Properties

Label 8379.2.a.bd.1.2
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-10,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2793)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205 q^{2} +1.00000 q^{4} -1.73205 q^{8} -3.46410 q^{11} +3.46410 q^{13} -5.00000 q^{16} +4.00000 q^{17} -1.00000 q^{19} -6.00000 q^{22} +7.46410 q^{23} -5.00000 q^{25} +6.00000 q^{26} +4.00000 q^{29} -10.9282 q^{31} -5.19615 q^{32} +6.92820 q^{34} -8.92820 q^{37} -1.73205 q^{38} +2.92820 q^{41} +2.92820 q^{43} -3.46410 q^{44} +12.9282 q^{46} -8.92820 q^{47} -8.66025 q^{50} +3.46410 q^{52} +4.00000 q^{53} +6.92820 q^{58} -8.00000 q^{59} -14.9282 q^{61} -18.9282 q^{62} +1.00000 q^{64} +14.3923 q^{67} +4.00000 q^{68} -3.46410 q^{71} +8.00000 q^{73} -15.4641 q^{74} -1.00000 q^{76} -3.46410 q^{79} +5.07180 q^{82} +4.92820 q^{83} +5.07180 q^{86} +6.00000 q^{88} -12.0000 q^{89} +7.46410 q^{92} -15.4641 q^{94} -12.5359 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 10 q^{16} + 8 q^{17} - 2 q^{19} - 12 q^{22} + 8 q^{23} - 10 q^{25} + 12 q^{26} + 8 q^{29} - 8 q^{31} - 4 q^{37} - 8 q^{41} - 8 q^{43} + 12 q^{46} - 4 q^{47} + 8 q^{53} - 16 q^{59} - 16 q^{61}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.73205 1.22474 0.612372 0.790569i \(-0.290215\pi\)
0.612372 + 0.790569i \(0.290215\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.73205 −0.612372
\(9\) 0 0
\(10\) 0 0
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 0 0
\(13\) 3.46410 0.960769 0.480384 0.877058i \(-0.340497\pi\)
0.480384 + 0.877058i \(0.340497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 7.46410 1.55637 0.778186 0.628033i \(-0.216140\pi\)
0.778186 + 0.628033i \(0.216140\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) −10.9282 −1.96276 −0.981382 0.192068i \(-0.938481\pi\)
−0.981382 + 0.192068i \(0.938481\pi\)
\(32\) −5.19615 −0.918559
\(33\) 0 0
\(34\) 6.92820 1.18818
\(35\) 0 0
\(36\) 0 0
\(37\) −8.92820 −1.46779 −0.733894 0.679264i \(-0.762299\pi\)
−0.733894 + 0.679264i \(0.762299\pi\)
\(38\) −1.73205 −0.280976
\(39\) 0 0
\(40\) 0 0
\(41\) 2.92820 0.457309 0.228654 0.973508i \(-0.426567\pi\)
0.228654 + 0.973508i \(0.426567\pi\)
\(42\) 0 0
\(43\) 2.92820 0.446547 0.223273 0.974756i \(-0.428326\pi\)
0.223273 + 0.974756i \(0.428326\pi\)
\(44\) −3.46410 −0.522233
\(45\) 0 0
\(46\) 12.9282 1.90616
\(47\) −8.92820 −1.30231 −0.651156 0.758944i \(-0.725716\pi\)
−0.651156 + 0.758944i \(0.725716\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −8.66025 −1.22474
\(51\) 0 0
\(52\) 3.46410 0.480384
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 6.92820 0.909718
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −14.9282 −1.91136 −0.955680 0.294407i \(-0.904878\pi\)
−0.955680 + 0.294407i \(0.904878\pi\)
\(62\) −18.9282 −2.40388
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 14.3923 1.75830 0.879150 0.476545i \(-0.158111\pi\)
0.879150 + 0.476545i \(0.158111\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) −3.46410 −0.411113 −0.205557 0.978645i \(-0.565900\pi\)
−0.205557 + 0.978645i \(0.565900\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −15.4641 −1.79767
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) −3.46410 −0.389742 −0.194871 0.980829i \(-0.562429\pi\)
−0.194871 + 0.980829i \(0.562429\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.07180 0.560086
\(83\) 4.92820 0.540941 0.270470 0.962728i \(-0.412821\pi\)
0.270470 + 0.962728i \(0.412821\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 5.07180 0.546906
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 7.46410 0.778186
\(93\) 0 0
\(94\) −15.4641 −1.59500
\(95\) 0 0
\(96\) 0 0
\(97\) −12.5359 −1.27283 −0.636414 0.771348i \(-0.719583\pi\)
−0.636414 + 0.771348i \(0.719583\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) −10.9282 −1.07679 −0.538394 0.842693i \(-0.680969\pi\)
