Properties

Label 8379.2.a.bi.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-2,0,0,6,0,-2,-2,0,4,0,0,6,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.414214 q^{2} -1.82843 q^{4} -1.00000 q^{5} +1.58579 q^{8} +0.414214 q^{10} -2.41421 q^{11} +6.24264 q^{13} +3.00000 q^{16} +4.00000 q^{17} -1.00000 q^{19} +1.82843 q^{20} +1.00000 q^{22} +8.41421 q^{23} -4.00000 q^{25} -2.58579 q^{26} +9.41421 q^{29} +2.24264 q^{31} -4.41421 q^{32} -1.65685 q^{34} -5.07107 q^{37} +0.414214 q^{38} -1.58579 q^{40} +8.82843 q^{41} -6.07107 q^{43} +4.41421 q^{44} -3.48528 q^{46} +1.58579 q^{47} +1.65685 q^{50} -11.4142 q^{52} -4.24264 q^{53} +2.41421 q^{55} -3.89949 q^{58} -1.17157 q^{59} +6.17157 q^{61} -0.928932 q^{62} -4.17157 q^{64} -6.24264 q^{65} +6.82843 q^{67} -7.31371 q^{68} +5.75736 q^{71} -13.1421 q^{73} +2.10051 q^{74} +1.82843 q^{76} -1.41421 q^{79} -3.00000 q^{80} -3.65685 q^{82} -0.757359 q^{83} -4.00000 q^{85} +2.51472 q^{86} -3.82843 q^{88} +8.58579 q^{89} -15.3848 q^{92} -0.656854 q^{94} +1.00000 q^{95} -8.82843 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} + 6 q^{8} - 2 q^{10} - 2 q^{11} + 4 q^{13} + 6 q^{16} + 8 q^{17} - 2 q^{19} - 2 q^{20} + 2 q^{22} + 14 q^{23} - 8 q^{25} - 8 q^{26} + 16 q^{29} - 4 q^{31} - 6 q^{32} + 8 q^{34}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.414214 −0.292893 −0.146447 0.989219i \(-0.546784\pi\)
−0.146447 + 0.989219i \(0.546784\pi\)
\(3\) 0 0
\(4\) −1.82843 −0.914214
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.58579 0.560660
\(9\) 0 0
\(10\) 0.414214 0.130986
\(11\) −2.41421 −0.727913 −0.363956 0.931416i \(-0.618574\pi\)
−0.363956 + 0.931416i \(0.618574\pi\)
\(12\) 0 0
\(13\) 6.24264 1.73140 0.865699 0.500566i \(-0.166875\pi\)
0.865699 + 0.500566i \(0.166875\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.82843 0.408849
\(21\) 0 0
\(22\) 1.00000 0.213201
\(23\) 8.41421 1.75448 0.877242 0.480048i \(-0.159381\pi\)
0.877242 + 0.480048i \(0.159381\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −2.58579 −0.507114
\(27\) 0 0
\(28\) 0 0
\(29\) 9.41421 1.74818 0.874088 0.485768i \(-0.161460\pi\)
0.874088 + 0.485768i \(0.161460\pi\)
\(30\) 0 0
\(31\) 2.24264 0.402790 0.201395 0.979510i \(-0.435452\pi\)
0.201395 + 0.979510i \(0.435452\pi\)
\(32\) −4.41421 −0.780330
\(33\) 0 0
\(34\) −1.65685 −0.284148
\(35\) 0 0
\(36\) 0 0
\(37\) −5.07107 −0.833678 −0.416839 0.908980i \(-0.636862\pi\)
−0.416839 + 0.908980i \(0.636862\pi\)
\(38\) 0.414214 0.0671943
\(39\) 0 0
\(40\) −1.58579 −0.250735
\(41\) 8.82843 1.37877 0.689384 0.724396i \(-0.257881\pi\)
0.689384 + 0.724396i \(0.257881\pi\)
\(42\) 0 0
\(43\) −6.07107 −0.925829 −0.462915 0.886403i \(-0.653196\pi\)
−0.462915 + 0.886403i \(0.653196\pi\)
\(44\) 4.41421 0.665468
\(45\) 0 0
\(46\) −3.48528 −0.513877
\(47\) 1.58579 0.231311 0.115655 0.993289i \(-0.463103\pi\)
0.115655 + 0.993289i \(0.463103\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 1.65685 0.234315
\(51\) 0 0
\(52\) −11.4142 −1.58287
\(53\) −4.24264 −0.582772 −0.291386 0.956606i \(-0.594116\pi\)
−0.291386 + 0.956606i \(0.594116\pi\)
\(54\) 0 0
\(55\) 2.41421 0.325532
\(56\) 0 0
\(57\) 0 0
\(58\) −3.89949 −0.512029
\(59\) −1.17157 −0.152526 −0.0762629 0.997088i \(-0.524299\pi\)
−0.0762629 + 0.997088i \(0.524299\pi\)
\(60\) 0 0
\(61\) 6.17157 0.790189 0.395094 0.918640i \(-0.370712\pi\)
0.395094 + 0.918640i \(0.370712\pi\)
\(62\) −0.928932 −0.117975
\(63\) 0 0
\(64\) −4.17157 −0.521447
\(65\) −6.24264 −0.774304
\(66\) 0 0
\(67\) 6.82843 0.834225 0.417113 0.908855i \(-0.363042\pi\)
0.417113 + 0.908855i \(0.363042\pi\)
\(68\) −7.31371 −0.886917
\(69\) 0 0
\(70\) 0 0
\(71\) 5.75736 0.683273 0.341636 0.939832i \(-0.389019\pi\)
0.341636 + 0.939832i \(0.389019\pi\)
\(72\) 0 0
\(73\) −13.1421 −1.53817 −0.769085 0.639146i \(-0.779288\pi\)
−0.769085 + 0.639146i \(0.779288\pi\)
\(74\) 2.10051 0.244179
\(75\) 0 0
\(76\) 1.82843 0.209735
\(77\) 0 0
\(78\) 0 0
\(79\) −1.41421 −0.159111 −0.0795557 0.996830i \(-0.525350\pi\)
−0.0795557 + 0.996830i \(0.525350\pi\)
\(80\) −3.00000 −0.335410
\(81\) 0 0
\(82\) −3.65685 −0.403832
\(83\) −0.757359 −0.0831310 −0.0415655 0.999136i \(-0.513235\pi\)
−0.0415655 + 0.999136i \(0.513235\pi\)
\(84\) 0 0
\(85\) −4.00000 −0.433861
\(86\) 2.51472 0.271169
\(87\) 0 0
\(88\) −3.82843 −0.408112
