Properties

Label 8379.2.a.bf.1.2
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,1,0,3,-6,0,0,6,0,-3,5,0,4,0,0,-3,-7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 133)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30278 q^{2} +3.30278 q^{4} -3.00000 q^{5} +3.00000 q^{8} -6.90833 q^{10} +0.697224 q^{11} +5.60555 q^{13} +0.302776 q^{16} -5.30278 q^{17} -1.00000 q^{19} -9.90833 q^{20} +1.60555 q^{22} +3.00000 q^{23} +4.00000 q^{25} +12.9083 q^{26} -9.90833 q^{29} -1.30278 q^{31} -5.30278 q^{32} -12.2111 q^{34} +3.60555 q^{37} -2.30278 q^{38} -9.00000 q^{40} +0.697224 q^{41} -10.0000 q^{43} +2.30278 q^{44} +6.90833 q^{46} +6.21110 q^{47} +9.21110 q^{50} +18.5139 q^{52} +6.90833 q^{53} -2.09167 q^{55} -22.8167 q^{58} -6.21110 q^{59} +4.21110 q^{61} -3.00000 q^{62} -12.8167 q^{64} -16.8167 q^{65} -1.90833 q^{67} -17.5139 q^{68} -12.2111 q^{71} -1.51388 q^{73} +8.30278 q^{74} -3.30278 q^{76} +11.2111 q^{79} -0.908327 q^{80} +1.60555 q^{82} -12.9083 q^{83} +15.9083 q^{85} -23.0278 q^{86} +2.09167 q^{88} -10.6056 q^{89} +9.90833 q^{92} +14.3028 q^{94} +3.00000 q^{95} -9.60555 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{4} - 6 q^{5} + 6 q^{8} - 3 q^{10} + 5 q^{11} + 4 q^{13} - 3 q^{16} - 7 q^{17} - 2 q^{19} - 9 q^{20} - 4 q^{22} + 6 q^{23} + 8 q^{25} + 15 q^{26} - 9 q^{29} + q^{31} - 7 q^{32} - 10 q^{34}+ \cdots - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30278 1.62831 0.814154 0.580649i \(-0.197201\pi\)
0.814154 + 0.580649i \(0.197201\pi\)
\(3\) 0 0
\(4\) 3.30278 1.65139
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 3.00000 1.06066
\(9\) 0 0
\(10\) −6.90833 −2.18460
\(11\) 0.697224 0.210221 0.105111 0.994461i \(-0.466480\pi\)
0.105111 + 0.994461i \(0.466480\pi\)
\(12\) 0 0
\(13\) 5.60555 1.55470 0.777350 0.629068i \(-0.216563\pi\)
0.777350 + 0.629068i \(0.216563\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.302776 0.0756939
\(17\) −5.30278 −1.28611 −0.643056 0.765819i \(-0.722334\pi\)
−0.643056 + 0.765819i \(0.722334\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −9.90833 −2.21557
\(21\) 0 0
\(22\) 1.60555 0.342305
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) 12.9083 2.53153
\(27\) 0 0
\(28\) 0 0
\(29\) −9.90833 −1.83993 −0.919965 0.392000i \(-0.871783\pi\)
−0.919965 + 0.392000i \(0.871783\pi\)
\(30\) 0 0
\(31\) −1.30278 −0.233985 −0.116993 0.993133i \(-0.537325\pi\)
−0.116993 + 0.993133i \(0.537325\pi\)
\(32\) −5.30278 −0.937407
\(33\) 0 0
\(34\) −12.2111 −2.09419
\(35\) 0 0
\(36\) 0 0
\(37\) 3.60555 0.592749 0.296374 0.955072i \(-0.404222\pi\)
0.296374 + 0.955072i \(0.404222\pi\)
\(38\) −2.30278 −0.373560
\(39\) 0 0
\(40\) −9.00000 −1.42302
\(41\) 0.697224 0.108888 0.0544441 0.998517i \(-0.482661\pi\)
0.0544441 + 0.998517i \(0.482661\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) 2.30278 0.347156
\(45\) 0 0
\(46\) 6.90833 1.01858
\(47\) 6.21110 0.905982 0.452991 0.891515i \(-0.350357\pi\)
0.452991 + 0.891515i \(0.350357\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 9.21110 1.30265
\(51\) 0 0
\(52\) 18.5139 2.56741
\(53\) 6.90833 0.948932 0.474466 0.880274i \(-0.342641\pi\)
0.474466 + 0.880274i \(0.342641\pi\)
\(54\) 0 0
\(55\) −2.09167 −0.282041
\(56\) 0 0
\(57\) 0 0
\(58\) −22.8167 −2.99597
\(59\) −6.21110 −0.808617 −0.404308 0.914623i \(-0.632488\pi\)
−0.404308 + 0.914623i \(0.632488\pi\)
\(60\) 0 0
\(61\) 4.21110 0.539176 0.269588 0.962976i \(-0.413112\pi\)
0.269588 + 0.962976i \(0.413112\pi\)
\(62\) −3.00000 −0.381000
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) −16.8167 −2.08585
\(66\) 0 0
\(67\) −1.90833 −0.233139 −0.116570 0.993183i \(-0.537190\pi\)
−0.116570 + 0.993183i \(0.537190\pi\)
\(68\) −17.5139 −2.12387
\(69\) 0 0
\(70\) 0 0
\(71\) −12.2111 −1.44919 −0.724596 0.689174i \(-0.757973\pi\)
−0.724596 + 0.689174i \(0.757973\pi\)
\(72\) 0 0
\(73\) −1.51388 −0.177186 −0.0885930 0.996068i \(-0.528237\pi\)
−0.0885930 + 0.996068i \(0.528237\pi\)
\(74\) 8.30278 0.965178
\(75\) 0 0
\(76\) −3.30278 −0.378854
\(77\) 0 0
\(78\) 0 0
\(79\) 11.2111 1.26135 0.630674 0.776048i \(-0.282779\pi\)
0.630674 + 0.776048i \(0.282779\pi\)
\(80\) −0.908327 −0.101554
\(81\) 0 0
\(82\) 1.60555 0.177303
\(83\) −12.9083 −1.41687 −0.708436 0.705775i \(-0.750599\pi\)
−0.708436 + 0.705775i \(0.750599\pi\)
\(84\) 0 0
