Properties

Label 8379.2.a.bd.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,0,0,0,0,0,0,0,0,0,0,0,-10,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2793)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +1.00000 q^{4} +1.73205 q^{8} +3.46410 q^{11} -3.46410 q^{13} -5.00000 q^{16} +4.00000 q^{17} -1.00000 q^{19} -6.00000 q^{22} +0.535898 q^{23} -5.00000 q^{25} +6.00000 q^{26} +4.00000 q^{29} +2.92820 q^{31} +5.19615 q^{32} -6.92820 q^{34} +4.92820 q^{37} +1.73205 q^{38} -10.9282 q^{41} -10.9282 q^{43} +3.46410 q^{44} -0.928203 q^{46} +4.92820 q^{47} +8.66025 q^{50} -3.46410 q^{52} +4.00000 q^{53} -6.92820 q^{58} -8.00000 q^{59} -1.07180 q^{61} -5.07180 q^{62} +1.00000 q^{64} -6.39230 q^{67} +4.00000 q^{68} +3.46410 q^{71} +8.00000 q^{73} -8.53590 q^{74} -1.00000 q^{76} +3.46410 q^{79} +18.9282 q^{82} -8.92820 q^{83} +18.9282 q^{86} +6.00000 q^{88} -12.0000 q^{89} +0.535898 q^{92} -8.53590 q^{94} -19.4641 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 10 q^{16} + 8 q^{17} - 2 q^{19} - 12 q^{22} + 8 q^{23} - 10 q^{25} + 12 q^{26} + 8 q^{29} - 8 q^{31} - 4 q^{37} - 8 q^{41} - 8 q^{43} + 12 q^{46} - 4 q^{47} + 8 q^{53} - 16 q^{59} - 16 q^{61}+ \cdots - 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) 0 0
\(11\) 3.46410 1.04447 0.522233 0.852803i \(-0.325099\pi\)
0.522233 + 0.852803i \(0.325099\pi\)
\(12\) 0 0
\(13\) −3.46410 −0.960769 −0.480384 0.877058i \(-0.659503\pi\)
−0.480384 + 0.877058i \(0.659503\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 4.00000 0.970143 0.485071 0.874475i \(-0.338794\pi\)
0.485071 + 0.874475i \(0.338794\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) −6.00000 −1.27920
\(23\) 0.535898 0.111743 0.0558713 0.998438i \(-0.482206\pi\)
0.0558713 + 0.998438i \(0.482206\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 6.00000 1.17670
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000 0.742781 0.371391 0.928477i \(-0.378881\pi\)
0.371391 + 0.928477i \(0.378881\pi\)
\(30\) 0 0
\(31\) 2.92820 0.525921 0.262960 0.964807i \(-0.415301\pi\)
0.262960 + 0.964807i \(0.415301\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) −6.92820 −1.18818
\(35\) 0 0
\(36\) 0 0
\(37\) 4.92820 0.810192 0.405096 0.914274i \(-0.367238\pi\)
0.405096 + 0.914274i \(0.367238\pi\)
\(38\) 1.73205 0.280976
\(39\) 0 0
\(40\) 0 0
\(41\) −10.9282 −1.70670 −0.853349 0.521340i \(-0.825432\pi\)
−0.853349 + 0.521340i \(0.825432\pi\)
\(42\) 0 0
\(43\) −10.9282 −1.66654 −0.833268 0.552870i \(-0.813533\pi\)
−0.833268 + 0.552870i \(0.813533\pi\)
\(44\) 3.46410 0.522233
\(45\) 0 0
\(46\) −0.928203 −0.136856
\(47\) 4.92820 0.718852 0.359426 0.933174i \(-0.382972\pi\)
0.359426 + 0.933174i \(0.382972\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8.66025 1.22474
\(51\) 0 0
\(52\) −3.46410 −0.480384
\(53\) 4.00000 0.549442 0.274721 0.961524i \(-0.411414\pi\)
0.274721 + 0.961524i \(0.411414\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −6.92820 −0.909718
\(59\) −8.00000 −1.04151 −0.520756 0.853706i \(-0.674350\pi\)
−0.520756 + 0.853706i \(0.674350\pi\)
\(60\) 0 0
\(61\) −1.07180 −0.137230 −0.0686148 0.997643i \(-0.521858\pi\)
−0.0686148 + 0.997643i \(0.521858\pi\)
\(62\) −5.07180 −0.644119
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) −6.39230 −0.780944 −0.390472 0.920615i \(-0.627688\pi\)