\(89\) 8.58579 0.910092 0.455046 0.890468i \(-0.349623\pi\)
0.455046 + 0.890468i \(0.349623\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −15.3848 −1.60397
\(93\) 0 0
\(94\) −0.656854 −0.0677493
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −8.82843 −0.896391 −0.448195 0.893936i \(-0.647933\pi\)
−0.448195 + 0.893936i \(0.647933\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 7.31371 0.731371
\(101\) 4.31371 0.429230 0.214615 0.976699i \(-0.431150\pi\)
0.214615 + 0.976699i \(0.431150\pi\)
\(102\) 0 0
\(103\) −6.00000 −0.591198 −0.295599 0.955312i \(-0.595519\pi\)
−0.295599 + 0.955312i \(0.595519\pi\)
\(104\) 9.89949 0.970725
\(105\) 0 0
\(106\) 1.75736 0.170690
\(107\) −5.89949 −0.570326 −0.285163 0.958479i \(-0.592048\pi\)
−0.285163 + 0.958479i \(0.592048\pi\)
\(108\) 0 0
\(109\) 1.65685 0.158698 0.0793489 0.996847i \(-0.474716\pi\)
0.0793489 + 0.996847i \(0.474716\pi\)
\(110\) −1.00000 −0.0953463
\(111\) 0 0
\(112\) 0 0
\(113\) −8.24264 −0.775402 −0.387701 0.921785i \(-0.626731\pi\)
−0.387701 + 0.921785i \(0.626731\pi\)
\(114\) 0 0
\(115\) −8.41421 −0.784629
\(116\) −17.2132 −1.59821
\(117\) 0 0
\(118\) 0.485281 0.0446738
\(119\) 0 0
\(120\) 0 0
\(121\) −5.17157 −0.470143
\(122\) −2.55635 −0.231441
\(123\) 0 0
\(124\) −4.10051 −0.368236
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −4.24264 −0.376473 −0.188237 0.982124i \(-0.560277\pi\)
−0.188237 + 0.982124i \(0.560277\pi\)
\(128\) 10.5563 0.933058
\(129\) 0 0
\(130\) 2.58579 0.226788
\(131\) −20.4853 −1.78981 −0.894904 0.446259i \(-0.852756\pi\)
−0.894904 + 0.446259i \(0.852756\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −2.82843 −0.244339
\(135\) 0 0
\(136\) 6.34315 0.543920
\(137\) 14.1716 1.21076 0.605380 0.795937i \(-0.293021\pi\)
0.605380 + 0.795937i \(0.293021\pi\)
\(138\) 0 0
\(139\) 8.07107 0.684579 0.342290 0.939595i \(-0.388798\pi\)
0.342290 + 0.939595i \(0.388798\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2.38478 −0.200126
\(143\) −15.0711 −1.26031
\(144\) 0 0
\(145\) −9.41421 −0.781808
\(146\) 5.44365 0.450520
\(147\) 0 0
\(148\) 9.27208 0.762160
\(149\) 5.82843 0.477483 0.238742 0.971083i \(-0.423265\pi\)
0.238742 + 0.971083i \(0.423265\pi\)
\(150\) 0 0
\(151\) 5.31371 0.432423 0.216212 0.976346i \(-0.430630\pi\)
0.216212 + 0.976346i \(0.430630\pi\)
\(152\) −1.58579 −0.128624
\(153\) 0 0
\(154\) 0 0
\(155\) −2.24264 −0.180133
\(156\) 0 0
\(157\) 11.8284 0.944011 0.472006 0.881596i \(-0.343530\pi\)
0.472006 + 0.881596i \(0.343530\pi\)
\(158\) 0.585786 0.0466027
\(159\) 0 0
\(160\) 4.41421 0.348974
\(161\) 0 0
\(162\) 0 0
\(163\) 18.0711 1.41544 0.707718 0.706495i \(-0.249725\pi\)
0.707718 + 0.706495i \(0.249725\pi\)
\(164\) −16.1421 −1.26049
\(165\) 0 0
\(166\) 0.313708 0.0243485
\(167\) 1.07107 0.0828817 0.0414409 0.999141i \(-0.486805\pi\)
0.0414409 + 0.999141i \(0.486805\pi\)
\(168\) 0 0
\(169\) 25.9706 1.99774
\(170\) 1.65685 0.127075
\(171\) 0 0
\(172\) 11.1005 0.846406
\(173\) −15.3137 −1.16428 −0.582140 0.813089i \(-0.697784\pi\)
−0.582140 + 0.813089i \(0.697784\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −7.24264 −0.545935
\(177\) 0 0
\(178\) −3.55635 −0.266560
\(179\) 21.7990 1.62933 0.814667 0.579930i \(-0.196920\pi\)
0.814667 + 0.579930i \(0.196920\pi\)
\(180\) 0 0
\(181\) −9.89949 −0.735824 −0.367912 0.929861i \(-0.619927\pi\)
−0.367912 + 0.929861i \(0.619927\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 13.3431 0.983670
\(185\) 5.07107 0.372832
\(186\) 0 0
\(187\) −9.65685 −0.706179
\(188\) −2.89949 −0.211467
\(189\) 0 0
\(190\) −0.414214 −0.0300502
\(191\) −5.58579 −0.404173 −0.202087 0.979368i \(-0.564772\pi\)
−0.202087 + 0.979368i \(0.564772\pi\)
\(192\) 0 0
\(193\) −11.8995 −0.856544 −0.428272 0.903650i \(-0.640878\pi\)
−0.428272 + 0.903650i \(0.640878\pi\)
\(194\) 3.65685 0.262547
\(195\) 0 0
\(196\) 0 0
\(197\) −21.4853 −1.53076 −0.765381 0.643577i \(-0.777450\pi\)
−0.765381 + 0.643577i \(0.777450\pi\)
\(198\) 0 0
\(199\) 1.92893 0.136738 0.0683692 0.997660i \(-0.478220\pi\)
0.0683692 + 0.997660i \(0.478220\pi\)
\(200\) −6.34315 −0.448528
\(201\) 0 0
\(202\) −1.78680 −0.125719
\(203\) 0 0
\(204\) 0 0
\(205\) −8.82843 −0.616604
\(206\) 2.48528 0.173158
\(207\) 0 0
\(208\) 18.7279 1.29855
\(209\) 2.41421 0.166995
\(210\) 0 0