\(85\) 15.9083 1.72550
\(86\) −23.0278 −2.48315
\(87\) 0 0
\(88\) 2.09167 0.222973
\(89\) −10.6056 −1.12419 −0.562093 0.827074i \(-0.690004\pi\)
−0.562093 + 0.827074i \(0.690004\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 9.90833 1.03301
\(93\) 0 0
\(94\) 14.3028 1.47522
\(95\) 3.00000 0.307794
\(96\) 0 0
\(97\) −9.60555 −0.975296 −0.487648 0.873040i \(-0.662145\pi\)
−0.487648 + 0.873040i \(0.662145\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 13.2111 1.32111
\(101\) −4.39445 −0.437264 −0.218632 0.975807i \(-0.570159\pi\)
−0.218632 + 0.975807i \(0.570159\pi\)
\(102\) 0 0
\(103\) 16.2111 1.59733 0.798664 0.601778i \(-0.205541\pi\)
0.798664 + 0.601778i \(0.205541\pi\)
\(104\) 16.8167 1.64901
\(105\) 0 0
\(106\) 15.9083 1.54515
\(107\) 5.78890 0.559634 0.279817 0.960053i \(-0.409726\pi\)
0.279817 + 0.960053i \(0.409726\pi\)
\(108\) 0 0
\(109\) −10.2111 −0.978046 −0.489023 0.872271i \(-0.662647\pi\)
−0.489023 + 0.872271i \(0.662647\pi\)
\(110\) −4.81665 −0.459250
\(111\) 0 0
\(112\) 0 0
\(113\) −9.69722 −0.912238 −0.456119 0.889919i \(-0.650761\pi\)
−0.456119 + 0.889919i \(0.650761\pi\)
\(114\) 0 0
\(115\) −9.00000 −0.839254
\(116\) −32.7250 −3.03844
\(117\) 0 0
\(118\) −14.3028 −1.31668
\(119\) 0 0
\(120\) 0 0
\(121\) −10.5139 −0.955807
\(122\) 9.69722 0.877945
\(123\) 0 0
\(124\) −4.30278 −0.386401
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −11.8167 −1.04856 −0.524279 0.851546i \(-0.675665\pi\)
−0.524279 + 0.851546i \(0.675665\pi\)
\(128\) −18.9083 −1.67128
\(129\) 0 0
\(130\) −38.7250 −3.39641
\(131\) −20.5139 −1.79231 −0.896153 0.443745i \(-0.853649\pi\)
−0.896153 + 0.443745i \(0.853649\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −4.39445 −0.379623
\(135\) 0 0
\(136\) −15.9083 −1.36413
\(137\) −21.6333 −1.84826 −0.924129 0.382080i \(-0.875208\pi\)
−0.924129 + 0.382080i \(0.875208\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −28.1194 −2.35973
\(143\) 3.90833 0.326831
\(144\) 0 0
\(145\) 29.7250 2.46853
\(146\) −3.48612 −0.288513
\(147\) 0 0
\(148\) 11.9083 0.978858
\(149\) 6.21110 0.508833 0.254417 0.967095i \(-0.418117\pi\)
0.254417 + 0.967095i \(0.418117\pi\)
\(150\) 0 0
\(151\) 5.90833 0.480813 0.240406 0.970672i \(-0.422719\pi\)
0.240406 + 0.970672i \(0.422719\pi\)
\(152\) −3.00000 −0.243332
\(153\) 0 0
\(154\) 0 0
\(155\) 3.90833 0.313924
\(156\) 0 0
\(157\) −4.51388 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(158\) 25.8167 2.05386
\(159\) 0 0
\(160\) 15.9083 1.25766
\(161\) 0 0
\(162\) 0 0
\(163\) 5.69722 0.446241 0.223121 0.974791i \(-0.428376\pi\)
0.223121 + 0.974791i \(0.428376\pi\)
\(164\) 2.30278 0.179817
\(165\) 0 0
\(166\) −29.7250 −2.30711
\(167\) 4.39445 0.340053 0.170026 0.985440i \(-0.445615\pi\)
0.170026 + 0.985440i \(0.445615\pi\)
\(168\) 0 0
\(169\) 18.4222 1.41709
\(170\) 36.6333 2.80965
\(171\) 0 0
\(172\) −33.0278 −2.51834
\(173\) 7.81665 0.594289 0.297145 0.954832i \(-0.403966\pi\)
0.297145 + 0.954832i \(0.403966\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0.211103 0.0159125
\(177\) 0 0
\(178\) −24.4222 −1.83052
\(179\) 11.7250 0.876366 0.438183 0.898886i \(-0.355622\pi\)
0.438183 + 0.898886i \(0.355622\pi\)
\(180\) 0 0
\(181\) 10.6972 0.795118 0.397559 0.917577i \(-0.369857\pi\)
0.397559 + 0.917577i \(0.369857\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 9.00000 0.663489
\(185\) −10.8167 −0.795256
\(186\) 0 0
\(187\) −3.69722 −0.270368
\(188\) 20.5139 1.49613
\(189\) 0 0
\(190\) 6.90833 0.501183
\(191\) −25.3305 −1.83285 −0.916426 0.400203i \(-0.868940\pi\)
−0.916426 + 0.400203i \(0.868940\pi\)
\(192\) 0 0
\(193\) −23.1194 −1.66417 −0.832086 0.554646i \(-0.812854\pi\)
−0.832086 + 0.554646i \(0.812854\pi\)
\(194\) −22.1194 −1.58808
\(195\) 0 0
\(196\) 0 0
\(197\) 6.90833 0.492198 0.246099 0.969245i \(-0.420851\pi\)
0.246099 + 0.969245i \(0.420851\pi\)
\(198\) 0 0
\(199\) 13.4222 0.951475 0.475737 0.879587i \(-0.342181\pi\)
0.475737 + 0.879587i \(0.342181\pi\)
\(200\) 12.0000 0.848528
\(201\) 0 0
\(202\) −10.1194 −0.712001
\(203\) 0 0
\(204\) 0 0
\(205\) −2.09167 −0.146089
\(206\) 37.3305 2.60094
\(207\) 0 0
\(208\) 1.69722 0.117681
\(209\) −0.697224 −0.0482280
\(210\) 0 0
\(211\) −7.69722 −0.529899 −0.264949 0.964262i \(-0.585355\pi\)
−0.264949 + 0.964262i \(0.585355\pi\)
\(212\) 22.8167 1.56705
