Properties

Label 8379.2.a.bl.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,2,0,0,6,0,2,-2,0,-4,0,0,6,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{2} -1.82843 q^{4} +1.00000 q^{5} +1.58579 q^{8} -0.414214 q^{10} -2.41421 q^{11} -6.24264 q^{13} +3.00000 q^{16} -4.00000 q^{17} +1.00000 q^{19} -1.82843 q^{20} +1.00000 q^{22} +8.41421 q^{23} -4.00000 q^{25} +2.58579 q^{26} +9.41421 q^{29} -2.24264 q^{31} -4.41421 q^{32} +1.65685 q^{34} -5.07107 q^{37} -0.414214 q^{38} +1.58579 q^{40} -8.82843 q^{41} -6.07107 q^{43} +4.41421 q^{44} -3.48528 q^{46} -1.58579 q^{47} +1.65685 q^{50} +11.4142 q^{52} -4.24264 q^{53} -2.41421 q^{55} -3.89949 q^{58} +1.17157 q^{59} -6.17157 q^{61} +0.928932 q^{62} -4.17157 q^{64} -6.24264 q^{65} +6.82843 q^{67} +7.31371 q^{68} +5.75736 q^{71} +13.1421 q^{73} +2.10051 q^{74} -1.82843 q^{76} -1.41421 q^{79} +3.00000 q^{80} +3.65685 q^{82} +0.757359 q^{83} -4.00000 q^{85} +2.51472 q^{86} -3.82843 q^{88} -8.58579 q^{89} -15.3848 q^{92} +0.656854 q^{94} +1.00000 q^{95} +8.82843 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 2 q^{5} + 6 q^{8} + 2 q^{10} - 2 q^{11} - 4 q^{13} + 6 q^{16} - 8 q^{17} + 2 q^{19} + 2 q^{20} + 2 q^{22} + 14 q^{23} - 8 q^{25} + 8 q^{26} + 16 q^{29} + 4 q^{31} - 6 q^{32} - 8 q^{34}+ \cdots + 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) 1.00000 0.447214 0.223607 0.974679i \(-0.428217\pi\)
0.223607 + 0.974679i \(0.428217\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) −0.414214 −0.130986
\(11\) −2.41421 −0.727913 −0.363956 0.931416i \(-0.618574\pi\)
−0.363956 + 0.931416i \(0.618574\pi\)
\(12\) 0 0
\(13\) −6.24264 −1.73140 −0.865699 0.500566i \(-0.833125\pi\)
−0.865699 + 0.500566i \(0.833125\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −4.00000 −0.970143 −0.485071 0.874475i \(-0.661206\pi\)
−0.485071 + 0.874475i \(0.661206\pi\)
\(18\) 0 0
\(19\) 1.00000 0.229416
\(20\) −1.82843 −0.408849
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 8.41421 1.75448 0.877242 0.480048i \(-0.159381\pi\)
0.877242 + 0.480048i \(0.159381\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 2.58579 0.507114
\(27\) 0 0
\(28\) 0 0
\(29\) 9.41421 1.74818 0.874088 0.485768i \(-0.161460\pi\)
0.874088 + 0.485768i \(0.161460\pi\)
\(30\) 0 0
\(31\) −2.24264 −0.402790 −0.201395 0.979510i \(-0.564548\pi\)
−0.201395 + 0.979510i \(0.564548\pi\)
\(32\) −4.41421 −0.780330
\(33\) 0 0
\(34\) 1.65685 0.284148
\(35\) 0 0
\(36\) 0 0
\(37\) −5.07107 −0.833678 −0.416839 0.908980i \(-0.636862\pi\)
−0.416839 + 0.908980i \(0.636862\pi\)
\(38\) −0.414214 −0.0671943
\(39\) 0 0
\(40\) 1.58579 0.250735
\(41\) −8.82843 −1.37877 −0.689384 0.724396i \(-0.742119\pi\)
−0.689384 + 0.724396i \(0.742119\pi\)
\(42\) 0 0
\(43\) −6.07107 −0.925829 −0.462915 0.886403i \(-0.653196\pi\)
−0.462915 + 0.886403i \(0.653196\pi\)
\(44\) 4.41421 0.665468
\(45\) 0 0
\(46\) −3.48528 −0.513877
\(47\) −1.58579 −0.231311 −0.115655 0.993289i \(-0.536897\pi\)
−0.115655 + 0.993289i \(0.536897\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.65685 0.234315
\(51\) 0 0
\(52\) 11.4142 1.58287
\(53\) −4.24264 −0.582772 −0.291386 0.956606i \(-0.594116\pi\)
−0.291386 + 0.956606i \(0.594116\pi\)
\(54\) 0 0
\(55\) −2.41421 −0.325532
\(56\) 0 0
\(57\) 0 0
\(58\) −3.89949 −0.512029
\(59\) 1.17157 0.152526 0.0762629 0.997088i \(-0.475701\pi\)
0.0762629 + 0.997088i \(0.475701\pi\)
\(60\) 0 0
\(61\) −6.17157 −0.790189 −0.395094 0.918640i \(-0.629288\pi\)
−0.395094 + 0.918640i \(0.629288\pi\)
\(62\) 0.928932 0.117975
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −6.24264 −0.774304
\(66\) 0 0
\(67\) 6.82843 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(68\) 7.31371 0.886917
\(69\) 0 0
\(70\) 0 0
\(71\) 5.75736 0.683273 0.341636 0.939832i \(-0.389019\pi\)
0.341636 + 0.939832i \(0.389019\pi\)
\(72\) 0 0
\(73\) 13.1421 1.53817 0.769085 0.639146i \(-0.220712\pi\)
0.769085 + 0.639146i \(0.220712\pi\)
\(74\) 2.10051 0.244179
\(75\) 0 0
\(76\) −1.82843 −0.209735
\(77\) 0 0
\(78\) 0 0
\(79\) −1.41421 −0.159111 −0.0795557 0.996830i \(-0.525350\pi\)
−0.0795557 + 0.996830i \(0.525350\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) 3.65685 0.403832
\(83\) 0.757359 0.0831310 0.0415655 0.999136i \(-0.486765\pi\)
0.0415655 + 0.999136i \(0.486765\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 2.51472 0.271169