\(211\) −6.82843 −0.470088 −0.235044 0.971985i \(-0.575523\pi\)
−0.235044 + 0.971985i \(0.575523\pi\)
\(212\) 7.75736 0.532778
\(213\) 0 0
\(214\) 2.44365 0.167045
\(215\) 6.07107 0.414043
\(216\) 0 0
\(217\) 0 0
\(218\) −0.686292 −0.0464815
\(219\) 0 0
\(220\) −4.41421 −0.297606
\(221\) 24.9706 1.67970
\(222\) 0 0
\(223\) −6.24264 −0.418038 −0.209019 0.977912i \(-0.567027\pi\)
−0.209019 + 0.977912i \(0.567027\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 3.41421 0.227110
\(227\) 11.7574 0.780363 0.390182 0.920738i \(-0.372412\pi\)
0.390182 + 0.920738i \(0.372412\pi\)
\(228\) 0 0
\(229\) −4.48528 −0.296396 −0.148198 0.988958i \(-0.547347\pi\)
−0.148198 + 0.988958i \(0.547347\pi\)
\(230\) 3.48528 0.229813
\(231\) 0 0
\(232\) 14.9289 0.980132
\(233\) 16.4853 1.07999 0.539993 0.841669i \(-0.318427\pi\)
0.539993 + 0.841669i \(0.318427\pi\)
\(234\) 0 0
\(235\) −1.58579 −0.103445
\(236\) 2.14214 0.139441
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 22.0416 1.41983 0.709913 0.704289i \(-0.248734\pi\)
0.709913 + 0.704289i \(0.248734\pi\)
\(242\) 2.14214 0.137702
\(243\) 0 0
\(244\) −11.2843 −0.722401
\(245\) 0 0
\(246\) 0 0
\(247\) −6.24264 −0.397210
\(248\) 3.55635 0.225828
\(249\) 0 0
\(250\) −3.72792 −0.235774
\(251\) −11.7279 −0.740260 −0.370130 0.928980i \(-0.620687\pi\)
−0.370130 + 0.928980i \(0.620687\pi\)
\(252\) 0 0
\(253\) −20.3137 −1.27711
\(254\) 1.75736 0.110267
\(255\) 0 0
\(256\) 3.97056 0.248160
\(257\) 13.3137 0.830486 0.415243 0.909710i \(-0.363696\pi\)
0.415243 + 0.909710i \(0.363696\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 11.4142 0.707879
\(261\) 0 0
\(262\) 8.48528 0.524222
\(263\) 0.485281 0.0299237 0.0149619 0.999888i \(-0.495237\pi\)
0.0149619 + 0.999888i \(0.495237\pi\)
\(264\) 0 0
\(265\) 4.24264 0.260623
\(266\) 0 0
\(267\) 0 0
\(268\) −12.4853 −0.762660
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −6.75736 −0.410480 −0.205240 0.978712i \(-0.565798\pi\)
−0.205240 + 0.978712i \(0.565798\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −5.87006 −0.354623
\(275\) 9.65685 0.582330
\(276\) 0 0
\(277\) 28.4558 1.70975 0.854873 0.518837i \(-0.173635\pi\)
0.854873 + 0.518837i \(0.173635\pi\)
\(278\) −3.34315 −0.200509
\(279\) 0 0
\(280\) 0 0
\(281\) 19.7574 1.17863 0.589313 0.807905i \(-0.299399\pi\)
0.589313 + 0.807905i \(0.299399\pi\)
\(282\) 0 0
\(283\) 15.9289 0.946877 0.473438 0.880827i \(-0.343013\pi\)
0.473438 + 0.880827i \(0.343013\pi\)
\(284\) −10.5269 −0.624657
\(285\) 0 0
\(286\) 6.24264 0.369135
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 3.89949 0.228986
\(291\) 0 0
\(292\) 24.0294 1.40622
\(293\) −8.82843 −0.515762 −0.257881 0.966177i \(-0.583024\pi\)
−0.257881 + 0.966177i \(0.583024\pi\)
\(294\) 0 0
\(295\) 1.17157 0.0682116
\(296\) −8.04163 −0.467410
\(297\) 0 0
\(298\) −2.41421 −0.139852
\(299\) 52.5269 3.03771
\(300\) 0 0
\(301\) 0 0
\(302\) −2.20101 −0.126654
\(303\) 0 0
\(304\) −3.00000 −0.172062
\(305\) −6.17157 −0.353383
\(306\) 0 0
\(307\) 6.68629 0.381607 0.190803 0.981628i \(-0.438891\pi\)
0.190803 + 0.981628i \(0.438891\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0.928932 0.0527598
\(311\) −15.7990 −0.895879 −0.447939 0.894064i \(-0.647842\pi\)
−0.447939 + 0.894064i \(0.647842\pi\)
\(312\) 0 0
\(313\) 4.65685 0.263221 0.131610 0.991302i \(-0.457985\pi\)
0.131610 + 0.991302i \(0.457985\pi\)
\(314\) −4.89949 −0.276494
\(315\) 0 0
\(316\) 2.58579 0.145462
\(317\) 11.7574 0.660359 0.330180 0.943918i \(-0.392891\pi\)
0.330180 + 0.943918i \(0.392891\pi\)
\(318\) 0 0
\(319\) −22.7279 −1.27252
\(320\) 4.17157 0.233198
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) −24.9706 −1.38512
\(326\) −7.48528 −0.414571
\(327\) 0 0
\(328\) 14.0000 0.773021
\(329\) 0 0
\(330\) 0 0
\(331\) 19.4558 1.06939 0.534695 0.845045i \(-0.320427\pi\)
0.534695 + 0.845045i \(0.320427\pi\)
\(332\) 1.38478 0.0759995
\(333\) 0 0
\(334\) −0.443651 −0.0242755
\(335\) −6.82843 −0.373077
\(336\) 0 0
\(337\) −11.5563 −0.629514 −0.314757 0.949172i \(-0.601923\pi\)
−0.314757 + 0.949172i \(0.601923\pi\)
\(338\) −10.7574 −0.585123
\(339\) 0 0
\(340\) 7.31371 0.396642
\(341\) −5.41421 −0.293196
\(342\) 0 0
\(343\) 0 0
\(344\) −9.62742 −0.519076
\(345\) 0 0
\(346\) 6.34315 0.341010
\(347\) 21.0416 1.12957 0.564787 0.825237i \(-0.308958\pi\)