−0.538394 + 0.842693i \(0.680969\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) 6.92820 0.672927
\(107\) 18.3923 1.77805 0.889026 0.457857i \(-0.151383\pi\)
0.889026 + 0.457857i \(0.151383\pi\)
\(108\) 0 0
\(109\) −8.92820 −0.855167 −0.427583 0.903976i \(-0.640635\pi\)
−0.427583 + 0.903976i \(0.640635\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 5.07180 0.477115 0.238557 0.971128i \(-0.423326\pi\)
0.238557 + 0.971128i \(0.423326\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) −13.8564 −1.27559
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) −25.8564 −2.34093
\(123\) 0 0
\(124\) −10.9282 −0.981382
\(125\) 0 0
\(126\) 0 0
\(127\) −12.5359 −1.11238 −0.556191 0.831055i \(-0.687738\pi\)
−0.556191 + 0.831055i \(0.687738\pi\)
\(128\) 12.1244 1.07165
\(129\) 0 0
\(130\) 0 0
\(131\) 8.92820 0.780061 0.390030 0.920802i \(-0.372465\pi\)
0.390030 + 0.920802i \(0.372465\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 24.9282 2.15347
\(135\) 0 0
\(136\) −6.92820 −0.594089
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) 13.8564 1.14676
\(147\) 0 0
\(148\) −8.92820 −0.733894
\(149\) −20.9282 −1.71451 −0.857253 0.514896i \(-0.827831\pi\)
−0.857253 + 0.514896i \(0.827831\pi\)
\(150\) 0 0
\(151\) −10.3923 −0.845714 −0.422857 0.906196i \(-0.638973\pi\)
−0.422857 + 0.906196i \(0.638973\pi\)
\(152\) 1.73205 0.140488
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.0000 −1.27694 −0.638470 0.769647i \(-0.720432\pi\)
−0.638470 + 0.769647i \(0.720432\pi\)
\(158\) −6.00000 −0.477334
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −2.92820 −0.229355 −0.114677 0.993403i \(-0.536583\pi\)
−0.114677 + 0.993403i \(0.536583\pi\)
\(164\) 2.92820 0.228654
\(165\) 0 0
\(166\) 8.53590 0.662514
\(167\) −13.8564 −1.07224 −0.536120 0.844141i \(-0.680111\pi\)
−0.536120 + 0.844141i \(0.680111\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 2.92820 0.223273
\(173\) −9.85641 −0.749369 −0.374684 0.927152i \(-0.622249\pi\)
−0.374684 + 0.927152i \(0.622249\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 17.3205 1.30558
\(177\) 0 0
\(178\) −20.7846 −1.55787
\(179\) 11.4641 0.856867 0.428434 0.903573i \(-0.359066\pi\)
0.428434 + 0.903573i \(0.359066\pi\)
\(180\) 0 0
\(181\) 25.3205 1.88206 0.941029 0.338325i \(-0.109860\pi\)
0.941029 + 0.338325i \(0.109860\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −12.9282 −0.953080
\(185\) 0 0
\(186\) 0 0
\(187\) −13.8564 −1.01328
\(188\) −8.92820 −0.651156
\(189\) 0 0
\(190\) 0 0
\(191\) 0.535898 0.0387762 0.0193881 0.999812i \(-0.493828\pi\)
0.0193881 + 0.999812i \(0.493828\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) −21.7128 −1.55889
\(195\) 0 0
\(196\) 0 0
\(197\) 4.92820 0.351120 0.175560 0.984469i \(-0.443826\pi\)
0.175560 + 0.984469i \(0.443826\pi\)
\(198\) 0 0
\(199\) −5.85641 −0.415150 −0.207575 0.978219i \(-0.566557\pi\)
−0.207575 + 0.978219i \(0.566557\pi\)
\(200\) 8.66025 0.612372
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −18.9282 −1.31879
\(207\) 0 0
\(208\) −17.3205 −1.20096
\(209\) 3.46410 0.239617
\(210\) 0 0
\(211\) −0.535898 −0.0368928 −0.0184464 0.999830i \(-0.505872\pi\)
−0.0184464 + 0.999830i \(0.505872\pi\)
\(212\) 4.00000 0.274721
\(213\) 0 0
\(214\) 31.8564 2.17766
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −15.4641 −1.04736
\(219\) 0 0
\(220\) 0 0
\(221\) 13.8564 0.932083
\(222\) 0 0
\(223\) −13.0718 −0.875352 −0.437676 0.899133i \(-0.644198\pi\)
−0.437676 + 0.899133i \(0.644198\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 8.78461 0.584344
\(227\) −25.8564 −1.71615 −0.858075 0.513524i \(-0.828340\pi\)
−0.858075 + 0.513524i \(0.828340\pi\)
\(228\) 0 0
\(229\) −6.92820 −0.457829 −0.228914 0.973447i \(-0.573518\pi\)