\(87\) 0 0
\(88\) −3.82843 −0.408112
\(89\) −8.58579 −0.910092 −0.455046 0.890468i \(-0.650377\pi\)
−0.455046 + 0.890468i \(0.650377\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −15.3848 −1.60397
\(93\) 0 0
\(94\) 0.656854 0.0677493
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) 8.82843 0.896391 0.448195 0.893936i \(-0.352067\pi\)
0.448195 + 0.893936i \(0.352067\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 7.31371 0.731371
\(101\) −4.31371 −0.429230 −0.214615 0.976699i \(-0.568850\pi\)
−0.214615 + 0.976699i \(0.568850\pi\)
\(102\) 0 0
\(103\) 6.00000 0.591198 0.295599 0.955312i \(-0.404481\pi\)
0.295599 + 0.955312i \(0.404481\pi\)
\(104\) −9.89949 −0.970725
\(105\) 0 0
\(106\) 1.75736 0.170690
\(107\) −5.89949 −0.570326 −0.285163 0.958479i \(-0.592048\pi\)
−0.285163 + 0.958479i \(0.592048\pi\)
\(108\) 0 0
\(109\) 1.65685 0.158698 0.0793489 0.996847i \(-0.474716\pi\)
0.0793489 + 0.996847i \(0.474716\pi\)
\(110\) 1.00000 0.0953463
\(111\) 0 0
\(112\) 0 0
\(113\) −8.24264 −0.775402 −0.387701 0.921785i \(-0.626731\pi\)
−0.387701 + 0.921785i \(0.626731\pi\)
\(114\) 0 0
\(115\) 8.41421 0.784629
\(116\) −17.2132 −1.59821
\(117\) 0 0
\(118\) −0.485281 −0.0446738
\(119\) 0 0
\(120\) 0 0
\(121\) −5.17157 −0.470143
\(122\) 2.55635 0.231441
\(123\) 0 0
\(124\) 4.10051 0.368236
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) 10.5563 0.933058
\(129\) 0 0
\(130\) 2.58579 0.226788
\(131\) 20.4853 1.78981 0.894904 0.446259i \(-0.147244\pi\)
0.894904 + 0.446259i \(0.147244\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) −6.34315 −0.543920
\(137\) 14.1716 1.21076 0.605380 0.795937i \(-0.293021\pi\)
0.605380 + 0.795937i \(0.293021\pi\)
\(138\) 0 0
\(139\) −8.07107 −0.684579 −0.342290 0.939595i \(-0.611202\pi\)
−0.342290 + 0.939595i \(0.611202\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.38478 −0.200126
\(143\) 15.0711 1.26031
\(144\) 0 0
\(145\) 9.41421 0.781808
\(146\) −5.44365 −0.450520
\(147\) 0 0
\(148\) 9.27208 0.762160
\(149\) 5.82843 0.477483 0.238742 0.971083i \(-0.423265\pi\)
0.238742 + 0.971083i \(0.423265\pi\)
\(150\) 0 0
\(151\) 5.31371 0.432423 0.216212 0.976346i \(-0.430630\pi\)
0.216212 + 0.976346i \(0.430630\pi\)
\(152\) 1.58579 0.128624
\(153\) 0 0
\(154\) 0 0
\(155\) −2.24264 −0.180133
\(156\) 0 0
\(157\) −11.8284 −0.944011 −0.472006 0.881596i \(-0.656470\pi\)
−0.472006 + 0.881596i \(0.656470\pi\)
\(158\) 0.585786 0.0466027
\(159\) 0 0
\(160\) −4.41421 −0.348974
\(161\) 0 0
\(162\) 0 0
\(163\) 18.0711 1.41544 0.707718 0.706495i \(-0.249725\pi\)
0.707718 + 0.706495i \(0.249725\pi\)
\(164\) 16.1421 1.26049
\(165\) 0 0
\(166\) −0.313708 −0.0243485
\(167\) −1.07107 −0.0828817 −0.0414409 0.999141i \(-0.513195\pi\)
−0.0414409 + 0.999141i \(0.513195\pi\)
\(168\) 0 0
\(169\) 25.9706 1.99774
\(170\) 1.65685 0.127075
\(171\) 0 0
\(172\) 11.1005 0.846406
\(173\) 15.3137 1.16428 0.582140 0.813089i \(-0.302216\pi\)
0.582140 + 0.813089i \(0.302216\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.24264 −0.545935
\(177\) 0 0
\(178\) 3.55635 0.266560
\(179\) 21.7990 1.62933 0.814667 0.579930i \(-0.196920\pi\)
0.814667 + 0.579930i \(0.196920\pi\)
\(180\) 0 0
\(181\) 9.89949 0.735824 0.367912 0.929861i \(-0.380073\pi\)
0.367912 + 0.929861i \(0.380073\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 13.3431 0.983670
\(185\) −5.07107 −0.372832
\(186\) 0 0
\(187\) 9.65685 0.706179
\(188\) 2.89949 0.211467
\(189\) 0 0
\(190\) −0.414214 −0.0300502
\(191\) −5.58579 −0.404173 −0.202087 0.979368i \(-0.564772\pi\)
−0.202087 + 0.979368i \(0.564772\pi\)
\(192\) 0 0
\(193\) −11.8995 −0.856544 −0.428272 0.903650i \(-0.640878\pi\)
−0.428272 + 0.903650i \(0.640878\pi\)
\(194\) −3.65685 −0.262547
\(195\) 0 0
\(196\) 0 0
\(197\) −21.4853 −1.53076 −0.765381 0.643577i \(-0.777450\pi\)
−0.765381 + 0.643577i \(0.777450\pi\)
\(198\) 0 0
\(199\) −1.92893 −0.136738 −0.0683692 0.997660i \(-0.521780\pi\)
−0.0683692 + 0.997660i \(0.521780\pi\)
\(200\) −6.34315 −0.448528
\(201\) 0 0
\(202\) 1.78680 0.125719
\(203\) 0 0
\(204\) 0 0
\(205\) −8.82843 −0.616604
\(206\) −2.48528 −0.173158
\(207\) 0 0
\(208\) −18.7279 −1.29855
\(209\) −2.41421 −0.166995
\(210\) 0 0
\(211\) −6.82843 −0.470088 −0.235044 0.971985i \(-0.575523\pi\)