0.564787 + 0.825237i \(0.308958\pi\)
\(348\) 0 0
\(349\) −12.4853 −0.668322 −0.334161 0.942516i \(-0.608453\pi\)
−0.334161 + 0.942516i \(0.608453\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.6569 0.568012
\(353\) 16.4853 0.877423 0.438711 0.898628i \(-0.355435\pi\)
0.438711 + 0.898628i \(0.355435\pi\)
\(354\) 0 0
\(355\) −5.75736 −0.305569
\(356\) −15.6985 −0.832018
\(357\) 0 0
\(358\) −9.02944 −0.477221
\(359\) 3.24264 0.171140 0.0855700 0.996332i \(-0.472729\pi\)
0.0855700 + 0.996332i \(0.472729\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 4.10051 0.215518
\(363\) 0 0
\(364\) 0 0
\(365\) 13.1421 0.687891
\(366\) 0 0
\(367\) −35.6569 −1.86127 −0.930636 0.365945i \(-0.880746\pi\)
−0.930636 + 0.365945i \(0.880746\pi\)
\(368\) 25.2426 1.31586
\(369\) 0 0
\(370\) −2.10051 −0.109200
\(371\) 0 0
\(372\) 0 0
\(373\) −11.3137 −0.585802 −0.292901 0.956143i \(-0.594621\pi\)
−0.292901 + 0.956143i \(0.594621\pi\)
\(374\) 4.00000 0.206835
\(375\) 0 0
\(376\) 2.51472 0.129687
\(377\) 58.7696 3.02679
\(378\) 0 0
\(379\) −4.24264 −0.217930 −0.108965 0.994046i \(-0.534754\pi\)
−0.108965 + 0.994046i \(0.534754\pi\)
\(380\) −1.82843 −0.0937963
\(381\) 0 0
\(382\) 2.31371 0.118380
\(383\) −28.2426 −1.44313 −0.721566 0.692346i \(-0.756577\pi\)
−0.721566 + 0.692346i \(0.756577\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 4.92893 0.250876
\(387\) 0 0
\(388\) 16.1421 0.819493
\(389\) 28.4853 1.44426 0.722131 0.691757i \(-0.243163\pi\)
0.722131 + 0.691757i \(0.243163\pi\)
\(390\) 0 0
\(391\) 33.6569 1.70210
\(392\) 0 0
\(393\) 0 0
\(394\) 8.89949 0.448350
\(395\) 1.41421 0.0711568
\(396\) 0 0
\(397\) 36.6274 1.83828 0.919139 0.393934i \(-0.128886\pi\)
0.919139 + 0.393934i \(0.128886\pi\)
\(398\) −0.798990 −0.0400497
\(399\) 0 0
\(400\) −12.0000 −0.600000
\(401\) 16.4853 0.823236 0.411618 0.911357i \(-0.364964\pi\)
0.411618 + 0.911357i \(0.364964\pi\)
\(402\) 0 0
\(403\) 14.0000 0.697390
\(404\) −7.88730 −0.392408
\(405\) 0 0
\(406\) 0 0
\(407\) 12.2426 0.606845
\(408\) 0 0
\(409\) −25.3137 −1.25168 −0.625841 0.779951i \(-0.715244\pi\)
−0.625841 + 0.779951i \(0.715244\pi\)
\(410\) 3.65685 0.180599
\(411\) 0 0
\(412\) 10.9706 0.540481
\(413\) 0 0
\(414\) 0 0
\(415\) 0.757359 0.0371773
\(416\) −27.5563 −1.35106
\(417\) 0 0
\(418\) −1.00000 −0.0489116
\(419\) 8.07107 0.394297 0.197149 0.980374i \(-0.436832\pi\)
0.197149 + 0.980374i \(0.436832\pi\)
\(420\) 0 0
\(421\) 5.21320 0.254076 0.127038 0.991898i \(-0.459453\pi\)
0.127038 + 0.991898i \(0.459453\pi\)
\(422\) 2.82843 0.137686
\(423\) 0 0
\(424\) −6.72792 −0.326737
\(425\) −16.0000 −0.776114
\(426\) 0 0
\(427\) 0 0
\(428\) 10.7868 0.521399
\(429\) 0 0
\(430\) −2.51472 −0.121271
\(431\) −38.0416 −1.83240 −0.916200 0.400720i \(-0.868760\pi\)
−0.916200 + 0.400720i \(0.868760\pi\)
\(432\) 0 0
\(433\) 28.0000 1.34559 0.672797 0.739827i \(-0.265093\pi\)
0.672797 + 0.739827i \(0.265093\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −3.02944 −0.145084
\(437\) −8.41421 −0.402506
\(438\) 0 0
\(439\) −7.51472 −0.358658 −0.179329 0.983789i \(-0.557393\pi\)
−0.179329 + 0.983789i \(0.557393\pi\)
\(440\) 3.82843 0.182513
\(441\) 0 0
\(442\) −10.3431 −0.491973
\(443\) −6.34315 −0.301372 −0.150686 0.988582i \(-0.548148\pi\)
−0.150686 + 0.988582i \(0.548148\pi\)
\(444\) 0 0
\(445\) −8.58579 −0.407005
\(446\) 2.58579 0.122441
\(447\) 0 0
\(448\) 0 0
\(449\) 1.65685 0.0781918 0.0390959 0.999235i \(-0.487552\pi\)
0.0390959 + 0.999235i \(0.487552\pi\)
\(450\) 0 0
\(451\) −21.3137 −1.00362
\(452\) 15.0711 0.708883
\(453\) 0 0
\(454\) −4.87006 −0.228563
\(455\) 0 0
\(456\) 0 0
\(457\) −2.17157 −0.101582 −0.0507909 0.998709i \(-0.516174\pi\)
−0.0507909 + 0.998709i \(0.516174\pi\)
\(458\) 1.85786 0.0868123
\(459\) 0 0
\(460\) 15.3848 0.717319
\(461\) 3.97056 0.184928 0.0924638 0.995716i \(-0.470526\pi\)
0.0924638 + 0.995716i \(0.470526\pi\)
\(462\) 0 0
\(463\) 10.0711 0.468042 0.234021 0.972232i \(-0.424812\pi\)
0.234021 + 0.972232i \(0.424812\pi\)
\(464\) 28.2426 1.31113
\(465\) 0 0
\(466\) −6.82843 −0.316321
\(467\) −38.8995 −1.80005 −0.900027 0.435834i \(-0.856453\pi\)
−0.900027 + 0.435834i \(0.856453\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0.656854 0.0302984
\(471\) 0 0
\(472\) −1.85786 −0.0855151
\(473\) 14.6569 0.673923