−0.228914 + 0.973447i \(0.573518\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −6.92820 −0.454859
\(233\) −7.85641 −0.514690 −0.257345 0.966320i \(-0.582848\pi\)
−0.257345 + 0.966320i \(0.582848\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) 15.4641 1.00029 0.500145 0.865942i \(-0.333280\pi\)
0.500145 + 0.865942i \(0.333280\pi\)
\(240\) 0 0
\(241\) −3.46410 −0.223142 −0.111571 0.993756i \(-0.535588\pi\)
−0.111571 + 0.993756i \(0.535588\pi\)
\(242\) 1.73205 0.111340
\(243\) 0 0
\(244\) −14.9282 −0.955680
\(245\) 0 0
\(246\) 0 0
\(247\) −3.46410 −0.220416
\(248\) 18.9282 1.20194
\(249\) 0 0
\(250\) 0 0
\(251\) −12.9282 −0.816021 −0.408010 0.912977i \(-0.633777\pi\)
−0.408010 + 0.912977i \(0.633777\pi\)
\(252\) 0 0
\(253\) −25.8564 −1.62558
\(254\) −21.7128 −1.36238
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) −9.85641 −0.614826 −0.307413 0.951576i \(-0.599463\pi\)
−0.307413 + 0.951576i \(0.599463\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 15.4641 0.955375
\(263\) 7.46410 0.460256 0.230128 0.973160i \(-0.426085\pi\)
0.230128 + 0.973160i \(0.426085\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 14.3923 0.879150
\(269\) −10.9282 −0.666304 −0.333152 0.942873i \(-0.608112\pi\)
−0.333152 + 0.942873i \(0.608112\pi\)
\(270\) 0 0
\(271\) 25.8564 1.57066 0.785332 0.619074i \(-0.212492\pi\)
0.785332 + 0.619074i \(0.212492\pi\)
\(272\) −20.0000 −1.21268
\(273\) 0 0
\(274\) −24.2487 −1.46492
\(275\) 17.3205 1.04447
\(276\) 0 0
\(277\) −25.7128 −1.54493 −0.772467 0.635055i \(-0.780977\pi\)
−0.772467 + 0.635055i \(0.780977\pi\)
\(278\) 6.92820 0.415526
\(279\) 0 0
\(280\) 0 0
\(281\) −6.92820 −0.413302 −0.206651 0.978415i \(-0.566256\pi\)
−0.206651 + 0.978415i \(0.566256\pi\)
\(282\) 0 0
\(283\) −8.00000 −0.475551 −0.237775 0.971320i \(-0.576418\pi\)
−0.237775 + 0.971320i \(0.576418\pi\)
\(284\) −3.46410 −0.205557
\(285\) 0 0
\(286\) −20.7846 −1.22902
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) 8.78461 0.513202 0.256601 0.966517i \(-0.417397\pi\)
0.256601 + 0.966517i \(0.417397\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 15.4641 0.898833
\(297\) 0 0
\(298\) −36.2487 −2.09983
\(299\) 25.8564 1.49531
\(300\) 0 0
\(301\) 0 0
\(302\) −18.0000 −1.03578
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 0 0
\(306\) 0 0
\(307\) 25.8564 1.47570 0.737852 0.674963i \(-0.235840\pi\)
0.737852 + 0.674963i \(0.235840\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.0718 −0.627824 −0.313912 0.949452i \(-0.601640\pi\)
−0.313912 + 0.949452i \(0.601640\pi\)
\(312\) 0 0
\(313\) 22.9282 1.29598 0.647989 0.761649i \(-0.275610\pi\)
0.647989 + 0.761649i \(0.275610\pi\)
\(314\) −27.7128 −1.56392
\(315\) 0 0
\(316\) −3.46410 −0.194871
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) −13.8564 −0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) −17.3205 −0.960769
\(326\) −5.07180 −0.280901
\(327\) 0 0
\(328\) −5.07180 −0.280043
\(329\) 0 0
\(330\) 0 0
\(331\) 12.2487 0.673250 0.336625 0.941639i \(-0.390715\pi\)
0.336625 + 0.941639i \(0.390715\pi\)
\(332\) 4.92820 0.270470
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) −1.73205 −0.0942111
\(339\) 0 0
\(340\) 0 0
\(341\) 37.8564 2.05004
\(342\) 0 0
\(343\) 0 0
\(344\) −5.07180 −0.273453
\(345\) 0 0
\(346\) −17.0718 −0.917785
\(347\) 27.4641 1.47435 0.737175 0.675702i \(-0.236159\pi\)
0.737175 + 0.675702i \(0.236159\pi\)
\(348\) 0 0
\(349\) −9.07180 −0.485602 −0.242801 0.970076i \(-0.578066\pi\)
−0.242801 + 0.970076i \(0.578066\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) −9.85641 −0.524604 −0.262302 0.964986i \(-0.584482\pi\)
−0.262302 + 0.964986i \(0.584482\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) 19.8564 1.04944
\(359\) 6.39230 0.337373 0.168686 0.985670i \(-0.446047\pi\)