−0.390472 + 0.920615i \(0.627688\pi\)
\(68\) 4.00000 0.485071
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 8.00000 0.936329 0.468165 0.883641i \(-0.344915\pi\)
0.468165 + 0.883641i \(0.344915\pi\)
\(74\) −8.53590 −0.992278
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 3.46410 0.389742 0.194871 0.980829i \(-0.437571\pi\)
0.194871 + 0.980829i \(0.437571\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 18.9282 2.09027
\(83\) −8.92820 −0.979998 −0.489999 0.871723i \(-0.663003\pi\)
−0.489999 + 0.871723i \(0.663003\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 18.9282 2.04108
\(87\) 0 0
\(88\) 6.00000 0.639602
\(89\) −12.0000 −1.27200 −0.635999 0.771690i \(-0.719412\pi\)
−0.635999 + 0.771690i \(0.719412\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0.535898 0.0558713
\(93\) 0 0
\(94\) −8.53590 −0.880411
\(95\) 0 0
\(96\) 0 0
\(97\) −19.4641 −1.97628 −0.988140 0.153555i \(-0.950928\pi\)
−0.988140 + 0.153555i \(0.950928\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −5.00000 −0.500000
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 2.92820 0.288524 0.144262 0.989539i \(-0.453919\pi\)
0.144262 + 0.989539i \(0.453919\pi\)
\(104\) −6.00000 −0.588348
\(105\) 0 0
\(106\) −6.92820 −0.672927
\(107\) −2.39230 −0.231273 −0.115636 0.993292i \(-0.536891\pi\)
−0.115636 + 0.993292i \(0.536891\pi\)
\(108\) 0 0
\(109\) 4.92820 0.472036 0.236018 0.971749i \(-0.424158\pi\)
0.236018 + 0.971749i \(0.424158\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 18.9282 1.78062 0.890308 0.455359i \(-0.150489\pi\)
0.890308 + 0.455359i \(0.150489\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) 13.8564 1.27559
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 1.85641 0.168071
\(123\) 0 0
\(124\) 2.92820 0.262960
\(125\) 0 0
\(126\) 0 0
\(127\) −19.4641 −1.72716 −0.863580 0.504212i \(-0.831783\pi\)
−0.863580 + 0.504212i \(0.831783\pi\)
\(128\) −12.1244 −1.07165
\(129\) 0 0
\(130\) 0 0
\(131\) −4.92820 −0.430579 −0.215290 0.976550i \(-0.569070\pi\)
−0.215290 + 0.976550i \(0.569070\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 11.0718 0.956458
\(135\) 0 0
\(136\) 6.92820 0.594089
\(137\) −14.0000 −1.19610 −0.598050 0.801459i \(-0.704058\pi\)
−0.598050 + 0.801459i \(0.704058\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) −12.0000 −1.00349
\(144\) 0 0
\(145\) 0 0
\(146\) −13.8564 −1.14676
\(147\) 0 0
\(148\) 4.92820 0.405096
\(149\) −7.07180 −0.579344 −0.289672 0.957126i \(-0.593546\pi\)
−0.289672 + 0.957126i \(0.593546\pi\)
\(150\) 0 0
\(151\) 10.3923 0.845714 0.422857 0.906196i \(-0.361027\pi\)
0.422857 + 0.906196i \(0.361027\pi\)
\(152\) −1.73205 −0.140488
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −16.0000 −1.27694 −0.638470 0.769647i \(-0.720432\pi\)
−0.638470 + 0.769647i \(0.720432\pi\)
\(158\) −6.00000 −0.477334
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 10.9282 0.855963 0.427981 0.903788i \(-0.359225\pi\)
0.427981 + 0.903788i \(0.359225\pi\)
\(164\) −10.9282 −0.853349
\(165\) 0 0
\(166\) 15.4641 1.20025
\(167\) 13.8564 1.07224 0.536120 0.844141i \(-0.319889\pi\)
0.536120 + 0.844141i \(0.319889\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) −10.9282 −0.833268
\(173\) 17.8564 1.35760 0.678799 0.734324i \(-0.262501\pi\)