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 0.828427 0.0378914
\(479\) −11.3848 −0.520184 −0.260092 0.965584i \(-0.583753\pi\)
−0.260092 + 0.965584i \(0.583753\pi\)
\(480\) 0 0
\(481\) −31.6569 −1.44343
\(482\) −9.12994 −0.415857
\(483\) 0 0
\(484\) 9.45584 0.429811
\(485\) 8.82843 0.400878
\(486\) 0 0
\(487\) 20.8284 0.943826 0.471913 0.881645i \(-0.343564\pi\)
0.471913 + 0.881645i \(0.343564\pi\)
\(488\) 9.78680 0.443027
\(489\) 0 0
\(490\) 0 0
\(491\) 32.5563 1.46925 0.734624 0.678475i \(-0.237359\pi\)
0.734624 + 0.678475i \(0.237359\pi\)
\(492\) 0 0
\(493\) 37.6569 1.69598
\(494\) 2.58579 0.116340
\(495\) 0 0
\(496\) 6.72792 0.302093
\(497\) 0 0
\(498\) 0 0
\(499\) 3.44365 0.154159 0.0770795 0.997025i \(-0.475440\pi\)
0.0770795 + 0.997025i \(0.475440\pi\)
\(500\) −16.4558 −0.735928
\(501\) 0 0
\(502\) 4.85786 0.216817
\(503\) −19.0416 −0.849024 −0.424512 0.905422i \(-0.639554\pi\)
−0.424512 + 0.905422i \(0.639554\pi\)
\(504\) 0 0
\(505\) −4.31371 −0.191958
\(506\) 8.41421 0.374057
\(507\) 0 0
\(508\) 7.75736 0.344177
\(509\) −18.9706 −0.840855 −0.420428 0.907326i \(-0.638120\pi\)
−0.420428 + 0.907326i \(0.638120\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.7574 −1.00574
\(513\) 0 0
\(514\) −5.51472 −0.243244
\(515\) 6.00000 0.264392
\(516\) 0 0
\(517\) −3.82843 −0.168374
\(518\) 0 0
\(519\) 0 0
\(520\) −9.89949 −0.434122
\(521\) −10.4437 −0.457545 −0.228772 0.973480i \(-0.573471\pi\)
−0.228772 + 0.973480i \(0.573471\pi\)
\(522\) 0 0
\(523\) −23.6569 −1.03444 −0.517221 0.855852i \(-0.673033\pi\)
−0.517221 + 0.855852i \(0.673033\pi\)
\(524\) 37.4558 1.63627
\(525\) 0 0
\(526\) −0.201010 −0.00876446
\(527\) 8.97056 0.390764
\(528\) 0 0
\(529\) 47.7990 2.07822
\(530\) −1.75736 −0.0763348
\(531\) 0 0
\(532\) 0 0
\(533\) 55.1127 2.38720
\(534\) 0 0
\(535\) 5.89949 0.255057
\(536\) 10.8284 0.467717
\(537\) 0 0
\(538\) −1.65685 −0.0714321
\(539\) 0 0
\(540\) 0 0
\(541\) 5.14214 0.221078 0.110539 0.993872i \(-0.464742\pi\)
0.110539 + 0.993872i \(0.464742\pi\)
\(542\) 2.79899 0.120227
\(543\) 0 0
\(544\) −17.6569 −0.757031
\(545\) −1.65685 −0.0709718
\(546\) 0 0
\(547\) 29.5563 1.26374 0.631869 0.775075i \(-0.282288\pi\)
0.631869 + 0.775075i \(0.282288\pi\)
\(548\) −25.9117 −1.10689
\(549\) 0 0
\(550\) −4.00000 −0.170561
\(551\) −9.41421 −0.401059
\(552\) 0 0
\(553\) 0 0
\(554\) −11.7868 −0.500773
\(555\) 0 0
\(556\) −14.7574 −0.625851
\(557\) −10.1716 −0.430983 −0.215492 0.976506i \(-0.569135\pi\)
−0.215492 + 0.976506i \(0.569135\pi\)
\(558\) 0 0
\(559\) −37.8995 −1.60298
\(560\) 0 0
\(561\) 0 0
\(562\) −8.18377 −0.345211
\(563\) 13.8995 0.585794 0.292897 0.956144i \(-0.405381\pi\)
0.292897 + 0.956144i \(0.405381\pi\)
\(564\) 0 0
\(565\) 8.24264 0.346770
\(566\) −6.59798 −0.277334
\(567\) 0 0
\(568\) 9.12994 0.383084
\(569\) 42.9706 1.80142 0.900710 0.434421i \(-0.143047\pi\)
0.900710 + 0.434421i \(0.143047\pi\)
\(570\) 0 0
\(571\) −18.8995 −0.790919 −0.395460 0.918483i \(-0.629415\pi\)
−0.395460 + 0.918483i \(0.629415\pi\)
\(572\) 27.5563 1.15219
\(573\) 0 0
\(574\) 0 0
\(575\) −33.6569 −1.40359
\(576\) 0 0
\(577\) 27.9706 1.16443 0.582215 0.813035i \(-0.302186\pi\)
0.582215 + 0.813035i \(0.302186\pi\)
\(578\) 0.414214 0.0172290
\(579\) 0 0
\(580\) 17.2132 0.714739
\(581\) 0 0
\(582\) 0 0
\(583\) 10.2426 0.424207
\(584\) −20.8406 −0.862391
\(585\) 0 0
\(586\) 3.65685 0.151063
\(587\) −14.0000 −0.577842 −0.288921 0.957353i \(-0.593296\pi\)
−0.288921 + 0.957353i \(0.593296\pi\)
\(588\) 0 0
\(589\) −2.24264 −0.0924064
\(590\) −0.485281 −0.0199787
\(591\) 0 0
\(592\) −15.2132 −0.625259
\(593\) −6.17157 −0.253436 −0.126718 0.991939i \(-0.540444\pi\)
−0.126718 + 0.991939i \(0.540444\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −10.6569 −0.436522
\(597\) 0 0
\(598\) −21.7574 −0.889725
\(599\) 31.6985 1.29516 0.647582 0.761995i \(-0.275780\pi\)
0.647582 + 0.761995i \(0.275780\pi\)
\(600\) 0 0
\(601\) −9.27208 −0.378216 −0.189108 0.981956i \(-0.560560\pi\)
−0.189108 + 0.981956i \(0.560560\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.71573 −0.395327
\(605\) 5.17157 0.210254
\(606\) 0 0
\(607\) 32.5269 1.32023 0.660113 0.751166i \(-0.270508\pi\)
0.660113 + 0.751166i \(0.270508\pi\)
\(608\) 4.41421 0.179020
\(609\) 0 0
\(610\) 2.55635 0.103504
\(611\) 9.89949 0.400491
\(612\) 0 0