0.168686 + 0.985670i \(0.446047\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 43.8564 2.30504
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) −37.3205 −1.94547
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −22.7846 −1.17974 −0.589871 0.807497i \(-0.700821\pi\)
−0.589871 + 0.807497i \(0.700821\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) 15.4641 0.797500
\(377\) 13.8564 0.713641
\(378\) 0 0
\(379\) 30.3923 1.56115 0.780574 0.625063i \(-0.214927\pi\)
0.780574 + 0.625063i \(0.214927\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0.928203 0.0474910
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −17.3205 −0.881591
\(387\) 0 0
\(388\) −12.5359 −0.636414
\(389\) 32.9282 1.66953 0.834763 0.550609i \(-0.185605\pi\)
0.834763 + 0.550609i \(0.185605\pi\)
\(390\) 0 0
\(391\) 29.8564 1.50990
\(392\) 0 0
\(393\) 0 0
\(394\) 8.53590 0.430032
\(395\) 0 0
\(396\) 0 0
\(397\) −12.7846 −0.641641 −0.320821 0.947140i \(-0.603959\pi\)
−0.320821 + 0.947140i \(0.603959\pi\)
\(398\) −10.1436 −0.508452
\(399\) 0 0
\(400\) 25.0000 1.25000
\(401\) 14.9282 0.745479 0.372739 0.927936i \(-0.378419\pi\)
0.372739 + 0.927936i \(0.378419\pi\)
\(402\) 0 0
\(403\) −37.8564 −1.88576
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30.9282 1.53305
\(408\) 0 0
\(409\) −25.3205 −1.25202 −0.626009 0.779816i \(-0.715313\pi\)
−0.626009 + 0.779816i \(0.715313\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −10.9282 −0.538394
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −18.0000 −0.882523
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) 32.6410 1.59462 0.797309 0.603571i \(-0.206256\pi\)
0.797309 + 0.603571i \(0.206256\pi\)
\(420\) 0 0
\(421\) −8.92820 −0.435134 −0.217567 0.976045i \(-0.569812\pi\)
−0.217567 + 0.976045i \(0.569812\pi\)
\(422\) −0.928203 −0.0451842
\(423\) 0 0
\(424\) −6.92820 −0.336463
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 0 0
\(428\) 18.3923 0.889026
\(429\) 0 0
\(430\) 0 0
\(431\) 26.3923 1.27127 0.635636 0.771989i \(-0.280738\pi\)
0.635636 + 0.771989i \(0.280738\pi\)
\(432\) 0 0
\(433\) 9.32051 0.447915 0.223958 0.974599i \(-0.428102\pi\)
0.223958 + 0.974599i \(0.428102\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −8.92820 −0.427583
\(437\) −7.46410 −0.357056
\(438\) 0 0
\(439\) 38.6410 1.84424 0.922118 0.386910i \(-0.126458\pi\)
0.922118 + 0.386910i \(0.126458\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) 33.3205 1.58311 0.791553 0.611101i \(-0.209273\pi\)
0.791553 + 0.611101i \(0.209273\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −22.6410 −1.07208
\(447\) 0 0
\(448\) 0 0
\(449\) −17.0718 −0.805668 −0.402834 0.915273i \(-0.631975\pi\)
−0.402834 + 0.915273i \(0.631975\pi\)
\(450\) 0 0
\(451\) −10.1436 −0.477643
\(452\) 5.07180 0.238557
\(453\) 0 0
\(454\) −44.7846 −2.10185
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −12.0000 −0.560723
\(459\) 0 0
\(460\) 0 0
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) 0 0
\(463\) −13.8564 −0.643962 −0.321981 0.946746i \(-0.604349\pi\)
−0.321981 + 0.946746i \(0.604349\pi\)
\(464\) −20.0000 −0.928477
\(465\) 0 0
\(466\) −13.6077 −0.630364
\(467\) 8.92820 0.413148 0.206574 0.978431i \(-0.433769\pi\)
0.206574 + 0.978431i \(0.433769\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 13.8564 0.637793
\(473\) −10.1436 −0.466403
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 26.7846 1.22510
\(479\) −36.9282 −1.68729 −0.843646 0.536899i \(-0.819596\pi\)
−0.843646 + 0.536899i \(0.819596\pi\)
\(480\) 0 0
\(481\) −30.9282 −1.41020
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) 2.39230 0.108406 0.0542028 0.998530i \(-0.482738\pi\)
0.0542028 + 0.998530i \(0.482738\pi\)
\(488\) 25.8564 1.17046
\(489\) 0 0
\(490\) 0 0
\(491\) 1.32051 0.0595937 0.0297968 0.999556i \(-0.490514\pi\)