−0.235044 + 0.971985i \(0.575523\pi\)
\(212\) 7.75736 0.532778
\(213\) 0 0
\(214\) 2.44365 0.167045
\(215\) −6.07107 −0.414043
\(216\) 0 0
\(217\) 0 0
\(218\) −0.686292 −0.0464815
\(219\) 0 0
\(220\) 4.41421 0.297606
\(221\) 24.9706 1.67970
\(222\) 0 0
\(223\) 6.24264 0.418038 0.209019 0.977912i \(-0.432973\pi\)
0.209019 + 0.977912i \(0.432973\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.41421 0.227110
\(227\) −11.7574 −0.780363 −0.390182 0.920738i \(-0.627588\pi\)
−0.390182 + 0.920738i \(0.627588\pi\)
\(228\) 0 0
\(229\) 4.48528 0.296396 0.148198 0.988958i \(-0.452653\pi\)
0.148198 + 0.988958i \(0.452653\pi\)
\(230\) −3.48528 −0.229813
\(231\) 0 0
\(232\) 14.9289 0.980132
\(233\) 16.4853 1.07999 0.539993 0.841669i \(-0.318427\pi\)
0.539993 + 0.841669i \(0.318427\pi\)
\(234\) 0 0
\(235\) −1.58579 −0.103445
\(236\) −2.14214 −0.139441
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) −22.0416 −1.41983 −0.709913 0.704289i \(-0.751266\pi\)
−0.709913 + 0.704289i \(0.751266\pi\)
\(242\) 2.14214 0.137702
\(243\) 0 0
\(244\) 11.2843 0.722401
\(245\) 0 0
\(246\) 0 0
\(247\) −6.24264 −0.397210
\(248\) −3.55635 −0.225828
\(249\) 0 0
\(250\) 3.72792 0.235774
\(251\) 11.7279 0.740260 0.370130 0.928980i \(-0.379313\pi\)
0.370130 + 0.928980i \(0.379313\pi\)
\(252\) 0 0
\(253\) −20.3137 −1.27711
\(254\) 1.75736 0.110267
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) −13.3137 −0.830486 −0.415243 0.909710i \(-0.636304\pi\)
−0.415243 + 0.909710i \(0.636304\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 11.4142 0.707879
\(261\) 0 0
\(262\) −8.48528 −0.524222
\(263\) 0.485281 0.0299237 0.0149619 0.999888i \(-0.495237\pi\)
0.0149619 + 0.999888i \(0.495237\pi\)
\(264\) 0 0
\(265\) −4.24264 −0.260623
\(266\) 0 0
\(267\) 0 0
\(268\) −12.4853 −0.762660
\(269\) −4.00000 −0.243884 −0.121942 0.992537i \(-0.538912\pi\)
−0.121942 + 0.992537i \(0.538912\pi\)
\(270\) 0 0
\(271\) 6.75736 0.410480 0.205240 0.978712i \(-0.434202\pi\)
0.205240 + 0.978712i \(0.434202\pi\)
\(272\) −12.0000 −0.727607
\(273\) 0 0
\(274\) −5.87006 −0.354623
\(275\) 9.65685 0.582330
\(276\) 0 0
\(277\) 28.4558 1.70975 0.854873 0.518837i \(-0.173635\pi\)
0.854873 + 0.518837i \(0.173635\pi\)
\(278\) 3.34315 0.200509
\(279\) 0 0
\(280\) 0 0
\(281\) 19.7574 1.17863 0.589313 0.807905i \(-0.299399\pi\)
0.589313 + 0.807905i \(0.299399\pi\)
\(282\) 0 0
\(283\) −15.9289 −0.946877 −0.473438 0.880827i \(-0.656987\pi\)
−0.473438 + 0.880827i \(0.656987\pi\)
\(284\) −10.5269 −0.624657
\(285\) 0 0
\(286\) −6.24264 −0.369135
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) −3.89949 −0.228986
\(291\) 0 0
\(292\) −24.0294 −1.40622
\(293\) 8.82843 0.515762 0.257881 0.966177i \(-0.416976\pi\)
0.257881 + 0.966177i \(0.416976\pi\)
\(294\) 0 0
\(295\) 1.17157 0.0682116
\(296\) −8.04163 −0.467410
\(297\) 0 0
\(298\) −2.41421 −0.139852
\(299\) −52.5269 −3.03771
\(300\) 0 0
\(301\) 0 0
\(302\) −2.20101 −0.126654
\(303\) 0 0
\(304\) 3.00000 0.172062
\(305\) −6.17157 −0.353383
\(306\) 0 0
\(307\) −6.68629 −0.381607 −0.190803 0.981628i \(-0.561109\pi\)
−0.190803 + 0.981628i \(0.561109\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.928932 0.0527598
\(311\) 15.7990 0.895879 0.447939 0.894064i \(-0.352158\pi\)
0.447939 + 0.894064i \(0.352158\pi\)
\(312\) 0 0
\(313\) −4.65685 −0.263221 −0.131610 0.991302i \(-0.542015\pi\)
−0.131610 + 0.991302i \(0.542015\pi\)
\(314\) 4.89949 0.276494
\(315\) 0 0
\(316\) 2.58579 0.145462
\(317\) 11.7574 0.660359 0.330180 0.943918i \(-0.392891\pi\)
0.330180 + 0.943918i \(0.392891\pi\)
\(318\) 0 0
\(319\) −22.7279 −1.27252
\(320\) −4.17157 −0.233198
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 24.9706 1.38512
\(326\) −7.48528 −0.414571
\(327\) 0 0
\(328\) −14.0000 −0.773021
\(329\) 0 0
\(330\) 0 0
\(331\) 19.4558 1.06939 0.534695 0.845045i \(-0.320427\pi\)
0.534695 + 0.845045i \(0.320427\pi\)
\(332\) −1.38478 −0.0759995
\(333\) 0 0
\(334\) 0.443651 0.0242755
\(335\) 6.82843 0.373077
\(336\) 0 0
\(337\) −11.5563 −0.629514 −0.314757 0.949172i \(-0.601923\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(338\) −10.7574 −0.585123
\(339\) 0 0
\(340\) 7.31371 0.396642
\(341\) 5.41421 0.293196
\(342\) 0 0
\(343\) 0 0
\(344\) −9.62742 −0.519076
\(345\) 0 0
\(346\) −6.34315 −0.341010