\(613\) −8.68629 −0.350836 −0.175418 0.984494i \(-0.556128\pi\)
−0.175418 + 0.984494i \(0.556128\pi\)
\(614\) −2.76955 −0.111770
\(615\) 0 0
\(616\) 0 0
\(617\) 42.4558 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(618\) 0 0
\(619\) 3.44365 0.138412 0.0692060 0.997602i \(-0.477953\pi\)
0.0692060 + 0.997602i \(0.477953\pi\)
\(620\) 4.10051 0.164680
\(621\) 0 0
\(622\) 6.54416 0.262397
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −1.92893 −0.0770956
\(627\) 0 0
\(628\) −21.6274 −0.863028
\(629\) −20.2843 −0.808787
\(630\) 0 0
\(631\) −5.44365 −0.216708 −0.108354 0.994112i \(-0.534558\pi\)
−0.108354 + 0.994112i \(0.534558\pi\)
\(632\) −2.24264 −0.0892075
\(633\) 0 0
\(634\) −4.87006 −0.193415
\(635\) 4.24264 0.168364
\(636\) 0 0
\(637\) 0 0
\(638\) 9.41421 0.372712
\(639\) 0 0
\(640\) −10.5563 −0.417276
\(641\) −3.79899 −0.150051 −0.0750255 0.997182i \(-0.523904\pi\)
−0.0750255 + 0.997182i \(0.523904\pi\)
\(642\) 0 0
\(643\) 30.1421 1.18869 0.594345 0.804210i \(-0.297411\pi\)
0.594345 + 0.804210i \(0.297411\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 1.65685 0.0651881
\(647\) −6.21320 −0.244266 −0.122133 0.992514i \(-0.538973\pi\)
−0.122133 + 0.992514i \(0.538973\pi\)
\(648\) 0 0
\(649\) 2.82843 0.111025
\(650\) 10.3431 0.405692
\(651\) 0 0
\(652\) −33.0416 −1.29401
\(653\) 1.85786 0.0727039 0.0363519 0.999339i \(-0.488426\pi\)
0.0363519 + 0.999339i \(0.488426\pi\)
\(654\) 0 0
\(655\) 20.4853 0.800426
\(656\) 26.4853 1.03408
\(657\) 0 0
\(658\) 0 0
\(659\) 38.0416 1.48189 0.740946 0.671565i \(-0.234378\pi\)
0.740946 + 0.671565i \(0.234378\pi\)
\(660\) 0 0
\(661\) −22.7279 −0.884014 −0.442007 0.897012i \(-0.645733\pi\)
−0.442007 + 0.897012i \(0.645733\pi\)
\(662\) −8.05887 −0.313217
\(663\) 0 0
\(664\) −1.20101 −0.0466082
\(665\) 0 0
\(666\) 0 0
\(667\) 79.2132 3.06715
\(668\) −1.95837 −0.0757716
\(669\) 0 0
\(670\) 2.82843 0.109272
\(671\) −14.8995 −0.575189
\(672\) 0 0
\(673\) 35.7990 1.37995 0.689975 0.723833i \(-0.257622\pi\)
0.689975 + 0.723833i \(0.257622\pi\)
\(674\) 4.78680 0.184381
\(675\) 0 0
\(676\) −47.4853 −1.82636
\(677\) −0.686292 −0.0263763 −0.0131882 0.999913i \(-0.504198\pi\)
−0.0131882 + 0.999913i \(0.504198\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −6.34315 −0.243249
\(681\) 0 0
\(682\) 2.24264 0.0858752
\(683\) −10.4853 −0.401208 −0.200604 0.979672i \(-0.564290\pi\)
−0.200604 + 0.979672i \(0.564290\pi\)
\(684\) 0 0
\(685\) −14.1716 −0.541468
\(686\) 0 0
\(687\) 0 0
\(688\) −18.2132 −0.694372
\(689\) −26.4853 −1.00901
\(690\) 0 0
\(691\) −2.97056 −0.113006 −0.0565028 0.998402i \(-0.517995\pi\)
−0.0565028 + 0.998402i \(0.517995\pi\)
\(692\) 28.0000 1.06440
\(693\) 0 0
\(694\) −8.71573 −0.330845
\(695\) −8.07107 −0.306153
\(696\) 0 0
\(697\) 35.3137 1.33760
\(698\) 5.17157 0.195747
\(699\) 0 0
\(700\) 0 0
\(701\) −3.82843 −0.144598 −0.0722988 0.997383i \(-0.523034\pi\)
−0.0722988 + 0.997383i \(0.523034\pi\)
\(702\) 0 0
\(703\) 5.07107 0.191259
\(704\) 10.0711 0.379568
\(705\) 0 0
\(706\) −6.82843 −0.256991
\(707\) 0 0
\(708\) 0 0
\(709\) 24.9411 0.936684 0.468342 0.883547i \(-0.344852\pi\)
0.468342 + 0.883547i \(0.344852\pi\)
\(710\) 2.38478 0.0894991
\(711\) 0 0
\(712\) 13.6152 0.510252
\(713\) 18.8701 0.706689
\(714\) 0 0
\(715\) 15.0711 0.563626
\(716\) −39.8579 −1.48956
\(717\) 0 0
\(718\) −1.34315 −0.0501258
\(719\) 44.0833 1.64403 0.822014 0.569467i \(-0.192850\pi\)
0.822014 + 0.569467i \(0.192850\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −0.414214 −0.0154154
\(723\) 0 0
\(724\) 18.1005 0.672700
\(725\) −37.6569 −1.39854
\(726\) 0 0
\(727\) 5.92893 0.219892 0.109946 0.993938i \(-0.464932\pi\)
0.109946 + 0.993938i \(0.464932\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −5.44365 −0.201479
\(731\) −24.2843 −0.898186
\(732\) 0 0
\(733\) −29.4558 −1.08798 −0.543988 0.839093i \(-0.683086\pi\)
−0.543988 + 0.839093i \(0.683086\pi\)
\(734\) 14.7696 0.545154
\(735\) 0 0
\(736\) −37.1421 −1.36908
\(737\) −16.4853 −0.607243
\(738\) 0 0
\(739\) −19.6569 −0.723089 −0.361545 0.932355i \(-0.617750\pi\)
−0.361545 + 0.932355i \(0.617750\pi\)
\(740\) −9.27208 −0.340848
\(741\) 0 0
\(742\) 0 0
\(743\) −50.8701 −1.86624 −0.933121 0.359563i \(-0.882926\pi\)
−0.933121 + 0.359563i \(0.882926\pi\)
\(744\) 0 0
\(745\) −5.82843 −0.213537
\(746\) 4.68629 0.171577