0.0297968 + 0.999556i \(0.490514\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) 54.6410 2.45345
\(497\) 0 0
\(498\) 0 0
\(499\) −2.92820 −0.131084 −0.0655422 0.997850i \(-0.520878\pi\)
−0.0655422 + 0.997850i \(0.520878\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −22.3923 −0.999417
\(503\) −36.6410 −1.63374 −0.816871 0.576820i \(-0.804293\pi\)
−0.816871 + 0.576820i \(0.804293\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −44.7846 −1.99092
\(507\) 0 0
\(508\) −12.5359 −0.556191
\(509\) −25.8564 −1.14607 −0.573033 0.819533i \(-0.694233\pi\)
−0.573033 + 0.819533i \(0.694233\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 8.66025 0.382733
\(513\) 0 0
\(514\) −17.0718 −0.753005
\(515\) 0 0
\(516\) 0 0
\(517\) 30.9282 1.36022
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13.0718 −0.572686 −0.286343 0.958127i \(-0.592440\pi\)
−0.286343 + 0.958127i \(0.592440\pi\)
\(522\) 0 0
\(523\) −6.14359 −0.268641 −0.134320 0.990938i \(-0.542885\pi\)
−0.134320 + 0.990938i \(0.542885\pi\)
\(524\) 8.92820 0.390030
\(525\) 0 0
\(526\) 12.9282 0.563696
\(527\) −43.7128 −1.90416
\(528\) 0 0
\(529\) 32.7128 1.42230
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 10.1436 0.439368
\(534\) 0 0
\(535\) 0 0
\(536\) −24.9282 −1.07673
\(537\) 0 0
\(538\) −18.9282 −0.816053
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 44.7846 1.92366
\(543\) 0 0
\(544\) −20.7846 −0.891133
\(545\) 0 0
\(546\) 0 0
\(547\) 0.535898 0.0229134 0.0114567 0.999934i \(-0.496353\pi\)
0.0114567 + 0.999934i \(0.496353\pi\)
\(548\) −14.0000 −0.598050
\(549\) 0 0
\(550\) 30.0000 1.27920
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) 0 0
\(554\) −44.5359 −1.89215
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) −16.9282 −0.717271 −0.358635 0.933478i \(-0.616758\pi\)
−0.358635 + 0.933478i \(0.616758\pi\)
\(558\) 0 0
\(559\) 10.1436 0.429028
\(560\) 0 0
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) 9.85641 0.415398 0.207699 0.978193i \(-0.433403\pi\)
0.207699 + 0.978193i \(0.433403\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −13.8564 −0.582428
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 16.7846 0.703647 0.351824 0.936066i \(-0.385562\pi\)
0.351824 + 0.936066i \(0.385562\pi\)
\(570\) 0 0
\(571\) 9.85641 0.412478 0.206239 0.978502i \(-0.433878\pi\)
0.206239 + 0.978502i \(0.433878\pi\)
\(572\) −12.0000 −0.501745
\(573\) 0 0
\(574\) 0 0
\(575\) −37.3205 −1.55637
\(576\) 0 0
\(577\) 12.7846 0.532230 0.266115 0.963941i \(-0.414260\pi\)
0.266115 + 0.963941i \(0.414260\pi\)
\(578\) −1.73205 −0.0720438
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −13.8564 −0.573874
\(584\) −13.8564 −0.573382
\(585\) 0 0
\(586\) 15.2154 0.628542
\(587\) 24.9282 1.02890 0.514449 0.857521i \(-0.327997\pi\)
0.514449 + 0.857521i \(0.327997\pi\)
\(588\) 0 0
\(589\) 10.9282 0.450289
\(590\) 0 0
\(591\) 0 0
\(592\) 44.6410 1.83473
\(593\) 39.7128 1.63081 0.815405 0.578891i \(-0.196514\pi\)
0.815405 + 0.578891i \(0.196514\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −20.9282 −0.857253
\(597\) 0 0
\(598\) 44.7846 1.83138
\(599\) 13.6077 0.555995 0.277998 0.960582i \(-0.410329\pi\)
0.277998 + 0.960582i \(0.410329\pi\)
\(600\) 0 0
\(601\) −18.3923 −0.750238 −0.375119 0.926977i \(-0.622398\pi\)
−0.375119 + 0.926977i \(0.622398\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −10.3923 −0.422857
\(605\) 0 0
\(606\) 0 0
\(607\) 16.7846 0.681266 0.340633 0.940196i \(-0.389359\pi\)
0.340633 + 0.940196i \(0.389359\pi\)
\(608\) 5.19615 0.210732
\(609\) 0 0
\(610\) 0 0
\(611\) −30.9282 −1.25122
\(612\) 0 0
\(613\) 19.8564 0.801993 0.400996 0.916080i \(-0.368664\pi\)
0.400996 + 0.916080i \(0.368664\pi\)
\(614\) 44.7846 1.80736
\(615\) 0 0
\(616\) 0 0
\(617\) 4.14359 0.166815 0.0834074 0.996516i \(-0.473420\pi\)