\(347\) 21.0416 1.12957 0.564787 0.825237i \(-0.308958\pi\)
0.564787 + 0.825237i \(0.308958\pi\)
\(348\) 0 0
\(349\) 12.4853 0.668322 0.334161 0.942516i \(-0.391547\pi\)
0.334161 + 0.942516i \(0.391547\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.6569 0.568012
\(353\) −16.4853 −0.877423 −0.438711 0.898628i \(-0.644565\pi\)
−0.438711 + 0.898628i \(0.644565\pi\)
\(354\) 0 0
\(355\) 5.75736 0.305569
\(356\) 15.6985 0.832018
\(357\) 0 0
\(358\) −9.02944 −0.477221
\(359\) 3.24264 0.171140 0.0855700 0.996332i \(-0.472729\pi\)
0.0855700 + 0.996332i \(0.472729\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) −4.10051 −0.215518
\(363\) 0 0
\(364\) 0 0
\(365\) 13.1421 0.687891
\(366\) 0 0
\(367\) 35.6569 1.86127 0.930636 0.365945i \(-0.119254\pi\)
0.930636 + 0.365945i \(0.119254\pi\)
\(368\) 25.2426 1.31586
\(369\) 0 0
\(370\) 2.10051 0.109200
\(371\) 0 0
\(372\) 0 0
\(373\) −11.3137 −0.585802 −0.292901 0.956143i \(-0.594621\pi\)
−0.292901 + 0.956143i \(0.594621\pi\)
\(374\) −4.00000 −0.206835
\(375\) 0 0
\(376\) −2.51472 −0.129687
\(377\) −58.7696 −3.02679
\(378\) 0 0
\(379\) −4.24264 −0.217930 −0.108965 0.994046i \(-0.534754\pi\)
−0.108965 + 0.994046i \(0.534754\pi\)
\(380\) −1.82843 −0.0937963
\(381\) 0 0
\(382\) 2.31371 0.118380
\(383\) 28.2426 1.44313 0.721566 0.692346i \(-0.243423\pi\)
0.721566 + 0.692346i \(0.243423\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.92893 0.250876
\(387\) 0 0
\(388\) −16.1421 −0.819493
\(389\) 28.4853 1.44426 0.722131 0.691757i \(-0.243163\pi\)
0.722131 + 0.691757i \(0.243163\pi\)
\(390\) 0 0
\(391\) −33.6569 −1.70210
\(392\) 0 0
\(393\) 0 0
\(394\) 8.89949 0.448350
\(395\) −1.41421 −0.0711568
\(396\) 0 0
\(397\) −36.6274 −1.83828 −0.919139 0.393934i \(-0.871114\pi\)
−0.919139 + 0.393934i \(0.871114\pi\)
\(398\) 0.798990 0.0400497
\(399\) 0 0
\(400\) −12.0000 −0.600000
\(401\) 16.4853 0.823236 0.411618 0.911357i \(-0.364964\pi\)
0.411618 + 0.911357i \(0.364964\pi\)
\(402\) 0 0
\(403\) 14.0000 0.697390
\(404\) 7.88730 0.392408
\(405\) 0 0
\(406\) 0 0
\(407\) 12.2426 0.606845
\(408\) 0 0
\(409\) 25.3137 1.25168 0.625841 0.779951i \(-0.284756\pi\)
0.625841 + 0.779951i \(0.284756\pi\)
\(410\) 3.65685 0.180599
\(411\) 0 0
\(412\) −10.9706 −0.540481
\(413\) 0 0
\(414\) 0 0
\(415\) 0.757359 0.0371773
\(416\) 27.5563 1.35106
\(417\) 0 0
\(418\) 1.00000 0.0489116
\(419\) −8.07107 −0.394297 −0.197149 0.980374i \(-0.563168\pi\)
−0.197149 + 0.980374i \(0.563168\pi\)
\(420\) 0 0
\(421\) 5.21320 0.254076 0.127038 0.991898i \(-0.459453\pi\)
0.127038 + 0.991898i \(0.459453\pi\)
\(422\) 2.82843 0.137686
\(423\) 0 0
\(424\) −6.72792 −0.326737
\(425\) 16.0000 0.776114
\(426\) 0 0
\(427\) 0 0
\(428\) 10.7868 0.521399
\(429\) 0 0
\(430\) 2.51472 0.121271
\(431\) −38.0416 −1.83240 −0.916200 0.400720i \(-0.868760\pi\)
−0.916200 + 0.400720i \(0.868760\pi\)
\(432\) 0 0
\(433\) −28.0000 −1.34559 −0.672797 0.739827i \(-0.734907\pi\)
−0.672797 + 0.739827i \(0.734907\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.02944 −0.145084
\(437\) 8.41421 0.402506
\(438\) 0 0
\(439\) 7.51472 0.358658 0.179329 0.983789i \(-0.442607\pi\)
0.179329 + 0.983789i \(0.442607\pi\)
\(440\) −3.82843 −0.182513
\(441\) 0 0
\(442\) −10.3431 −0.491973
\(443\) −6.34315 −0.301372 −0.150686 0.988582i \(-0.548148\pi\)
−0.150686 + 0.988582i \(0.548148\pi\)
\(444\) 0 0
\(445\) −8.58579 −0.407005
\(446\) −2.58579 −0.122441
\(447\) 0 0
\(448\) 0 0
\(449\) 1.65685 0.0781918 0.0390959 0.999235i \(-0.487552\pi\)
0.0390959 + 0.999235i \(0.487552\pi\)
\(450\) 0 0
\(451\) 21.3137 1.00362
\(452\) 15.0711 0.708883
\(453\) 0 0
\(454\) 4.87006 0.228563
\(455\) 0 0
\(456\) 0 0
\(457\) −2.17157 −0.101582 −0.0507909 0.998709i \(-0.516174\pi\)
−0.0507909 + 0.998709i \(0.516174\pi\)
\(458\) −1.85786 −0.0868123
\(459\) 0 0
\(460\) −15.3848 −0.717319
\(461\) −3.97056 −0.184928 −0.0924638 0.995716i \(-0.529474\pi\)
−0.0924638 + 0.995716i \(0.529474\pi\)
\(462\) 0 0
\(463\) 10.0711 0.468042 0.234021 0.972232i \(-0.424812\pi\)
0.234021 + 0.972232i \(0.424812\pi\)
\(464\) 28.2426 1.31113
\(465\) 0 0
\(466\) −6.82843 −0.316321
\(467\) 38.8995 1.80005 0.900027 0.435834i \(-0.143547\pi\)
0.900027 + 0.435834i \(0.143547\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.656854 0.0302984
\(471\) 0 0