\(747\) 0 0
\(748\) 17.6569 0.645599
\(749\) 0 0
\(750\) 0 0
\(751\) −41.4558 −1.51275 −0.756373 0.654141i \(-0.773030\pi\)
−0.756373 + 0.654141i \(0.773030\pi\)
\(752\) 4.75736 0.173483
\(753\) 0 0
\(754\) −24.3431 −0.886525
\(755\) −5.31371 −0.193386
\(756\) 0 0
\(757\) −5.00000 −0.181728 −0.0908640 0.995863i \(-0.528963\pi\)
−0.0908640 + 0.995863i \(0.528963\pi\)
\(758\) 1.75736 0.0638302
\(759\) 0 0
\(760\) 1.58579 0.0575225
\(761\) −28.1127 −1.01908 −0.509542 0.860446i \(-0.670185\pi\)
−0.509542 + 0.860446i \(0.670185\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 10.2132 0.369501
\(765\) 0 0
\(766\) 11.6985 0.422683
\(767\) −7.31371 −0.264083
\(768\) 0 0
\(769\) 41.4264 1.49387 0.746937 0.664895i \(-0.231524\pi\)
0.746937 + 0.664895i \(0.231524\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 21.7574 0.783064
\(773\) 25.7574 0.926428 0.463214 0.886247i \(-0.346696\pi\)
0.463214 + 0.886247i \(0.346696\pi\)
\(774\) 0 0
\(775\) −8.97056 −0.322232
\(776\) −14.0000 −0.502571
\(777\) 0 0
\(778\) −11.7990 −0.423014
\(779\) −8.82843 −0.316311
\(780\) 0 0
\(781\) −13.8995 −0.497363
\(782\) −13.9411 −0.498534
\(783\) 0 0
\(784\) 0 0
\(785\) −11.8284 −0.422175
\(786\) 0 0
\(787\) −41.0122 −1.46193 −0.730963 0.682417i \(-0.760929\pi\)
−0.730963 + 0.682417i \(0.760929\pi\)
\(788\) 39.2843 1.39944
\(789\) 0 0
\(790\) −0.585786 −0.0208413
\(791\) 0 0
\(792\) 0 0
\(793\) 38.5269 1.36813
\(794\) −15.1716 −0.538419
\(795\) 0 0
\(796\) −3.52691 −0.125008
\(797\) 21.7574 0.770685 0.385343 0.922774i \(-0.374083\pi\)
0.385343 + 0.922774i \(0.374083\pi\)
\(798\) 0 0
\(799\) 6.34315 0.224404
\(800\) 17.6569 0.624264
\(801\) 0 0
\(802\) −6.82843 −0.241120
\(803\) 31.7279 1.11965
\(804\) 0 0
\(805\) 0 0
\(806\) −5.79899 −0.204261
\(807\) 0 0
\(808\) 6.84062 0.240652
\(809\) −2.85786 −0.100477 −0.0502386 0.998737i \(-0.515998\pi\)
−0.0502386 + 0.998737i \(0.515998\pi\)
\(810\) 0 0
\(811\) −51.4558 −1.80686 −0.903430 0.428737i \(-0.858959\pi\)
−0.903430 + 0.428737i \(0.858959\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −5.07107 −0.177741
\(815\) −18.0711 −0.633002
\(816\) 0 0
\(817\) 6.07107 0.212400
\(818\) 10.4853 0.366609
\(819\) 0 0
\(820\) 16.1421 0.563708
\(821\) 52.1127 1.81875 0.909373 0.415982i \(-0.136562\pi\)
0.909373 + 0.415982i \(0.136562\pi\)
\(822\) 0 0
\(823\) 36.2132 1.26231 0.631156 0.775656i \(-0.282581\pi\)
0.631156 + 0.775656i \(0.282581\pi\)
\(824\) −9.51472 −0.331461
\(825\) 0 0
\(826\) 0 0
\(827\) 44.2843 1.53991 0.769957 0.638095i \(-0.220277\pi\)
0.769957 + 0.638095i \(0.220277\pi\)
\(828\) 0 0
\(829\) 28.2843 0.982353 0.491177 0.871060i \(-0.336567\pi\)
0.491177 + 0.871060i \(0.336567\pi\)
\(830\) −0.313708 −0.0108890
\(831\) 0 0
\(832\) −26.0416 −0.902831
\(833\) 0 0
\(834\) 0 0
\(835\) −1.07107 −0.0370658
\(836\) −4.41421 −0.152669
\(837\) 0 0
\(838\) −3.34315 −0.115487
\(839\) −19.7990 −0.683537 −0.341769 0.939784i \(-0.611026\pi\)
−0.341769 + 0.939784i \(0.611026\pi\)
\(840\) 0 0
\(841\) 59.6274 2.05612
\(842\) −2.15938 −0.0744171
\(843\) 0 0
\(844\) 12.4853 0.429761
\(845\) −25.9706 −0.893415
\(846\) 0 0
\(847\) 0 0
\(848\) −12.7279 −0.437079
\(849\) 0 0
\(850\) 6.62742 0.227319
\(851\) −42.6690 −1.46268
\(852\) 0 0
\(853\) 10.0294 0.343401 0.171701 0.985149i \(-0.445074\pi\)
0.171701 + 0.985149i \(0.445074\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −9.35534 −0.319759
\(857\) −20.9706 −0.716341 −0.358170 0.933656i \(-0.616599\pi\)
−0.358170 + 0.933656i \(0.616599\pi\)
\(858\) 0 0
\(859\) 2.07107 0.0706639 0.0353320 0.999376i \(-0.488751\pi\)
0.0353320 + 0.999376i \(0.488751\pi\)
\(860\) −11.1005 −0.378524
\(861\) 0 0
\(862\) 15.7574 0.536698
\(863\) −7.41421 −0.252383 −0.126191 0.992006i \(-0.540275\pi\)
−0.126191 + 0.992006i \(0.540275\pi\)
\(864\) 0 0
\(865\) 15.3137 0.520682
\(866\) −11.5980 −0.394115
\(867\) 0 0
\(868\) 0 0
\(869\) 3.41421 0.115819
\(870\) 0 0
\(871\) 42.6274 1.44437
\(872\) 2.62742 0.0889756
\(873\) 0 0
\(874\) 3.48528 0.117891
\(875\) 0 0
\(876\) 0 0
\(877\) −8.10051 −0.273535 −0.136767 0.990603i \(-0.543671\pi\)
−0.136767 + 0.990603i \(0.543671\pi\)
\(878\) 3.11270 0.105048
\(879\) 0 0
\(880\) 7.24264 0.244149
\(881\) −4.28427 −0.144341 −0.0721704 0.997392i \(-0.522993\pi\)
−0.0721704 + 0.997392i \(0.522993\pi\)