0.0834074 + 0.996516i \(0.473420\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −19.1769 −0.768924
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 39.7128 1.58724
\(627\) 0 0
\(628\) −16.0000 −0.638470
\(629\) −35.7128 −1.42396
\(630\) 0 0
\(631\) 28.7846 1.14590 0.572949 0.819591i \(-0.305799\pi\)
0.572949 + 0.819591i \(0.305799\pi\)
\(632\) 6.00000 0.238667
\(633\) 0 0
\(634\) −48.4974 −1.92608
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 0 0
\(641\) 13.0718 0.516305 0.258152 0.966104i \(-0.416886\pi\)
0.258152 + 0.966104i \(0.416886\pi\)
\(642\) 0 0
\(643\) −45.5692 −1.79707 −0.898537 0.438897i \(-0.855369\pi\)
−0.898537 + 0.438897i \(0.855369\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.92820 −0.272587
\(647\) 1.21539 0.0477819 0.0238910 0.999715i \(-0.492395\pi\)
0.0238910 + 0.999715i \(0.492395\pi\)
\(648\) 0 0
\(649\) 27.7128 1.08782
\(650\) −30.0000 −1.17670
\(651\) 0 0
\(652\) −2.92820 −0.114677
\(653\) 36.6410 1.43387 0.716937 0.697138i \(-0.245544\pi\)
0.716937 + 0.697138i \(0.245544\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −14.6410 −0.571636
\(657\) 0 0
\(658\) 0 0
\(659\) 3.46410 0.134942 0.0674711 0.997721i \(-0.478507\pi\)
0.0674711 + 0.997721i \(0.478507\pi\)
\(660\) 0 0
\(661\) −39.1769 −1.52381 −0.761903 0.647692i \(-0.775735\pi\)
−0.761903 + 0.647692i \(0.775735\pi\)
\(662\) 21.2154 0.824560
\(663\) 0 0
\(664\) −8.53590 −0.331257
\(665\) 0 0
\(666\) 0 0
\(667\) 29.8564 1.15604
\(668\) −13.8564 −0.536120
\(669\) 0 0
\(670\) 0 0
\(671\) 51.7128 1.99635
\(672\) 0 0
\(673\) 39.8564 1.53635 0.768176 0.640239i \(-0.221165\pi\)
0.768176 + 0.640239i \(0.221165\pi\)
\(674\) −10.3923 −0.400297
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 65.5692 2.51078
\(683\) 40.2487 1.54007 0.770037 0.637999i \(-0.220238\pi\)
0.770037 + 0.637999i \(0.220238\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) −14.6410 −0.558184
\(689\) 13.8564 0.527887
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) −9.85641 −0.374684
\(693\) 0 0
\(694\) 47.5692 1.80570
\(695\) 0 0
\(696\) 0 0
\(697\) 11.7128 0.443654
\(698\) −15.7128 −0.594739
\(699\) 0 0
\(700\) 0 0
\(701\) −4.92820 −0.186136 −0.0930678 0.995660i \(-0.529667\pi\)
−0.0930678 + 0.995660i \(0.529667\pi\)
\(702\) 0 0
\(703\) 8.92820 0.336734
\(704\) −3.46410 −0.130558
\(705\) 0 0
\(706\) −17.0718 −0.642506
\(707\) 0 0
\(708\) 0 0
\(709\) 39.8564 1.49684 0.748419 0.663226i \(-0.230813\pi\)
0.748419 + 0.663226i \(0.230813\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 20.7846 0.778936
\(713\) −81.5692 −3.05479
\(714\) 0 0
\(715\) 0 0
\(716\) 11.4641 0.428434
\(717\) 0 0
\(718\) 11.0718 0.413196
\(719\) 28.6410 1.06813 0.534065 0.845444i \(-0.320664\pi\)
0.534065 + 0.845444i \(0.320664\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 1.73205 0.0644603
\(723\) 0 0
\(724\) 25.3205 0.941029
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) 7.71281 0.286052 0.143026 0.989719i \(-0.454317\pi\)
0.143026 + 0.989719i \(0.454317\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.7128 0.433214
\(732\) 0 0
\(733\) 18.6410 0.688522 0.344261 0.938874i \(-0.388130\pi\)
0.344261 + 0.938874i \(0.388130\pi\)
\(734\) −6.92820 −0.255725
\(735\) 0 0
\(736\) −38.7846 −1.42962
\(737\) −49.8564 −1.83648
\(738\) 0 0
\(739\) 1.85641 0.0682890 0.0341445 0.999417i \(-0.489129\pi\)
0.0341445 + 0.999417i \(0.489129\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −24.2487 −0.889599 −0.444799 0.895630i \(-0.646725\pi\)
−0.444799 + 0.895630i \(0.646725\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −39.4641 −1.44488
\(747\) 0 0
\(748\) −13.8564 −0.506640
\(749\) 0 0
\(750\) 0 0
\(751\) 4.53590 0.165517 0.0827586 0.996570i \(-0.473627\pi\)
0.0827586 + 0.996570i \(0.473627\pi\)
\(752\) 44.6410 1.62789