\(472\) 1.85786 0.0855151
\(473\) 14.6569 0.673923
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0.828427 0.0378914
\(479\) 11.3848 0.520184 0.260092 0.965584i \(-0.416247\pi\)
0.260092 + 0.965584i \(0.416247\pi\)
\(480\) 0 0
\(481\) 31.6569 1.44343
\(482\) 9.12994 0.415857
\(483\) 0 0
\(484\) 9.45584 0.429811
\(485\) 8.82843 0.400878
\(486\) 0 0
\(487\) 20.8284 0.943826 0.471913 0.881645i \(-0.343564\pi\)
0.471913 + 0.881645i \(0.343564\pi\)
\(488\) −9.78680 −0.443027
\(489\) 0 0
\(490\) 0 0
\(491\) 32.5563 1.46925 0.734624 0.678475i \(-0.237359\pi\)
0.734624 + 0.678475i \(0.237359\pi\)
\(492\) 0 0
\(493\) −37.6569 −1.69598
\(494\) 2.58579 0.116340
\(495\) 0 0
\(496\) −6.72792 −0.302093
\(497\) 0 0
\(498\) 0 0
\(499\) 3.44365 0.154159 0.0770795 0.997025i \(-0.475440\pi\)
0.0770795 + 0.997025i \(0.475440\pi\)
\(500\) 16.4558 0.735928
\(501\) 0 0
\(502\) −4.85786 −0.216817
\(503\) 19.0416 0.849024 0.424512 0.905422i \(-0.360446\pi\)
0.424512 + 0.905422i \(0.360446\pi\)
\(504\) 0 0
\(505\) −4.31371 −0.191958
\(506\) 8.41421 0.374057
\(507\) 0 0
\(508\) 7.75736 0.344177
\(509\) 18.9706 0.840855 0.420428 0.907326i \(-0.361880\pi\)
0.420428 + 0.907326i \(0.361880\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) 5.51472 0.243244
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) 3.82843 0.168374
\(518\) 0 0
\(519\) 0 0
\(520\) −9.89949 −0.434122
\(521\) 10.4437 0.457545 0.228772 0.973480i \(-0.426529\pi\)
0.228772 + 0.973480i \(0.426529\pi\)
\(522\) 0 0
\(523\) 23.6569 1.03444 0.517221 0.855852i \(-0.326967\pi\)
0.517221 + 0.855852i \(0.326967\pi\)
\(524\) −37.4558 −1.63627
\(525\) 0 0
\(526\) −0.201010 −0.00876446
\(527\) 8.97056 0.390764
\(528\) 0 0
\(529\) 47.7990 2.07822
\(530\) 1.75736 0.0763348
\(531\) 0 0
\(532\) 0 0
\(533\) 55.1127 2.38720
\(534\) 0 0
\(535\) −5.89949 −0.255057
\(536\) 10.8284 0.467717
\(537\) 0 0
\(538\) 1.65685 0.0714321
\(539\) 0 0
\(540\) 0 0
\(541\) 5.14214 0.221078 0.110539 0.993872i \(-0.464742\pi\)
0.110539 + 0.993872i \(0.464742\pi\)
\(542\) −2.79899 −0.120227
\(543\) 0 0
\(544\) 17.6569 0.757031
\(545\) 1.65685 0.0709718
\(546\) 0 0
\(547\) 29.5563 1.26374 0.631869 0.775075i \(-0.282288\pi\)
0.631869 + 0.775075i \(0.282288\pi\)
\(548\) −25.9117 −1.10689
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) 9.41421 0.401059
\(552\) 0 0
\(553\) 0 0
\(554\) −11.7868 −0.500773
\(555\) 0 0
\(556\) 14.7574 0.625851
\(557\) −10.1716 −0.430983 −0.215492 0.976506i \(-0.569135\pi\)
−0.215492 + 0.976506i \(0.569135\pi\)
\(558\) 0 0
\(559\) 37.8995 1.60298
\(560\) 0 0
\(561\) 0 0
\(562\) −8.18377 −0.345211
\(563\) −13.8995 −0.585794 −0.292897 0.956144i \(-0.594619\pi\)
−0.292897 + 0.956144i \(0.594619\pi\)
\(564\) 0 0
\(565\) −8.24264 −0.346770
\(566\) 6.59798 0.277334
\(567\) 0 0
\(568\) 9.12994 0.383084
\(569\) 42.9706 1.80142 0.900710 0.434421i \(-0.143047\pi\)
0.900710 + 0.434421i \(0.143047\pi\)
\(570\) 0 0
\(571\) −18.8995 −0.790919 −0.395460 0.918483i \(-0.629415\pi\)
−0.395460 + 0.918483i \(0.629415\pi\)
\(572\) −27.5563 −1.15219
\(573\) 0 0
\(574\) 0 0
\(575\) −33.6569 −1.40359
\(576\) 0 0
\(577\) −27.9706 −1.16443 −0.582215 0.813035i \(-0.697814\pi\)
−0.582215 + 0.813035i \(0.697814\pi\)
\(578\) 0.414214 0.0172290
\(579\) 0 0
\(580\) −17.2132 −0.714739
\(581\) 0 0
\(582\) 0 0
\(583\) 10.2426 0.424207
\(584\) 20.8406 0.862391
\(585\) 0 0
\(586\) −3.65685 −0.151063
\(587\) 14.0000 0.577842 0.288921 0.957353i \(-0.406704\pi\)
0.288921 + 0.957353i \(0.406704\pi\)
\(588\) 0 0
\(589\) −2.24264 −0.0924064
\(590\) −0.485281 −0.0199787
\(591\) 0 0
\(592\) −15.2132 −0.625259
\(593\) 6.17157 0.253436 0.126718 0.991939i \(-0.459556\pi\)
0.126718 + 0.991939i \(0.459556\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.6569 −0.436522
\(597\) 0 0
\(598\) 21.7574 0.889725
\(599\) 31.6985 1.29516 0.647582 0.761995i \(-0.275780\pi\)
0.647582 + 0.761995i \(0.275780\pi\)
\(600\) 0 0
\(601\) 9.27208 0.378216 0.189108 0.981956i \(-0.439440\pi\)
0.189108 + 0.981956i \(0.439440\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.71573 −0.395327
\(605\) −5.17157 −0.210254
\(606\) 0 0
\(607\) −32.5269 −1.32023 −0.660113 0.751166i \(-0.729492\pi\)
−0.660113 + 0.751166i \(0.729492\pi\)
\(608\) −4.41421 −0.179020
\(609\) 0 0
\(610\) 2.55635 0.103504
\(611\) 9.89949 0.400491
