17157 −0.175839
\(866\) 3.51472 0.119435
\(867\) 0 0
\(868\) 0 0
\(869\) −24.9706 −0.847068
\(870\) 0 0
\(871\) 33.9411 1.15005
\(872\) −16.0833 −0.544648
\(873\) 0 0
\(874\) −1.58579 −0.0536400
\(875\) 0 0
\(876\) 0 0
\(877\) 10.3431 0.349263 0.174632 0.984634i \(-0.444127\pi\)
0.174632 + 0.984634i \(0.444127\pi\)
\(878\) −8.20101 −0.276771
\(879\) 0 0
\(880\) 10.0294 0.338092
\(881\) −40.6274 −1.36877 −0.684386 0.729120i \(-0.739930\pi\)
−0.684386 + 0.729120i \(0.739930\pi\)
\(882\) 0 0
\(883\) −11.0294 −0.371170 −0.185585 0.982628i \(-0.559418\pi\)
−0.185585 + 0.982628i \(0.559418\pi\)
\(884\) −39.5980 −1.33182
\(885\) 0 0
\(886\) −9.25483 −0.310922
\(887\) −35.4558 −1.19049 −0.595245 0.803544i \(-0.702945\pi\)
−0.595245 + 0.803544i \(0.702945\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −3.91674 −0.131289
\(891\) 0 0
\(892\) 32.5442 1.08966
\(893\) 11.8284 0.395823
\(894\) 0 0
\(895\) 11.8579 0.396365
\(896\) 0 0
\(897\) 0 0
\(898\) −0.887302 −0.0296096
\(899\) 7.31371 0.243926
\(900\) 0 0
\(901\) −15.3137 −0.510174
\(902\) 2.76955 0.0922160
\(903\) 0 0
\(904\) 11.3726 0.378246
\(905\) 0.627417 0.0208560
\(906\) 0 0
\(907\) −8.34315 −0.277030 −0.138515 0.990360i \(-0.544233\pi\)
−0.138515 + 0.990360i \(0.544233\pi\)
\(908\) −32.2843 −1.07139
\(909\) 0 0
\(910\) 0 0
\(911\) −18.0000 −0.596367 −0.298183 0.954509i \(-0.596381\pi\)
−0.298183 + 0.954509i \(0.596381\pi\)
\(912\) 0 0
\(913\) 17.9706 0.594739
\(914\) 1.38478 0.0458043
\(915\) 0 0
\(916\) 7.94113 0.262382
\(917\) 0 0
\(918\) 0 0
\(919\) −54.6569 −1.80296 −0.901482 0.432817i \(-0.857519\pi\)
−0.901482 + 0.432817i \(0.857519\pi\)
\(920\) 11.1005 0.365973
\(921\) 0 0
\(922\) −11.7868 −0.388177
\(923\) 44.2843 1.45763
\(924\) 0 0
\(925\) −11.3137 −0.371992
\(926\) 3.87006 0.127178
\(927\) 0 0
\(928\) 3.65685 0.120042
\(929\) 34.4558 1.13046 0.565230 0.824934i \(-0.308788\pi\)
0.565230 + 0.824934i \(0.308788\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 10.9706 0.359353
\(933\) 0 0
\(934\) 3.52691 0.115404
\(935\) −25.5980 −0.837143
\(936\) 0 0
\(937\) −27.0000 −0.882052 −0.441026 0.897494i \(-0.645385\pi\)
−0.441026 + 0.897494i \(0.645385\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −39.5442 −1.28979
\(941\) 7.94113 0.258873 0.129437 0.991588i \(-0.458683\pi\)
0.129437 + 0.991588i \(0.458683\pi\)
\(942\) 0 0
\(943\) −14.0000 −0.455903
\(944\) −15.5147 −0.504961
\(945\) 0 0
\(946\) −1.01724 −0.0330735
\(947\) 39.3137 1.27752 0.638762 0.769404i \(-0.279447\pi\)
0.638762 + 0.769404i \(0.279447\pi\)
\(948\) 0 0
\(949\) −34.8284 −1.13058
\(950\) −0.686292 −0.0222662
\(951\) 0 0
\(952\) 0 0
\(953\) −18.6274 −0.603401 −0.301701 0.953403i \(-0.597554\pi\)
−0.301701 + 0.953403i \(0.597554\pi\)
\(954\) 0 0
\(955\) 11.2843 0.365150
\(956\) 24.9706 0.807606
\(957\) 0 0
\(958\) 7.38478 0.238591
\(959\) 0 0
\(960\) 0 0
\(961\) 46.9411 1.51423
\(962\) 8.00000 0.257930
\(963\) 0 0
\(964\) 36.2010 1.16596
\(965\) −7.31371 −0.235437
\(966\) 0 0
\(967\) −16.0000 −0.514525 −0.257263 0.966342i \(-0.582821\pi\)
−0.257263 + 0.966342i \(0.582821\pi\)
\(968\) −12.1421 −0.390263
\(969\) 0 0
\(970\) 8.46089 0.271663
\(971\) 0.201010 0.00645072 0.00322536 0.999995i \(-0.498973\pi\)
0.00322536 + 0.999995i \(0.498973\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.82843 0.154713
\(975\) 0 0
\(976\) −10.0294 −0.321034
\(977\) 39.1127 1.25133 0.625663 0.780093i \(-0.284829\pi\)
0.625663 + 0.780093i \(0.284829\pi\)
\(978\) 0 0
\(979\) 9.45584 0.302210
\(980\) 0 0
\(981\) 0 0
\(982\) −10.5563 −0.336867
\(983\) 47.4558 1.51361 0.756803 0.653643i \(-0.226760\pi\)
0.756803 + 0.653643i \(0.226760\pi\)
\(984\) 0 0
\(985\) −0.941125 −0.0299868
\(986\) −2.62742 −0.0836740
\(987\) 0 0
\(988\) −5.17157 −0.164530
\(989\) 5.14214 0.163510
\(990\) 0 0
\(991\) −37.2548 −1.18344 −0.591719 0.806144i \(-0.701551\pi\)
−0.591719 + 0.806144i \(0.701551\pi\)
\(992\) 38.9706 1.23732
\(993\) 0 0
\(994\) 0 0
\(995\) −26.7990 −0.849585
\(996\) 0 0
\(997\) −30.0000 −0.950110 −0.475055 0.879956i \(-0.657572\pi\)
−0.475055 + 0.879956i \(0.657572\pi\)
\(998\) 5.78680 0.183178
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bm.1.1 2
3.2 odd 2 2793.2.a.o.1.2 2
7.2 even 3 1197.2.j.d.172.2 4
7.4 even 3 1197.2.j.d.856.2 4
7.6 odd 2 8379.2.a.bh.1.1 2
21.2 odd 6 399.2.j.c.172.1 yes 4
21.11 odd 6 399.2.j.c.58.1 4
21.20 even 2 2793.2.a.n.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.c.58.1 4 21.11 odd 6
399.2.j.c.172.1 yes 4 21.2 odd 6
1197.2.j.d.172.2 4 7.2 even 3
1197.2.j.d.856.2 4 7.4 even 3
2793.2.a.n.1.2 2 21.20 even 2
2793.2.a.o.1.2 2 3.2 odd 2
8379.2.a.bh.1.1 2 7.6 odd 2
8379.2.a.bm.1.1 2 1.1 even 1 trivial