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) −24.1436 −0.877514 −0.438757 0.898606i \(-0.644581\pi\)
−0.438757 + 0.898606i \(0.644581\pi\)
\(758\) 52.6410 1.91201
\(759\) 0 0
\(760\) 0 0
\(761\) 23.7128 0.859589 0.429794 0.902927i \(-0.358586\pi\)
0.429794 + 0.902927i \(0.358586\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0.535898 0.0193881
\(765\) 0 0
\(766\) 6.92820 0.250326
\(767\) −27.7128 −1.00065
\(768\) 0 0
\(769\) 34.6410 1.24919 0.624593 0.780950i \(-0.285265\pi\)
0.624593 + 0.780950i \(0.285265\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) −47.7128 −1.71611 −0.858055 0.513557i \(-0.828327\pi\)
−0.858055 + 0.513557i \(0.828327\pi\)
\(774\) 0 0
\(775\) 54.6410 1.96276
\(776\) 21.7128 0.779445
\(777\) 0 0
\(778\) 57.0333 2.04474
\(779\) −2.92820 −0.104914
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 51.7128 1.84925
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33.8564 1.20685 0.603425 0.797420i \(-0.293802\pi\)
0.603425 + 0.797420i \(0.293802\pi\)
\(788\) 4.92820 0.175560
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −51.7128 −1.83638
\(794\) −22.1436 −0.785847
\(795\) 0 0
\(796\) −5.85641 −0.207575
\(797\) 16.7846 0.594541 0.297271 0.954793i \(-0.403924\pi\)
0.297271 + 0.954793i \(0.403924\pi\)
\(798\) 0 0
\(799\) −35.7128 −1.26343
\(800\) 25.9808 0.918559
\(801\) 0 0
\(802\) 25.8564 0.913021
\(803\) −27.7128 −0.977964
\(804\) 0 0
\(805\) 0 0
\(806\) −65.5692 −2.30958
\(807\) 0 0
\(808\) 0 0
\(809\) −17.7128 −0.622749 −0.311375 0.950287i \(-0.600789\pi\)
−0.311375 + 0.950287i \(0.600789\pi\)
\(810\) 0 0
\(811\) −47.7128 −1.67542 −0.837712 0.546113i \(-0.816107\pi\)
−0.837712 + 0.546113i \(0.816107\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 53.5692 1.87760
\(815\) 0 0
\(816\) 0 0
\(817\) −2.92820 −0.102445
\(818\) −43.8564 −1.53340
\(819\) 0 0
\(820\) 0 0
\(821\) −38.7846 −1.35359 −0.676796 0.736171i \(-0.736632\pi\)
−0.676796 + 0.736171i \(0.736632\pi\)
\(822\) 0 0
\(823\) −45.8564 −1.59845 −0.799227 0.601029i \(-0.794757\pi\)
−0.799227 + 0.601029i \(0.794757\pi\)
\(824\) 18.9282 0.659395
\(825\) 0 0
\(826\) 0 0
\(827\) 18.3923 0.639563 0.319782 0.947491i \(-0.396390\pi\)
0.319782 + 0.947491i \(0.396390\pi\)
\(828\) 0 0
\(829\) 16.2487 0.564341 0.282171 0.959364i \(-0.408946\pi\)
0.282171 + 0.959364i \(0.408946\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 3.46410 0.120096
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 3.46410 0.119808
\(837\) 0 0
\(838\) 56.5359 1.95300
\(839\) −6.14359 −0.212100 −0.106050 0.994361i \(-0.533820\pi\)
−0.106050 + 0.994361i \(0.533820\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) −15.4641 −0.532928
\(843\) 0 0
\(844\) −0.535898 −0.0184464
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −20.0000 −0.686803
\(849\) 0 0
\(850\) −34.6410 −1.18818
\(851\) −66.6410 −2.28442
\(852\) 0 0
\(853\) −19.7128 −0.674954 −0.337477 0.941334i \(-0.609573\pi\)
−0.337477 + 0.941334i \(0.609573\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −31.8564 −1.08883
\(857\) 1.85641 0.0634136 0.0317068 0.999497i \(-0.489906\pi\)
0.0317068 + 0.999497i \(0.489906\pi\)
\(858\) 0 0
\(859\) −26.1436 −0.892008 −0.446004 0.895031i \(-0.647153\pi\)
−0.446004 + 0.895031i \(0.647153\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 45.7128 1.55698
\(863\) 26.3923 0.898405 0.449202 0.893430i \(-0.351708\pi\)
0.449202 + 0.893430i \(0.351708\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 16.1436 0.548582
\(867\) 0 0
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 49.8564 1.68932
\(872\) 15.4641 0.523681
\(873\) 0 0
\(874\) −12.9282 −0.437303
\(875\) 0 0
\(876\) 0 0
\(877\) −17.2154 −0.581322 −0.290661 0.956826i \(-0.593875\pi\)
−0.290661 + 0.956826i \(0.593875\pi\)
\(878\) 66.9282 2.25872
\(879\) 0 0