\(612\) 0 0
\(613\) −8.68629 −0.350836 −0.175418 0.984494i \(-0.556128\pi\)
−0.175418 + 0.984494i \(0.556128\pi\)
\(614\) 2.76955 0.111770
\(615\) 0 0
\(616\) 0 0
\(617\) 42.4558 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(618\) 0 0
\(619\) −3.44365 −0.138412 −0.0692060 0.997602i \(-0.522047\pi\)
−0.0692060 + 0.997602i \(0.522047\pi\)
\(620\) 4.10051 0.164680
\(621\) 0 0
\(622\) −6.54416 −0.262397
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 1.92893 0.0770956
\(627\) 0 0
\(628\) 21.6274 0.863028
\(629\) 20.2843 0.808787
\(630\) 0 0
\(631\) −5.44365 −0.216708 −0.108354 0.994112i \(-0.534558\pi\)
−0.108354 + 0.994112i \(0.534558\pi\)
\(632\) −2.24264 −0.0892075
\(633\) 0 0
\(634\) −4.87006 −0.193415
\(635\) −4.24264 −0.168364
\(636\) 0 0
\(637\) 0 0
\(638\) 9.41421 0.372712
\(639\) 0 0
\(640\) 10.5563 0.417276
\(641\) −3.79899 −0.150051 −0.0750255 0.997182i \(-0.523904\pi\)
−0.0750255 + 0.997182i \(0.523904\pi\)
\(642\) 0 0
\(643\) −30.1421 −1.18869 −0.594345 0.804210i \(-0.702589\pi\)
−0.594345 + 0.804210i \(0.702589\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.65685 0.0651881
\(647\) 6.21320 0.244266 0.122133 0.992514i \(-0.461027\pi\)
0.122133 + 0.992514i \(0.461027\pi\)
\(648\) 0 0
\(649\) −2.82843 −0.111025
\(650\) −10.3431 −0.405692
\(651\) 0 0
\(652\) −33.0416 −1.29401
\(653\) 1.85786 0.0727039 0.0363519 0.999339i \(-0.488426\pi\)
0.0363519 + 0.999339i \(0.488426\pi\)
\(654\) 0 0
\(655\) 20.4853 0.800426
\(656\) −26.4853 −1.03408
\(657\) 0 0
\(658\) 0 0
\(659\) 38.0416 1.48189 0.740946 0.671565i \(-0.234378\pi\)
0.740946 + 0.671565i \(0.234378\pi\)
\(660\) 0 0
\(661\) 22.7279 0.884014 0.442007 0.897012i \(-0.354267\pi\)
0.442007 + 0.897012i \(0.354267\pi\)
\(662\) −8.05887 −0.313217
\(663\) 0 0
\(664\) 1.20101 0.0466082
\(665\) 0 0
\(666\) 0 0
\(667\) 79.2132 3.06715
\(668\) 1.95837 0.0757716
\(669\) 0 0
\(670\) −2.82843 −0.109272
\(671\) 14.8995 0.575189
\(672\) 0 0
\(673\) 35.7990 1.37995 0.689975 0.723833i \(-0.257622\pi\)
0.689975 + 0.723833i \(0.257622\pi\)
\(674\) 4.78680 0.184381
\(675\) 0 0
\(676\) −47.4853 −1.82636
\(677\) 0.686292 0.0263763 0.0131882 0.999913i \(-0.495802\pi\)
0.0131882 + 0.999913i \(0.495802\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.34315 −0.243249
\(681\) 0 0
\(682\) −2.24264 −0.0858752
\(683\) −10.4853 −0.401208 −0.200604 0.979672i \(-0.564290\pi\)
−0.200604 + 0.979672i \(0.564290\pi\)
\(684\) 0 0
\(685\) 14.1716 0.541468
\(686\) 0 0
\(687\) 0 0
\(688\) −18.2132 −0.694372
\(689\) 26.4853 1.00901
\(690\) 0 0
\(691\) 2.97056 0.113006 0.0565028 0.998402i \(-0.482005\pi\)
0.0565028 + 0.998402i \(0.482005\pi\)
\(692\) −28.0000 −1.06440
\(693\) 0 0
\(694\) −8.71573 −0.330845
\(695\) −8.07107 −0.306153
\(696\) 0 0
\(697\) 35.3137 1.33760
\(698\) −5.17157 −0.195747
\(699\) 0 0
\(700\) 0 0
\(701\) −3.82843 −0.144598 −0.0722988 0.997383i \(-0.523034\pi\)
−0.0722988 + 0.997383i \(0.523034\pi\)
\(702\) 0 0
\(703\) −5.07107 −0.191259
\(704\) 10.0711 0.379568
\(705\) 0 0
\(706\) 6.82843 0.256991
\(707\) 0 0
\(708\) 0 0
\(709\) 24.9411 0.936684 0.468342 0.883547i \(-0.344852\pi\)
0.468342 + 0.883547i \(0.344852\pi\)
\(710\) −2.38478 −0.0894991
\(711\) 0 0
\(712\) −13.6152 −0.510252
\(713\) −18.8701 −0.706689
\(714\) 0 0
\(715\) 15.0711 0.563626
\(716\) −39.8579 −1.48956
\(717\) 0 0
\(718\) −1.34315 −0.0501258
\(719\) −44.0833 −1.64403 −0.822014 0.569467i \(-0.807150\pi\)
−0.822014 + 0.569467i \(0.807150\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.414214 −0.0154154
\(723\) 0 0
\(724\) −18.1005 −0.672700
\(725\) −37.6569 −1.39854
\(726\) 0 0
\(727\) −5.92893 −0.219892 −0.109946 0.993938i \(-0.535068\pi\)
−0.109946 + 0.993938i \(0.535068\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5.44365 −0.201479
\(731\) 24.2843 0.898186
\(732\) 0 0
\(733\) 29.4558 1.08798 0.543988 0.839093i \(-0.316914\pi\)
0.543988 + 0.839093i \(0.316914\pi\)
\(734\) −14.7696 −0.545154
\(735\) 0 0
\(736\) −37.1421 −1.36908
\(737\) −16.4853 −0.607243
\(738\) 0 0
\(739\) −19.6569 −0.723089 −0.361545 0.932355i \(-0.617750\pi\)
−0.361545 + 0.932355i \(0.617750\pi\)
\(740\) 9.27208 0.340848
\(741\) 0 0
\(742\) 0 0
\(743\) −50.8701 −1.86624 −0.933121 0.359563i \(-0.882926\pi\)
−0.933121 + 0.359563i \(0.882926\pi\)
\(744\) 0 0