\(213\) 0 0
\(214\) 13.3305 0.911256
\(215\) 30.0000 2.04598
\(216\) 0 0
\(217\) 0 0
\(218\) −23.5139 −1.59256
\(219\) 0 0
\(220\) −6.90833 −0.465759
\(221\) −29.7250 −1.99952
\(222\) 0 0
\(223\) −12.8167 −0.858267 −0.429133 0.903241i \(-0.641181\pi\)
−0.429133 + 0.903241i \(0.641181\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −22.3305 −1.48540
\(227\) −25.1194 −1.66724 −0.833618 0.552342i \(-0.813734\pi\)
−0.833618 + 0.552342i \(0.813734\pi\)
\(228\) 0 0
\(229\) 0.788897 0.0521318 0.0260659 0.999660i \(-0.491702\pi\)
0.0260659 + 0.999660i \(0.491702\pi\)
\(230\) −20.7250 −1.36656
\(231\) 0 0
\(232\) −29.7250 −1.95154
\(233\) 2.09167 0.137030 0.0685150 0.997650i \(-0.478174\pi\)
0.0685150 + 0.997650i \(0.478174\pi\)
\(234\) 0 0
\(235\) −18.6333 −1.21550
\(236\) −20.5139 −1.33534
\(237\) 0 0
\(238\) 0 0
\(239\) 27.4222 1.77379 0.886897 0.461966i \(-0.152856\pi\)
0.886897 + 0.461966i \(0.152856\pi\)
\(240\) 0 0
\(241\) 20.6056 1.32732 0.663660 0.748034i \(-0.269002\pi\)
0.663660 + 0.748034i \(0.269002\pi\)
\(242\) −24.2111 −1.55635
\(243\) 0 0
\(244\) 13.9083 0.890389
\(245\) 0 0
\(246\) 0 0
\(247\) −5.60555 −0.356673
\(248\) −3.90833 −0.248179
\(249\) 0 0
\(250\) 6.90833 0.436921
\(251\) −15.9083 −1.00412 −0.502062 0.864831i \(-0.667425\pi\)
−0.502062 + 0.864831i \(0.667425\pi\)
\(252\) 0 0
\(253\) 2.09167 0.131502
\(254\) −27.2111 −1.70738
\(255\) 0 0
\(256\) −17.9083 −1.11927
\(257\) −0.908327 −0.0566599 −0.0283299 0.999599i \(-0.509019\pi\)
−0.0283299 + 0.999599i \(0.509019\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −55.5416 −3.44455
\(261\) 0 0
\(262\) −47.2389 −2.91843
\(263\) 9.69722 0.597956 0.298978 0.954260i \(-0.403354\pi\)
0.298978 + 0.954260i \(0.403354\pi\)
\(264\) 0 0
\(265\) −20.7250 −1.27313
\(266\) 0 0
\(267\) 0 0
\(268\) −6.30278 −0.385003
\(269\) 20.7250 1.26362 0.631812 0.775122i \(-0.282311\pi\)
0.631812 + 0.775122i \(0.282311\pi\)
\(270\) 0 0
\(271\) −17.9083 −1.08785 −0.543927 0.839133i \(-0.683063\pi\)
−0.543927 + 0.839133i \(0.683063\pi\)
\(272\) −1.60555 −0.0973508
\(273\) 0 0
\(274\) −49.8167 −3.00953
\(275\) 2.78890 0.168177
\(276\) 0 0
\(277\) 0.605551 0.0363840 0.0181920 0.999835i \(-0.494209\pi\)
0.0181920 + 0.999835i \(0.494209\pi\)
\(278\) −11.5139 −0.690557
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) −27.3305 −1.62463 −0.812316 0.583218i \(-0.801793\pi\)
−0.812316 + 0.583218i \(0.801793\pi\)
\(284\) −40.3305 −2.39318
\(285\) 0 0
\(286\) 9.00000 0.532181
\(287\) 0 0
\(288\) 0 0
\(289\) 11.1194 0.654084
\(290\) 68.4500 4.01952
\(291\) 0 0
\(292\) −5.00000 −0.292603
\(293\) −12.6333 −0.738046 −0.369023 0.929420i \(-0.620308\pi\)
−0.369023 + 0.929420i \(0.620308\pi\)
\(294\) 0 0
\(295\) 18.6333 1.08487
\(296\) 10.8167 0.628705
\(297\) 0 0
\(298\) 14.3028 0.828538
\(299\) 16.8167 0.972532
\(300\) 0 0
\(301\) 0 0
\(302\) 13.6056 0.782911
\(303\) 0 0
\(304\) −0.302776 −0.0173654
\(305\) −12.6333 −0.723381
\(306\) 0 0
\(307\) −14.6972 −0.838815 −0.419407 0.907798i \(-0.637762\pi\)
−0.419407 + 0.907798i \(0.637762\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 9.00000 0.511166
\(311\) −2.51388 −0.142549 −0.0712745 0.997457i \(-0.522707\pi\)
−0.0712745 + 0.997457i \(0.522707\pi\)
\(312\) 0 0
\(313\) 27.0278 1.52770 0.763850 0.645394i \(-0.223307\pi\)
0.763850 + 0.645394i \(0.223307\pi\)
\(314\) −10.3944 −0.586593
\(315\) 0 0
\(316\) 37.0278 2.08297
\(317\) −8.78890 −0.493634 −0.246817 0.969062i \(-0.579385\pi\)
−0.246817 + 0.969062i \(0.579385\pi\)
\(318\) 0 0
\(319\) −6.90833 −0.386792
\(320\) 38.4500 2.14942
\(321\) 0 0
\(322\) 0 0
\(323\) 5.30278 0.295054
\(324\) 0 0
\(325\) 22.4222 1.24376
\(326\) 13.1194 0.726618
\(327\) 0 0
\(328\) 2.09167 0.115493
\(329\) 0 0
\(330\) 0 0
\(331\) 11.6972 0.642938 0.321469 0.946920i \(-0.395823\pi\)
0.321469 + 0.946920i \(0.395823\pi\)
\(332\) −42.6333 −2.33981
\(333\) 0 0
\(334\) 10.1194 0.553711
\(335\) 5.72498 0.312789
\(336\) 0 0
\(337\) 7.72498 0.420807 0.210403 0.977615i \(-0.432522\pi\)
0.210403 + 0.977615i \(0.432522\pi\)
\(338\) 42.4222 2.30746
\(339\) 0 0
\(340\) 52.5416 2.84947
\(341\) −0.908327 −0.0491887
\(342\) 0 0
\(343\) 0 0
\(344\) −30.0000 −1.61749
\(345\) 0 0
\(346\) 18.0000 0.967686
\(347\) 28.5416 1.53220 0.766098 0.642724i \(-0.222196\pi\)
0.766098 + 0.642724i \(0.222196\pi\)