\(882\) 0 0
\(883\) 5.65685 0.190368 0.0951842 0.995460i \(-0.469656\pi\)
0.0951842 + 0.995460i \(0.469656\pi\)
\(884\) −45.6569 −1.53561
\(885\) 0 0
\(886\) 2.62742 0.0882698
\(887\) −1.31371 −0.0441100 −0.0220550 0.999757i \(-0.507021\pi\)
−0.0220550 + 0.999757i \(0.507021\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 3.55635 0.119209
\(891\) 0 0
\(892\) 11.4142 0.382176
\(893\) −1.58579 −0.0530663
\(894\) 0 0
\(895\) −21.7990 −0.728660
\(896\) 0 0
\(897\) 0 0
\(898\) −0.686292 −0.0229018
\(899\) 21.1127 0.704148
\(900\) 0 0
\(901\) −16.9706 −0.565371
\(902\) 8.82843 0.293954
\(903\) 0 0
\(904\) −13.0711 −0.434737
\(905\) 9.89949 0.329070
\(906\) 0 0
\(907\) 28.5858 0.949175 0.474588 0.880208i \(-0.342597\pi\)
0.474588 + 0.880208i \(0.342597\pi\)
\(908\) −21.4975 −0.713419
\(909\) 0 0
\(910\) 0 0
\(911\) −34.7279 −1.15059 −0.575294 0.817947i \(-0.695112\pi\)
−0.575294 + 0.817947i \(0.695112\pi\)
\(912\) 0 0
\(913\) 1.82843 0.0605121
\(914\) 0.899495 0.0297526
\(915\) 0 0
\(916\) 8.20101 0.270969
\(917\) 0 0
\(918\) 0 0
\(919\) 29.0416 0.957995 0.478997 0.877816i \(-0.341000\pi\)
0.478997 + 0.877816i \(0.341000\pi\)
\(920\) −13.3431 −0.439910
\(921\) 0 0
\(922\) −1.64466 −0.0541640
\(923\) 35.9411 1.18302
\(924\) 0 0
\(925\) 20.2843 0.666943
\(926\) −4.17157 −0.137086
\(927\) 0 0
\(928\) −41.5563 −1.36415
\(929\) −15.0000 −0.492134 −0.246067 0.969253i \(-0.579138\pi\)
−0.246067 + 0.969253i \(0.579138\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −30.1421 −0.987338
\(933\) 0 0
\(934\) 16.1127 0.527224
\(935\) 9.65685 0.315813
\(936\) 0 0
\(937\) −56.3137 −1.83969 −0.919844 0.392284i \(-0.871685\pi\)
−0.919844 + 0.392284i \(0.871685\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 2.89949 0.0945711
\(941\) 44.0416 1.43572 0.717858 0.696189i \(-0.245123\pi\)
0.717858 + 0.696189i \(0.245123\pi\)
\(942\) 0 0
\(943\) 74.2843 2.41903
\(944\) −3.51472 −0.114394
\(945\) 0 0
\(946\) −6.07107 −0.197387
\(947\) 7.65685 0.248814 0.124407 0.992231i \(-0.460297\pi\)
0.124407 + 0.992231i \(0.460297\pi\)
\(948\) 0 0
\(949\) −82.0416 −2.66318
\(950\) −1.65685 −0.0537555
\(951\) 0 0
\(952\) 0 0
\(953\) 0.585786 0.0189755 0.00948774 0.999955i \(-0.496980\pi\)
0.00948774 + 0.999955i \(0.496980\pi\)
\(954\) 0 0
\(955\) 5.58579 0.180752
\(956\) 3.65685 0.118271
\(957\) 0 0
\(958\) 4.71573 0.152358
\(959\) 0 0
\(960\) 0 0
\(961\) −25.9706 −0.837760
\(962\) 13.1127 0.422770
\(963\) 0 0
\(964\) −40.3015 −1.29802
\(965\) 11.8995 0.383058
\(966\) 0 0
\(967\) 20.2843 0.652298 0.326149 0.945318i \(-0.394249\pi\)
0.326149 + 0.945318i \(0.394249\pi\)
\(968\) −8.20101 −0.263590
\(969\) 0 0
\(970\) −3.65685 −0.117415
\(971\) 26.8701 0.862301 0.431151 0.902280i \(-0.358108\pi\)
0.431151 + 0.902280i \(0.358108\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −8.62742 −0.276440
\(975\) 0 0
\(976\) 18.5147 0.592642
\(977\) −28.7696 −0.920420 −0.460210 0.887810i \(-0.652226\pi\)
−0.460210 + 0.887810i \(0.652226\pi\)
\(978\) 0 0
\(979\) −20.7279 −0.662467
\(980\) 0 0
\(981\) 0 0
\(982\) −13.4853 −0.430333
\(983\) 46.0000 1.46717 0.733586 0.679597i \(-0.237845\pi\)
0.733586 + 0.679597i \(0.237845\pi\)
\(984\) 0 0
\(985\) 21.4853 0.684578
\(986\) −15.5980 −0.496741
\(987\) 0 0
\(988\) 11.4142 0.363135
\(989\) −51.0833 −1.62435
\(990\) 0 0
\(991\) −35.7990 −1.13719 −0.568596 0.822617i \(-0.692513\pi\)
−0.568596 + 0.822617i \(0.692513\pi\)
\(992\) −9.89949 −0.314309
\(993\) 0 0
\(994\) 0 0
\(995\) −1.92893 −0.0611513
\(996\) 0 0
\(997\) 28.2843 0.895772 0.447886 0.894091i \(-0.352177\pi\)
0.447886 + 0.894091i \(0.352177\pi\)
\(998\) −1.42641 −0.0451521
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bi.1.1 2
3.2 odd 2 931.2.a.f.1.2 2
7.2 even 3 1197.2.j.e.172.2 4
7.4 even 3 1197.2.j.e.856.2 4
7.6 odd 2 8379.2.a.bl.1.1 2
21.2 odd 6 133.2.f.c.39.1 4
21.5 even 6 931.2.f.i.704.1 4
21.11 odd 6 133.2.f.c.58.1 yes 4
21.17 even 6 931.2.f.i.324.1 4
21.20 even 2 931.2.a.e.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.f.c.39.1 4 21.2 odd 6
133.2.f.c.58.1 yes 4 21.11 odd 6
931.2.a.e.1.2 2 21.20 even 2
931.2.a.f.1.2 2 3.2 odd 2
931.2.f.i.324.1 4 21.17 even 6
931.2.f.i.704.1 4 21.5 even 6
1197.2.j.e.172.2 4 7.2 even 3
1197.2.j.e.856.2 4 7.4 even 3
8379.2.a.bi.1.1 2 1.1 even 1 trivial
8379.2.a.bl.1.1 2 7.6 odd 2