\(880\) 0 0
\(881\) −37.5692 −1.26574 −0.632870 0.774258i \(-0.718123\pi\)
−0.632870 + 0.774258i \(0.718123\pi\)
\(882\) 0 0
\(883\) −16.7846 −0.564847 −0.282424 0.959290i \(-0.591138\pi\)
−0.282424 + 0.959290i \(0.591138\pi\)
\(884\) 13.8564 0.466041
\(885\) 0 0
\(886\) 57.7128 1.93890
\(887\) −26.1436 −0.877816 −0.438908 0.898532i \(-0.644635\pi\)
−0.438908 + 0.898532i \(0.644635\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −13.0718 −0.437676
\(893\) 8.92820 0.298771
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −29.5692 −0.986738
\(899\) −43.7128 −1.45790
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) −17.5692 −0.584991
\(903\) 0 0
\(904\) −8.78461 −0.292172
\(905\) 0 0
\(906\) 0 0
\(907\) −45.3205 −1.50484 −0.752421 0.658682i \(-0.771114\pi\)
−0.752421 + 0.658682i \(0.771114\pi\)
\(908\) −25.8564 −0.858075
\(909\) 0 0
\(910\) 0 0
\(911\) 7.17691 0.237782 0.118891 0.992907i \(-0.462066\pi\)
0.118891 + 0.992907i \(0.462066\pi\)
\(912\) 0 0
\(913\) −17.0718 −0.564994
\(914\) 31.1769 1.03124
\(915\) 0 0
\(916\) −6.92820 −0.228914
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 55.4256 1.82535
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) 44.6410 1.46779
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) −20.7846 −0.682288
\(929\) −44.0000 −1.44359 −0.721797 0.692105i \(-0.756683\pi\)
−0.721797 + 0.692105i \(0.756683\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −7.85641 −0.257345
\(933\) 0 0
\(934\) 15.4641 0.506001
\(935\) 0 0
\(936\) 0 0
\(937\) −28.7846 −0.940352 −0.470176 0.882573i \(-0.655810\pi\)
−0.470176 + 0.882573i \(0.655810\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 15.7128 0.512223 0.256112 0.966647i \(-0.417559\pi\)
0.256112 + 0.966647i \(0.417559\pi\)
\(942\) 0 0
\(943\) 21.8564 0.711743
\(944\) 40.0000 1.30189
\(945\) 0 0
\(946\) −17.5692 −0.571225
\(947\) 6.67949 0.217054 0.108527 0.994093i \(-0.465387\pi\)
0.108527 + 0.994093i \(0.465387\pi\)
\(948\) 0 0
\(949\) 27.7128 0.899596
\(950\) 8.66025 0.280976
\(951\) 0 0
\(952\) 0 0
\(953\) 30.9282 1.00186 0.500931 0.865487i \(-0.332991\pi\)
0.500931 + 0.865487i \(0.332991\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 15.4641 0.500145
\(957\) 0 0
\(958\) −63.9615 −2.06650
\(959\) 0 0
\(960\) 0 0
\(961\) 88.4256 2.85244
\(962\) −53.5692 −1.72714
\(963\) 0 0
\(964\) −3.46410 −0.111571
\(965\) 0 0
\(966\) 0 0
\(967\) 28.7846 0.925651 0.462825 0.886450i \(-0.346836\pi\)
0.462825 + 0.886450i \(0.346836\pi\)
\(968\) −1.73205 −0.0556702
\(969\) 0 0
\(970\) 0 0
\(971\) −49.8564 −1.59997 −0.799984 0.600021i \(-0.795159\pi\)
−0.799984 + 0.600021i \(0.795159\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4.14359 0.132769
\(975\) 0 0
\(976\) 74.6410 2.38920
\(977\) −10.6410 −0.340436 −0.170218 0.985406i \(-0.554447\pi\)
−0.170218 + 0.985406i \(0.554447\pi\)
\(978\) 0 0
\(979\) 41.5692 1.32856
\(980\) 0 0
\(981\) 0 0
\(982\) 2.28719 0.0729871
\(983\) 51.7128 1.64938 0.824691 0.565583i \(-0.191349\pi\)
0.824691 + 0.565583i \(0.191349\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 27.7128 0.882556
\(987\) 0 0
\(988\) −3.46410 −0.110208
\(989\) 21.8564 0.694993
\(990\) 0 0
\(991\) 37.0333 1.17640 0.588201 0.808715i \(-0.299836\pi\)
0.588201 + 0.808715i \(0.299836\pi\)
\(992\) 56.7846 1.80291
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −29.8564 −0.945562 −0.472781 0.881180i \(-0.656750\pi\)
−0.472781 + 0.881180i \(0.656750\pi\)
\(998\) −5.07180 −0.160545
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bd.1.2 2
3.2 odd 2 2793.2.a.r.1.1 yes 2
7.6 odd 2 8379.2.a.bc.1.2 2
21.20 even 2 2793.2.a.q.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.2.a.q.1.1 2 21.20 even 2
2793.2.a.r.1.1 yes 2 3.2 odd 2
8379.2.a.bc.1.2 2 7.6 odd 2
8379.2.a.bd.1.2 2 1.1 even 1 trivial