\(348\) 0 0
\(349\) −7.51388 −0.402209 −0.201104 0.979570i \(-0.564453\pi\)
−0.201104 + 0.979570i \(0.564453\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.69722 −0.197063
\(353\) 9.90833 0.527367 0.263684 0.964609i \(-0.415063\pi\)
0.263684 + 0.964609i \(0.415063\pi\)
\(354\) 0 0
\(355\) 36.6333 1.94429
\(356\) −35.0278 −1.85647
\(357\) 0 0
\(358\) 27.0000 1.42699
\(359\) 25.5416 1.34804 0.674018 0.738715i \(-0.264567\pi\)
0.674018 + 0.738715i \(0.264567\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 24.6333 1.29470
\(363\) 0 0
\(364\) 0 0
\(365\) 4.54163 0.237720
\(366\) 0 0
\(367\) 0.0277564 0.00144887 0.000724436 1.00000i \(-0.499769\pi\)
0.000724436 1.00000i \(0.499769\pi\)
\(368\) 0.908327 0.0473498
\(369\) 0 0
\(370\) −24.9083 −1.29492
\(371\) 0 0
\(372\) 0 0
\(373\) 24.1194 1.24886 0.624428 0.781082i \(-0.285332\pi\)
0.624428 + 0.781082i \(0.285332\pi\)
\(374\) −8.51388 −0.440242
\(375\) 0 0
\(376\) 18.6333 0.960939
\(377\) −55.5416 −2.86054
\(378\) 0 0
\(379\) 6.81665 0.350148 0.175074 0.984555i \(-0.443984\pi\)
0.175074 + 0.984555i \(0.443984\pi\)
\(380\) 9.90833 0.508286
\(381\) 0 0
\(382\) −58.3305 −2.98445
\(383\) 6.63331 0.338946 0.169473 0.985535i \(-0.445793\pi\)
0.169473 + 0.985535i \(0.445793\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −53.2389 −2.70979
\(387\) 0 0
\(388\) −31.7250 −1.61059
\(389\) 24.1472 1.22431 0.612155 0.790737i \(-0.290303\pi\)
0.612155 + 0.790737i \(0.290303\pi\)
\(390\) 0 0
\(391\) −15.9083 −0.804519
\(392\) 0 0
\(393\) 0 0
\(394\) 15.9083 0.801450
\(395\) −33.6333 −1.69228
\(396\) 0 0
\(397\) −37.0278 −1.85837 −0.929185 0.369615i \(-0.879490\pi\)
−0.929185 + 0.369615i \(0.879490\pi\)
\(398\) 30.9083 1.54929
\(399\) 0 0
\(400\) 1.21110 0.0605551
\(401\) 3.48612 0.174089 0.0870443 0.996204i \(-0.472258\pi\)
0.0870443 + 0.996204i \(0.472258\pi\)
\(402\) 0 0
\(403\) −7.30278 −0.363777
\(404\) −14.5139 −0.722092
\(405\) 0 0
\(406\) 0 0
\(407\) 2.51388 0.124608
\(408\) 0 0
\(409\) −20.9083 −1.03385 −0.516925 0.856031i \(-0.672923\pi\)
−0.516925 + 0.856031i \(0.672923\pi\)
\(410\) −4.81665 −0.237878
\(411\) 0 0
\(412\) 53.5416 2.63781
\(413\) 0 0
\(414\) 0 0
\(415\) 38.7250 1.90093
\(416\) −29.7250 −1.45739
\(417\) 0 0
\(418\) −1.60555 −0.0785301
\(419\) 15.0000 0.732798 0.366399 0.930458i \(-0.380591\pi\)
0.366399 + 0.930458i \(0.380591\pi\)
\(420\) 0 0
\(421\) −29.6056 −1.44289 −0.721443 0.692474i \(-0.756521\pi\)
−0.721443 + 0.692474i \(0.756521\pi\)
\(422\) −17.7250 −0.862839
\(423\) 0 0
\(424\) 20.7250 1.00649
\(425\) −21.2111 −1.02889
\(426\) 0 0
\(427\) 0 0
\(428\) 19.1194 0.924173
\(429\) 0 0
\(430\) 69.0833 3.33149
\(431\) 3.21110 0.154673 0.0773367 0.997005i \(-0.475358\pi\)
0.0773367 + 0.997005i \(0.475358\pi\)
\(432\) 0 0
\(433\) 0.577795 0.0277671 0.0138835 0.999904i \(-0.495581\pi\)
0.0138835 + 0.999904i \(0.495581\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −33.7250 −1.61513
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) −22.7889 −1.08765 −0.543827 0.839197i \(-0.683025\pi\)
−0.543827 + 0.839197i \(0.683025\pi\)
\(440\) −6.27502 −0.299150
\(441\) 0 0
\(442\) −68.4500 −3.25583
\(443\) 16.1194 0.765857 0.382929 0.923778i \(-0.374916\pi\)
0.382929 + 0.923778i \(0.374916\pi\)
\(444\) 0 0
\(445\) 31.8167 1.50825
\(446\) −29.5139 −1.39752
\(447\) 0 0
\(448\) 0 0
\(449\) 0.486122 0.0229415 0.0114708 0.999934i \(-0.496349\pi\)
0.0114708 + 0.999934i \(0.496349\pi\)
\(450\) 0 0
\(451\) 0.486122 0.0228906
\(452\) −32.0278 −1.50646
\(453\) 0 0
\(454\) −57.8444 −2.71477
\(455\) 0 0
\(456\) 0 0
\(457\) 22.3028 1.04328 0.521640 0.853166i \(-0.325320\pi\)
0.521640 + 0.853166i \(0.325320\pi\)
\(458\) 1.81665 0.0848867
\(459\) 0 0
\(460\) −29.7250 −1.38593
\(461\) 0.908327 0.0423050 0.0211525 0.999776i \(-0.493266\pi\)
0.0211525 + 0.999776i \(0.493266\pi\)
\(462\) 0 0
\(463\) −36.4500 −1.69397 −0.846987 0.531614i \(-0.821586\pi\)
−0.846987 + 0.531614i \(0.821586\pi\)
\(464\) −3.00000 −0.139272
\(465\) 0 0
\(466\) 4.81665 0.223127
\(467\) 16.5416 0.765456 0.382728 0.923861i \(-0.374985\pi\)
0.382728 + 0.923861i \(0.374985\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −42.9083 −1.97921
\(471\) 0 0
\(472\) −18.6333 −0.857668
\(473\) −6.97224 −0.320584
\(474\) 0 0