\(745\) 5.82843 0.213537
\(746\) 4.68629 0.171577
\(747\) 0 0
\(748\) −17.6569 −0.645599
\(749\) 0 0
\(750\) 0 0
\(751\) −41.4558 −1.51275 −0.756373 0.654141i \(-0.773030\pi\)
−0.756373 + 0.654141i \(0.773030\pi\)
\(752\) −4.75736 −0.173483
\(753\) 0 0
\(754\) 24.3431 0.886525
\(755\) 5.31371 0.193386
\(756\) 0 0
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 1.75736 0.0638302
\(759\) 0 0
\(760\) 1.58579 0.0575225
\(761\) 28.1127 1.01908 0.509542 0.860446i \(-0.329815\pi\)
0.509542 + 0.860446i \(0.329815\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 10.2132 0.369501
\(765\) 0 0
\(766\) −11.6985 −0.422683
\(767\) −7.31371 −0.264083
\(768\) 0 0
\(769\) −41.4264 −1.49387 −0.746937 0.664895i \(-0.768476\pi\)
−0.746937 + 0.664895i \(0.768476\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21.7574 0.783064
\(773\) −25.7574 −0.926428 −0.463214 0.886247i \(-0.653304\pi\)
−0.463214 + 0.886247i \(0.653304\pi\)
\(774\) 0 0
\(775\) 8.97056 0.322232
\(776\) 14.0000 0.502571
\(777\) 0 0
\(778\) −11.7990 −0.423014
\(779\) −8.82843 −0.316311
\(780\) 0 0
\(781\) −13.8995 −0.497363
\(782\) 13.9411 0.498534
\(783\) 0 0
\(784\) 0 0
\(785\) −11.8284 −0.422175
\(786\) 0 0
\(787\) 41.0122 1.46193 0.730963 0.682417i \(-0.239071\pi\)
0.730963 + 0.682417i \(0.239071\pi\)
\(788\) 39.2843 1.39944
\(789\) 0 0
\(790\) 0.585786 0.0208413
\(791\) 0 0
\(792\) 0 0
\(793\) 38.5269 1.36813
\(794\) 15.1716 0.538419
\(795\) 0 0
\(796\) 3.52691 0.125008
\(797\) −21.7574 −0.770685 −0.385343 0.922774i \(-0.625917\pi\)
−0.385343 + 0.922774i \(0.625917\pi\)
\(798\) 0 0
\(799\) 6.34315 0.224404
\(800\) 17.6569 0.624264
\(801\) 0 0
\(802\) −6.82843 −0.241120
\(803\) −31.7279 −1.11965
\(804\) 0 0
\(805\) 0 0
\(806\) −5.79899 −0.204261
\(807\) 0 0
\(808\) −6.84062 −0.240652
\(809\) −2.85786 −0.100477 −0.0502386 0.998737i \(-0.515998\pi\)
−0.0502386 + 0.998737i \(0.515998\pi\)
\(810\) 0 0
\(811\) 51.4558 1.80686 0.903430 0.428737i \(-0.141041\pi\)
0.903430 + 0.428737i \(0.141041\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −5.07107 −0.177741
\(815\) 18.0711 0.633002
\(816\) 0 0
\(817\) −6.07107 −0.212400
\(818\) −10.4853 −0.366609
\(819\) 0 0
\(820\) 16.1421 0.563708
\(821\) 52.1127 1.81875 0.909373 0.415982i \(-0.136562\pi\)
0.909373 + 0.415982i \(0.136562\pi\)
\(822\) 0 0
\(823\) 36.2132 1.26231 0.631156 0.775656i \(-0.282581\pi\)
0.631156 + 0.775656i \(0.282581\pi\)
\(824\) 9.51472 0.331461
\(825\) 0 0
\(826\) 0 0
\(827\) 44.2843 1.53991 0.769957 0.638095i \(-0.220277\pi\)
0.769957 + 0.638095i \(0.220277\pi\)
\(828\) 0 0
\(829\) −28.2843 −0.982353 −0.491177 0.871060i \(-0.663433\pi\)
−0.491177 + 0.871060i \(0.663433\pi\)
\(830\) −0.313708 −0.0108890
\(831\) 0 0
\(832\) 26.0416 0.902831
\(833\) 0 0
\(834\) 0 0
\(835\) −1.07107 −0.0370658
\(836\) 4.41421 0.152669
\(837\) 0 0
\(838\) 3.34315 0.115487
\(839\) 19.7990 0.683537 0.341769 0.939784i \(-0.388974\pi\)
0.341769 + 0.939784i \(0.388974\pi\)
\(840\) 0 0
\(841\) 59.6274 2.05612
\(842\) −2.15938 −0.0744171
\(843\) 0 0
\(844\) 12.4853 0.429761
\(845\) 25.9706 0.893415
\(846\) 0 0
\(847\) 0 0
\(848\) −12.7279 −0.437079
\(849\) 0 0
\(850\) −6.62742 −0.227319
\(851\) −42.6690 −1.46268
\(852\) 0 0
\(853\) −10.0294 −0.343401 −0.171701 0.985149i \(-0.554926\pi\)
−0.171701 + 0.985149i \(0.554926\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.35534 −0.319759
\(857\) 20.9706 0.716341 0.358170 0.933656i \(-0.383401\pi\)
0.358170 + 0.933656i \(0.383401\pi\)
\(858\) 0 0
\(859\) −2.07107 −0.0706639 −0.0353320 0.999376i \(-0.511249\pi\)
−0.0353320 + 0.999376i \(0.511249\pi\)
\(860\) 11.1005 0.378524
\(861\) 0 0
\(862\) 15.7574 0.536698
\(863\) −7.41421 −0.252383 −0.126191 0.992006i \(-0.540275\pi\)
−0.126191 + 0.992006i \(0.540275\pi\)
\(864\) 0 0
\(865\) 15.3137 0.520682
\(866\) 11.5980 0.394115
\(867\) 0 0
\(868\) 0 0
\(869\) 3.41421 0.115819
\(870\) 0 0
\(871\) −42.6274 −1.44437
\(872\) 2.62742 0.0889756
\(873\) 0 0
\(874\) −3.48528 −0.117891
\(875\) 0 0
\(876\) 0 0
\(877\) −8.10051 −0.273535 −0.136767 0.990603i \(-0.543671\pi\)
−0.136767 + 0.990603i \(0.543671\pi\)
\(878\) −3.11270 −0.105048
\(879\) 0 0
\(880\) −7.24264 −0.244149
\(881\) 4.28427 0.144341 0.0721704 0.997392i \(-0.477007\pi\)
0.0721704 + 0.997392i \(0.477007\pi\)
\(882\) 0 0