\(475\) −4.00000 −0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 63.1472 2.88829
\(479\) −0.697224 −0.0318570 −0.0159285 0.999873i \(-0.505070\pi\)
−0.0159285 + 0.999873i \(0.505070\pi\)
\(480\) 0 0
\(481\) 20.2111 0.921547
\(482\) 47.4500 2.16129
\(483\) 0 0
\(484\) −34.7250 −1.57841
\(485\) 28.8167 1.30850
\(486\) 0 0
\(487\) 4.57779 0.207440 0.103720 0.994607i \(-0.466925\pi\)
0.103720 + 0.994607i \(0.466925\pi\)
\(488\) 12.6333 0.571883
\(489\) 0 0
\(490\) 0 0
\(491\) 12.0000 0.541552 0.270776 0.962642i \(-0.412720\pi\)
0.270776 + 0.962642i \(0.412720\pi\)
\(492\) 0 0
\(493\) 52.5416 2.36636
\(494\) −12.9083 −0.580773
\(495\) 0 0
\(496\) −0.394449 −0.0177113
\(497\) 0 0
\(498\) 0 0
\(499\) 19.9361 0.892462 0.446231 0.894918i \(-0.352766\pi\)
0.446231 + 0.894918i \(0.352766\pi\)
\(500\) 9.90833 0.443114
\(501\) 0 0
\(502\) −36.6333 −1.63502
\(503\) 6.42221 0.286352 0.143176 0.989697i \(-0.454269\pi\)
0.143176 + 0.989697i \(0.454269\pi\)
\(504\) 0 0
\(505\) 13.1833 0.586651
\(506\) 4.81665 0.214126
\(507\) 0 0
\(508\) −39.0278 −1.73158
\(509\) 33.6333 1.49077 0.745385 0.666634i \(-0.232266\pi\)
0.745385 + 0.666634i \(0.232266\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −3.42221 −0.151242
\(513\) 0 0
\(514\) −2.09167 −0.0922597
\(515\) −48.6333 −2.14304
\(516\) 0 0
\(517\) 4.33053 0.190457
\(518\) 0 0
\(519\) 0 0
\(520\) −50.4500 −2.21238
\(521\) 36.6333 1.60493 0.802467 0.596696i \(-0.203520\pi\)
0.802467 + 0.596696i \(0.203520\pi\)
\(522\) 0 0
\(523\) −37.6611 −1.64680 −0.823402 0.567459i \(-0.807927\pi\)
−0.823402 + 0.567459i \(0.807927\pi\)
\(524\) −67.7527 −2.95979
\(525\) 0 0
\(526\) 22.3305 0.973657
\(527\) 6.90833 0.300931
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) −47.7250 −2.07304
\(531\) 0 0
\(532\) 0 0
\(533\) 3.90833 0.169288
\(534\) 0 0
\(535\) −17.3667 −0.750828
\(536\) −5.72498 −0.247282
\(537\) 0 0
\(538\) 47.7250 2.05757
\(539\) 0 0
\(540\) 0 0
\(541\) 16.7889 0.721811 0.360906 0.932602i \(-0.382468\pi\)
0.360906 + 0.932602i \(0.382468\pi\)
\(542\) −41.2389 −1.77136
\(543\) 0 0
\(544\) 28.1194 1.20561
\(545\) 30.6333 1.31219
\(546\) 0 0
\(547\) −10.4861 −0.448354 −0.224177 0.974548i \(-0.571969\pi\)
−0.224177 + 0.974548i \(0.571969\pi\)
\(548\) −71.4500 −3.05219
\(549\) 0 0
\(550\) 6.42221 0.273844
\(551\) 9.90833 0.422109
\(552\) 0 0
\(553\) 0 0
\(554\) 1.39445 0.0592444
\(555\) 0 0
\(556\) −16.5139 −0.700344
\(557\) 1.11943 0.0474317 0.0237159 0.999719i \(-0.492450\pi\)
0.0237159 + 0.999719i \(0.492450\pi\)
\(558\) 0 0
\(559\) −56.0555 −2.37090
\(560\) 0 0
\(561\) 0 0
\(562\) −6.90833 −0.291410
\(563\) −24.2111 −1.02038 −0.510188 0.860063i \(-0.670424\pi\)
−0.510188 + 0.860063i \(0.670424\pi\)
\(564\) 0 0
\(565\) 29.0917 1.22390
\(566\) −62.9361 −2.64540
\(567\) 0 0
\(568\) −36.6333 −1.53710
\(569\) −7.18335 −0.301142 −0.150571 0.988599i \(-0.548111\pi\)
−0.150571 + 0.988599i \(0.548111\pi\)
\(570\) 0 0
\(571\) −2.39445 −0.100205 −0.0501023 0.998744i \(-0.515955\pi\)
−0.0501023 + 0.998744i \(0.515955\pi\)
\(572\) 12.9083 0.539724
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −19.5139 −0.812373 −0.406187 0.913790i \(-0.633142\pi\)
−0.406187 + 0.913790i \(0.633142\pi\)
\(578\) 25.6056 1.06505
\(579\) 0 0
\(580\) 98.1749 4.07649
\(581\) 0 0
\(582\) 0 0
\(583\) 4.81665 0.199485
\(584\) −4.54163 −0.187934
\(585\) 0 0
\(586\) −29.0917 −1.20177
\(587\) 0.422205 0.0174263 0.00871313 0.999962i \(-0.497226\pi\)
0.00871313 + 0.999962i \(0.497226\pi\)
\(588\) 0 0
\(589\) 1.30278 0.0536799
\(590\) 42.9083 1.76651
\(591\) 0 0
\(592\) 1.09167 0.0448675
\(593\) −4.81665 −0.197796 −0.0988981 0.995098i \(-0.531532\pi\)
−0.0988981 + 0.995098i \(0.531532\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20.5139 0.840281
\(597\) 0 0
\(598\) 38.7250 1.58358
\(599\) 0.908327 0.0371132 0.0185566 0.999828i \(-0.494093\pi\)
0.0185566 + 0.999828i \(0.494093\pi\)
\(600\) 0 0
\(601\) 27.5139 1.12231 0.561157 0.827709i \(-0.310356\pi\)
0.561157 + 0.827709i \(0.310356\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 19.5139 0.794008
\(605\) 31.5416 1.28235
\(606\) 0 0
\(607\) 13.0000 0.527654 0.263827 0.964570i \(-0.415015\pi\)
0.263827 + 0.964570i \(0.415015\pi\)
\(608\) 5.30278 0.215056
\(609\) 0 0
\(610\) −29.0917 −1.17789
\(611\) 34.8167 1.40853
\(612\) 0 0
\(613\) −0.724981 −0.0292817 −0.0146408 0.999893i \(-0.504660\pi\)
−0.0146408 + 0.999893i \(0.504660\pi\)
\(614\) −33.8444 −1.36585
\(615\) 0 0
\(616\) 0 0
\(617\) 10.8806 0.438035 0.219018 0.975721i \(-0.429715\pi\)
0.219018 + 0.975721i \(0.429715\pi\)
\(618\) 0 0
\(619\) 41.3305 1.66121 0.830607 0.556859i \(-0.187994\pi\)
0.830607 + 0.556859i \(0.187994\pi\)
\(620\) 12.9083 0.518411
\(621\) 0 0
\(622\) −5.78890 −0.232114
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 62.2389 2.48757
\(627\) 0 0
\(628\) −14.9083 −0.594907
\(629\) −19.1194 −0.762342
\(630\) 0 0
\(631\) 13.2389 0.527031 0.263515 0.964655i \(-0.415118\pi\)
0.263515 + 0.964655i \(0.415118\pi\)
\(632\) 33.6333 1.33786
\(633\) 0 0
\(634\) −20.2389 −0.803788
\(635\) 35.4500 1.40679
\(636\) 0 0
\(637\) 0 0
\(638\) −15.9083 −0.629817
\(639\) 0 0
\(640\) 56.7250 2.24225
\(641\) −9.90833 −0.391355 −0.195678 0.980668i \(-0.562691\pi\)
−0.195678 + 0.980668i \(0.562691\pi\)
\(642\) 0 0
\(643\) −30.3944 −1.19864 −0.599320 0.800510i \(-0.704562\pi\)
−0.599320 + 0.800510i \(0.704562\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.2111 0.480439
\(647\) 15.4222 0.606309 0.303155 0.952941i \(-0.401960\pi\)
0.303155 + 0.952941i \(0.401960\pi\)
\(648\) 0 0
\(649\) −4.33053 −0.169988
\(650\) 51.6333 2.02522
\(651\) 0 0
\(652\) 18.8167 0.736917
\(653\) 16.8167 0.658087 0.329043 0.944315i \(-0.393274\pi\)
0.329043 + 0.944315i \(0.393274\pi\)
\(654\) 0 0
\(655\) 61.5416 2.40463
\(656\) 0.211103 0.00824217
\(657\) 0 0
\(658\) 0 0
\(659\) −16.3305 −0.636147 −0.318074 0.948066i \(-0.603036\pi\)
−0.318074 + 0.948066i \(0.603036\pi\)
\(660\) 0 0
\(661\) 0.788897 0.0306846 0.0153423 0.999882i \(-0.495116\pi\)
0.0153423 + 0.999882i \(0.495116\pi\)
\(662\) 26.9361 1.04690
\(663\) 0 0
\(664\) −38.7250 −1.50282
\(665\) 0 0
\(666\) 0 0
\(667\) −29.7250 −1.15096
\(668\) 14.5139 0.561559
\(669\) 0 0
\(670\) 13.1833 0.509317
\(671\) 2.93608 0.113346
\(672\) 0 0
\(673\) 14.9083 0.574674 0.287337 0.957830i \(-0.407230\pi\)
0.287337 + 0.957830i \(0.407230\pi\)
\(674\) 17.7889 0.685203
\(675\) 0 0
\(676\) 60.8444 2.34017
\(677\) 17.9361 0.689340 0.344670 0.938724i \(-0.387991\pi\)
0.344670 + 0.938724i \(0.387991\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 47.7250 1.83017
\(681\) 0 0
\(682\) −2.09167 −0.0800943
\(683\) −12.2111 −0.467245 −0.233622 0.972327i \(-0.575058\pi\)
−0.233622 + 0.972327i \(0.575058\pi\)
\(684\) 0 0
\(685\) 64.8999 2.47970
\(686\) 0 0
\(687\) 0 0
\(688\) −3.02776 −0.115432
\(689\) 38.7250 1.47530
\(690\) 0 0
\(691\) 41.8167 1.59078 0.795390 0.606098i \(-0.207266\pi\)
0.795390 + 0.606098i \(0.207266\pi\)
\(692\) 25.8167 0.981402
\(693\) 0 0
\(694\) 65.7250 2.49489
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) −3.69722 −0.140042
\(698\) −17.3028 −0.654920
\(699\) 0 0
\(700\) 0 0
\(701\) −21.2111 −0.801132 −0.400566 0.916268i \(-0.631187\pi\)
−0.400566 + 0.916268i \(0.631187\pi\)
\(702\) 0 0
\(703\) −3.60555 −0.135986
\(704\) −8.93608 −0.336791
\(705\) 0 0
\(706\) 22.8167 0.858716
\(707\) 0 0
\(708\) 0 0
\(709\) −11.6056 −0.435856 −0.217928 0.975965i \(-0.569930\pi\)
−0.217928 + 0.975965i \(0.569930\pi\)
\(710\) 84.3583 3.16591
\(711\) 0 0
\(712\) −31.8167 −1.19238
\(713\) −3.90833 −0.146368
\(714\) 0 0
\(715\) −11.7250 −0.438489
\(716\) 38.7250 1.44722
\(717\) 0 0
\(718\) 58.8167 2.19502
\(719\) −27.6333 −1.03055 −0.515274 0.857025i \(-0.672310\pi\)
−0.515274 + 0.857025i \(0.672310\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 2.30278 0.0857004
\(723\) 0 0
\(724\) 35.3305 1.31305
\(725\) −39.6333 −1.47194
\(726\) 0 0
\(727\) 27.6611 1.02589 0.512946 0.858421i \(-0.328554\pi\)
0.512946 + 0.858421i \(0.328554\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 10.4584 0.387081
\(731\) 53.0278 1.96130
\(732\) 0 0
\(733\) −32.0000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(734\) 0.0639167 0.00235921
\(735\) 0 0
\(736\) −15.9083 −0.586389
\(737\) −1.33053 −0.0490108
\(738\) 0 0
\(739\) −18.5778 −0.683395 −0.341698 0.939810i \(-0.611002\pi\)
−0.341698 + 0.939810i \(0.611002\pi\)
\(740\) −35.7250 −1.31328
\(741\) 0 0
\(742\) 0 0
\(743\) 12.6333 0.463471 0.231736 0.972779i \(-0.425560\pi\)
0.231736 + 0.972779i \(0.425560\pi\)
\(744\) 0 0
\(745\) −18.6333 −0.682672
\(746\) 55.5416 2.03352
\(747\) 0 0