\(883\) 5.65685 0.190368 0.0951842 0.995460i \(-0.469656\pi\)
0.0951842 + 0.995460i \(0.469656\pi\)
\(884\) −45.6569 −1.53561
\(885\) 0 0
\(886\) 2.62742 0.0882698
\(887\) 1.31371 0.0441100 0.0220550 0.999757i \(-0.492979\pi\)
0.0220550 + 0.999757i \(0.492979\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 3.55635 0.119209
\(891\) 0 0
\(892\) −11.4142 −0.382176
\(893\) −1.58579 −0.0530663
\(894\) 0 0
\(895\) 21.7990 0.728660
\(896\) 0 0
\(897\) 0 0
\(898\) −0.686292 −0.0229018
\(899\) −21.1127 −0.704148
\(900\) 0 0
\(901\) 16.9706 0.565371
\(902\) −8.82843 −0.293954
\(903\) 0 0
\(904\) −13.0711 −0.434737
\(905\) 9.89949 0.329070
\(906\) 0 0
\(907\) 28.5858 0.949175 0.474588 0.880208i \(-0.342597\pi\)
0.474588 + 0.880208i \(0.342597\pi\)
\(908\) 21.4975 0.713419
\(909\) 0 0
\(910\) 0 0
\(911\) −34.7279 −1.15059 −0.575294 0.817947i \(-0.695112\pi\)
−0.575294 + 0.817947i \(0.695112\pi\)
\(912\) 0 0
\(913\) −1.82843 −0.0605121
\(914\) 0.899495 0.0297526
\(915\) 0 0
\(916\) −8.20101 −0.270969
\(917\) 0 0
\(918\) 0 0
\(919\) 29.0416 0.957995 0.478997 0.877816i \(-0.341000\pi\)
0.478997 + 0.877816i \(0.341000\pi\)
\(920\) 13.3431 0.439910
\(921\) 0 0
\(922\) 1.64466 0.0541640
\(923\) −35.9411 −1.18302
\(924\) 0 0
\(925\) 20.2843 0.666943
\(926\) −4.17157 −0.137086
\(927\) 0 0
\(928\) −41.5563 −1.36415
\(929\) 15.0000 0.492134 0.246067 0.969253i \(-0.420862\pi\)
0.246067 + 0.969253i \(0.420862\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −30.1421 −0.987338
\(933\) 0 0
\(934\) −16.1127 −0.527224
\(935\) 9.65685 0.315813
\(936\) 0 0
\(937\) 56.3137 1.83969 0.919844 0.392284i \(-0.128315\pi\)
0.919844 + 0.392284i \(0.128315\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.89949 0.0945711
\(941\) −44.0416 −1.43572 −0.717858 0.696189i \(-0.754877\pi\)
−0.717858 + 0.696189i \(0.754877\pi\)
\(942\) 0 0
\(943\) −74.2843 −2.41903
\(944\) 3.51472 0.114394
\(945\) 0 0
\(946\) −6.07107 −0.197387
\(947\) 7.65685 0.248814 0.124407 0.992231i \(-0.460297\pi\)
0.124407 + 0.992231i \(0.460297\pi\)
\(948\) 0 0
\(949\) −82.0416 −2.66318
\(950\) 1.65685 0.0537555
\(951\) 0 0
\(952\) 0 0
\(953\) 0.585786 0.0189755 0.00948774 0.999955i \(-0.496980\pi\)
0.00948774 + 0.999955i \(0.496980\pi\)
\(954\) 0 0
\(955\) −5.58579 −0.180752
\(956\) 3.65685 0.118271
\(957\) 0 0
\(958\) −4.71573 −0.152358
\(959\) 0 0
\(960\) 0 0
\(961\) −25.9706 −0.837760
\(962\) −13.1127 −0.422770
\(963\) 0 0
\(964\) 40.3015 1.29802
\(965\) −11.8995 −0.383058
\(966\) 0 0
\(967\) 20.2843 0.652298 0.326149 0.945318i \(-0.394249\pi\)
0.326149 + 0.945318i \(0.394249\pi\)
\(968\) −8.20101 −0.263590
\(969\) 0 0
\(970\) −3.65685 −0.117415
\(971\) −26.8701 −0.862301 −0.431151 0.902280i \(-0.641892\pi\)
−0.431151 + 0.902280i \(0.641892\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.62742 −0.276440
\(975\) 0 0
\(976\) −18.5147 −0.592642
\(977\) −28.7696 −0.920420 −0.460210 0.887810i \(-0.652226\pi\)
−0.460210 + 0.887810i \(0.652226\pi\)
\(978\) 0 0
\(979\) 20.7279 0.662467
\(980\) 0 0
\(981\) 0 0
\(982\) −13.4853 −0.430333
\(983\) −46.0000 −1.46717 −0.733586 0.679597i \(-0.762155\pi\)
−0.733586 + 0.679597i \(0.762155\pi\)
\(984\) 0 0
\(985\) −21.4853 −0.684578
\(986\) 15.5980 0.496741
\(987\) 0 0
\(988\) 11.4142 0.363135
\(989\) −51.0833 −1.62435
\(990\) 0 0
\(991\) −35.7990 −1.13719 −0.568596 0.822617i \(-0.692513\pi\)
−0.568596 + 0.822617i \(0.692513\pi\)
\(992\) 9.89949 0.314309
\(993\) 0 0
\(994\) 0 0
\(995\) −1.92893 −0.0611513
\(996\) 0 0
\(997\) −28.2843 −0.895772 −0.447886 0.894091i \(-0.647823\pi\)
−0.447886 + 0.894091i \(0.647823\pi\)
\(998\) −1.42641 −0.0451521
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bl.1.1 2
3.2 odd 2 931.2.a.e.1.2 2
7.3 odd 6 1197.2.j.e.856.2 4
7.5 odd 6 1197.2.j.e.172.2 4
7.6 odd 2 8379.2.a.bi.1.1 2
21.2 odd 6 931.2.f.i.704.1 4
21.5 even 6 133.2.f.c.39.1 4
21.11 odd 6 931.2.f.i.324.1 4
21.17 even 6 133.2.f.c.58.1 yes 4
21.20 even 2 931.2.a.f.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.f.c.39.1 4 21.5 even 6
133.2.f.c.58.1 yes 4 21.17 even 6
931.2.a.e.1.2 2 3.2 odd 2
931.2.a.f.1.2 2 21.20 even 2
931.2.f.i.324.1 4 21.11 odd 6
931.2.f.i.704.1 4 21.2 odd 6
1197.2.j.e.172.2 4 7.5 odd 6
1197.2.j.e.856.2 4 7.3 odd 6
8379.2.a.bi.1.1 2 7.6 odd 2
8379.2.a.bl.1.1 2 1.1 even 1 trivial