\(748\) −12.2111 −0.446482
\(749\) 0 0
\(750\) 0 0
\(751\) 26.3583 0.961828 0.480914 0.876768i \(-0.340305\pi\)
0.480914 + 0.876768i \(0.340305\pi\)
\(752\) 1.88057 0.0685774
\(753\) 0 0
\(754\) −127.900 −4.65784
\(755\) −17.7250 −0.645078
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) 15.6972 0.570149
\(759\) 0 0
\(760\) 9.00000 0.326464
\(761\) −24.2111 −0.877652 −0.438826 0.898572i \(-0.644606\pi\)
−0.438826 + 0.898572i \(0.644606\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −83.6611 −3.02675
\(765\) 0 0
\(766\) 15.2750 0.551909
\(767\) −34.8167 −1.25716
\(768\) 0 0
\(769\) 25.2111 0.909136 0.454568 0.890712i \(-0.349794\pi\)
0.454568 + 0.890712i \(0.349794\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −76.3583 −2.74819
\(773\) −22.1833 −0.797880 −0.398940 0.916977i \(-0.630622\pi\)
−0.398940 + 0.916977i \(0.630622\pi\)
\(774\) 0 0
\(775\) −5.21110 −0.187188
\(776\) −28.8167 −1.03446
\(777\) 0 0
\(778\) 55.6056 1.99356
\(779\) −0.697224 −0.0249807
\(780\) 0 0
\(781\) −8.51388 −0.304651
\(782\) −36.6333 −1.31000
\(783\) 0 0
\(784\) 0 0
\(785\) 13.5416 0.483322
\(786\) 0 0
\(787\) 31.6333 1.12761 0.563803 0.825909i \(-0.309338\pi\)
0.563803 + 0.825909i \(0.309338\pi\)
\(788\) 22.8167 0.812810
\(789\) 0 0
\(790\) −77.4500 −2.75555
\(791\) 0 0
\(792\) 0 0
\(793\) 23.6056 0.838258
\(794\) −85.2666 −3.02600
\(795\) 0 0
\(796\) 44.3305 1.57125
\(797\) 26.0917 0.924214 0.462107 0.886824i \(-0.347094\pi\)
0.462107 + 0.886824i \(0.347094\pi\)
\(798\) 0 0
\(799\) −32.9361 −1.16519
\(800\) −21.2111 −0.749926
\(801\) 0 0
\(802\) 8.02776 0.283470
\(803\) −1.05551 −0.0372482
\(804\) 0 0
\(805\) 0 0
\(806\) −16.8167 −0.592341
\(807\) 0 0
\(808\) −13.1833 −0.463788
\(809\) 26.0278 0.915087 0.457544 0.889187i \(-0.348729\pi\)
0.457544 + 0.889187i \(0.348729\pi\)
\(810\) 0 0
\(811\) 32.0555 1.12562 0.562811 0.826586i \(-0.309720\pi\)
0.562811 + 0.826586i \(0.309720\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.78890 0.202901
\(815\) −17.0917 −0.598695
\(816\) 0 0
\(817\) 10.0000 0.349856
\(818\) −48.1472 −1.68343
\(819\) 0 0
\(820\) −6.90833 −0.241249
\(821\) 51.6333 1.80201 0.901007 0.433804i \(-0.142829\pi\)
0.901007 + 0.433804i \(0.142829\pi\)
\(822\) 0 0
\(823\) 16.2389 0.566051 0.283026 0.959112i \(-0.408662\pi\)
0.283026 + 0.959112i \(0.408662\pi\)
\(824\) 48.6333 1.69422
\(825\) 0 0
\(826\) 0 0
\(827\) 45.0000 1.56480 0.782402 0.622774i \(-0.213994\pi\)
0.782402 + 0.622774i \(0.213994\pi\)
\(828\) 0 0
\(829\) −54.0555 −1.87743 −0.938713 0.344700i \(-0.887981\pi\)
−0.938713 + 0.344700i \(0.887981\pi\)
\(830\) 89.1749 3.09531
\(831\) 0 0
\(832\) −71.8444 −2.49076
\(833\) 0 0
\(834\) 0 0
\(835\) −13.1833 −0.456229
\(836\) −2.30278 −0.0796432
\(837\) 0 0
\(838\) 34.5416 1.19322
\(839\) −2.78890 −0.0962834 −0.0481417 0.998841i \(-0.515330\pi\)
−0.0481417 + 0.998841i \(0.515330\pi\)
\(840\) 0 0
\(841\) 69.1749 2.38534
\(842\) −68.1749 −2.34946
\(843\) 0 0
\(844\) −25.4222 −0.875068
\(845\) −55.2666 −1.90123
\(846\) 0 0
\(847\) 0 0
\(848\) 2.09167 0.0718283
\(849\) 0 0
\(850\) −48.8444 −1.67535
\(851\) 10.8167 0.370790
\(852\) 0 0
\(853\) −3.33053 −0.114035 −0.0570176 0.998373i \(-0.518159\pi\)
−0.0570176 + 0.998373i \(0.518159\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 17.3667 0.593581
\(857\) 32.0917 1.09623 0.548115 0.836403i \(-0.315345\pi\)
0.548115 + 0.836403i \(0.315345\pi\)
\(858\) 0 0
\(859\) 27.3028 0.931559 0.465779 0.884901i \(-0.345774\pi\)
0.465779 + 0.884901i \(0.345774\pi\)
\(860\) 99.0833 3.37871
\(861\) 0 0
\(862\) 7.39445 0.251856
\(863\) 16.5416 0.563084 0.281542 0.959549i \(-0.409154\pi\)
0.281542 + 0.959549i \(0.409154\pi\)
\(864\) 0 0
\(865\) −23.4500 −0.797323
\(866\) 1.33053 0.0452133
\(867\) 0 0
\(868\) 0 0
\(869\) 7.81665 0.265162
\(870\) 0 0
\(871\) −10.6972 −0.362462
\(872\) −30.6333 −1.03737
\(873\) 0 0
\(874\) −6.90833 −0.233678
\(875\) 0 0
\(876\) 0 0
\(877\) −8.18335 −0.276332 −0.138166 0.990409i \(-0.544121\pi\)
−0.138166 + 0.990409i \(0.544121\pi\)
\(878\) −52.4777 −1.77104
\(879\) 0 0
\(880\) −0.633308 −0.0213488
\(881\) −19.7527 −0.665487 −0.332743 0.943017i \(-0.607974\pi\)
−0.332743 + 0.943017i \(0.607974\pi\)
\(882\) 0 0
\(883\) −46.2111 −1.55513 −0.777564 0.628804i \(-0.783545\pi\)
−0.777564 + 0.628804i \(0.783545\pi\)
\(884\) −98.1749 −3.30198
\(885\) 0 0
\(886\) 37.1194 1.24705
\(887\) 19.1833 0.644114 0.322057 0.946720i \(-0.395626\pi\)
0.322057 + 0.946720i \(0.395626\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 73.2666 2.45590
\(891\) 0 0
\(892\) −42.3305 −1.41733
\(893\) −6.21110 −0.207847
\(894\) 0 0
\(895\) −35.1749 −1.17577
\(896\) 0 0
\(897\) 0 0
\(898\) 1.11943 0.0373558
\(899\) 12.9083 0.430517
\(900\) 0 0
\(901\) −36.6333 −1.22043
\(902\) 1.11943 0.0372729
\(903\) 0 0
\(904\) −29.0917 −0.967575
\(905\) −32.0917 −1.06676
\(906\) 0 0
\(907\) −5.18335 −0.172110 −0.0860551 0.996290i \(-0.527426\pi\)
−0.0860551 + 0.996290i \(0.527426\pi\)
\(908\) −82.9638 −2.75325
\(909\) 0 0
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 0 0
\(913\) −9.00000 −0.297857
\(914\) 51.3583 1.69878
\(915\) 0 0
\(916\) 2.60555 0.0860898
\(917\) 0 0
\(918\) 0 0
\(919\) −7.97224 −0.262980 −0.131490 0.991317i \(-0.541976\pi\)
−0.131490 + 0.991317i \(0.541976\pi\)
\(920\) −27.0000 −0.890164
\(921\) 0 0
\(922\) 2.09167 0.0688856
\(923\) −68.4500 −2.25306
\(924\) 0 0
\(925\) 14.4222 0.474199
\(926\) −83.9361 −2.75831
\(927\) 0 0
\(928\) 52.5416 1.72476
\(929\) 11.5139 0.377758 0.188879 0.982000i \(-0.439515\pi\)
0.188879 + 0.982000i \(0.439515\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.90833 0.226290
\(933\) 0 0
\(934\) 38.0917 1.24640
\(935\) 11.0917 0.362736
\(936\) 0 0
\(937\) −21.1194 −0.689942 −0.344971 0.938613i \(-0.612111\pi\)
−0.344971 + 0.938613i \(0.612111\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) −61.5416 −2.00727
\(941\) 6.00000 0.195594 0.0977972 0.995206i \(-0.468820\pi\)
0.0977972 + 0.995206i \(0.468820\pi\)
\(942\) 0 0
\(943\) 2.09167 0.0681142
\(944\) −1.88057 −0.0612074
\(945\) 0 0
\(946\) −16.0555 −0.522010
\(947\) −36.9083 −1.19936 −0.599680 0.800240i \(-0.704705\pi\)
−0.599680 + 0.800240i \(0.704705\pi\)
\(948\) 0 0
\(949\) −8.48612 −0.275471
\(950\) −9.21110 −0.298848
\(951\) 0 0
\(952\) 0 0
\(953\) −4.33053 −0.140280 −0.0701398 0.997537i \(-0.522345\pi\)
−0.0701398 + 0.997537i \(0.522345\pi\)
\(954\) 0 0
\(955\) 75.9916 2.45903
\(956\) 90.5694 2.92922
\(957\) 0 0
\(958\) −1.60555 −0.0518730
\(959\) 0 0
\(960\) 0 0
\(961\) −29.3028 −0.945251
\(962\) 46.5416 1.50056
\(963\) 0 0
\(964\) 68.0555 2.19192
\(965\) 69.3583 2.23272
\(966\) 0 0
\(967\) 26.6972 0.858525 0.429262 0.903180i \(-0.358774\pi\)
0.429262 + 0.903180i \(0.358774\pi\)
\(968\) −31.5416 −1.01379
\(969\) 0 0
\(970\) 66.3583 2.13064
\(971\) −18.6333 −0.597971 −0.298986 0.954258i \(-0.596648\pi\)
−0.298986 + 0.954258i \(0.596648\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 10.5416 0.337776
\(975\) 0 0
\(976\) 1.27502 0.0408124
\(977\) 17.4500 0.558274 0.279137 0.960251i \(-0.409952\pi\)
0.279137 + 0.960251i \(0.409952\pi\)
\(978\) 0 0
\(979\) −7.39445 −0.236328
\(980\) 0 0
\(981\) 0 0
\(982\) 27.6333 0.881814
\(983\) −49.0555 −1.56463 −0.782314 0.622884i \(-0.785961\pi\)
−0.782314 + 0.622884i \(0.785961\pi\)
\(984\) 0 0
\(985\) −20.7250 −0.660353
\(986\) 120.992 3.85316
\(987\) 0 0
\(988\) −18.5139 −0.589005
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) −16.9722 −0.539141 −0.269571 0.962981i \(-0.586882\pi\)
−0.269571 + 0.962981i \(0.586882\pi\)
\(992\) 6.90833 0.219340
\(993\) 0 0
\(994\) 0 0
\(995\) −40.2666 −1.27654
\(996\) 0 0
\(997\) −5.27502 −0.167062 −0.0835308 0.996505i \(-0.526620\pi\)
−0.0835308 + 0.996505i \(0.526620\pi\)
\(998\) 45.9083 1.45320
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bf.1.2 2
3.2 odd 2 931.2.a.g.1.1 2
7.6 odd 2 1197.2.a.h.1.2 2
21.2 odd 6 931.2.f.g.704.2 4
21.5 even 6 931.2.f.h.704.2 4
21.11 odd 6 931.2.f.g.324.2 4
21.17 even 6 931.2.f.h.324.2 4
21.20 even 2 133.2.a.b.1.1 2
84.83 odd 2 2128.2.a.l.1.1 2
105.104 even 2 3325.2.a.n.1.2 2
168.83 odd 2 8512.2.a.l.1.2 2
168.125 even 2 8512.2.a.bh.1.1 2
399.398 odd 2 2527.2.a.d.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.a.b.1.1 2 21.20 even 2
931.2.a.g.1.1 2 3.2 odd 2
931.2.f.g.324.2 4 21.11 odd 6
931.2.f.g.704.2 4 21.2 odd 6
931.2.f.h.324.2 4 21.17 even 6
931.2.f.h.704.2 4 21.5 even 6
1197.2.a.h.1.2 2 7.6 odd 2
2128.2.a.l.1.1 2 84.83 odd 2
2527.2.a.d.1.2 2 399.398 odd 2
3325.2.a.n.1.2 2 105.104 even 2
8379.2.a.bf.1.2 2 1.1 even 1 trivial
8512.2.a.l.1.2 2 168.83 odd 2
8512.2.a.bh.1.1 2 168.125 even 2