0.678799 + 0.734324i \(0.262501\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −17.3205 −1.30558
\(177\) 0 0
\(178\) 20.7846 1.55787
\(179\) 4.53590 0.339029 0.169514 0.985528i \(-0.445780\pi\)
0.169514 + 0.985528i \(0.445780\pi\)
\(180\) 0 0
\(181\) −9.32051 −0.692788 −0.346394 0.938089i \(-0.612594\pi\)
−0.346394 + 0.938089i \(0.612594\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0.928203 0.0684280
\(185\) 0 0
\(186\) 0 0
\(187\) 13.8564 1.01328
\(188\) 4.92820 0.359426
\(189\) 0 0
\(190\) 0 0
\(191\) 7.46410 0.540083 0.270042 0.962849i \(-0.412963\pi\)
0.270042 + 0.962849i \(0.412963\pi\)
\(192\) 0 0
\(193\) −10.0000 −0.719816 −0.359908 0.932988i \(-0.617192\pi\)
−0.359908 + 0.932988i \(0.617192\pi\)
\(194\) 33.7128 2.42044
\(195\) 0 0
\(196\) 0 0
\(197\) −8.92820 −0.636108 −0.318054 0.948073i \(-0.603029\pi\)
−0.318054 + 0.948073i \(0.603029\pi\)
\(198\) 0 0
\(199\) 21.8564 1.54936 0.774680 0.632354i \(-0.217911\pi\)
0.774680 + 0.632354i \(0.217911\pi\)
\(200\) −8.66025 −0.612372
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −5.07180 −0.353369
\(207\) 0 0
\(208\) 17.3205 1.20096
\(209\) −3.46410 −0.239617
\(210\) 0 0
\(211\) −7.46410 −0.513850 −0.256925 0.966431i \(-0.582709\pi\)
−0.256925 + 0.966431i \(0.582709\pi\)
\(212\) 4.00000 0.274721
\(213\) 0 0
\(214\) 4.14359 0.283250
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −8.53590 −0.578124
\(219\) 0 0
\(220\) 0 0
\(221\) −13.8564 −0.932083
\(222\) 0 0
\(223\) −26.9282 −1.80325 −0.901623 0.432523i \(-0.857623\pi\)
−0.901623 + 0.432523i \(0.857623\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −32.7846 −2.18080
\(227\) 1.85641 0.123214 0.0616070 0.998100i \(-0.480377\pi\)
0.0616070 + 0.998100i \(0.480377\pi\)
\(228\) 0 0
\(229\) 6.92820 0.457829 0.228914 0.973447i \(-0.426482\pi\)
0.228914 + 0.973447i \(0.426482\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 6.92820 0.454859
\(233\) 19.8564 1.30084 0.650418 0.759576i \(-0.274594\pi\)
0.650418 + 0.759576i \(0.274594\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −8.00000 −0.520756
\(237\) 0 0
\(238\) 0 0
\(239\) 8.53590 0.552141 0.276071 0.961137i \(-0.410968\pi\)
0.276071 + 0.961137i \(0.410968\pi\)
\(240\) 0 0
\(241\) 3.46410 0.223142 0.111571 0.993756i \(-0.464412\pi\)
0.111571 + 0.993756i \(0.464412\pi\)
\(242\) −1.73205 −0.111340
\(243\) 0 0
\(244\) −1.07180 −0.0686148
\(245\) 0 0
\(246\) 0 0
\(247\) 3.46410 0.220416
\(248\) 5.07180 0.322059
\(249\) 0 0
\(250\) 0 0
\(251\) 0.928203 0.0585877 0.0292938 0.999571i \(-0.490674\pi\)
0.0292938 + 0.999571i \(0.490674\pi\)
\(252\) 0 0
\(253\) 1.85641 0.116711
\(254\) 33.7128 2.11533
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 17.8564 1.11385 0.556926 0.830562i \(-0.311981\pi\)
0.556926 + 0.830562i \(0.311981\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 8.53590 0.527350
\(263\) 0.535898 0.0330449 0.0165225 0.999863i \(-0.494740\pi\)
0.0165225 + 0.999863i \(0.494740\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −6.39230 −0.390472
\(269\) 2.92820 0.178536 0.0892679 0.996008i \(-0.471547\pi\)
0.0892679 + 0.996008i \(0.471547\pi\)
\(270\) 0 0
\(271\) −1.85641 −0.112769 −0.0563843 0.998409i \(-0.517957\pi\)
−0.0563843 + 0.998409i \(0.517957\pi\)
\(272\) −20.0000 −1.21268
\(273\) 0 0
\(274\) 24.2487 1.46492
\(275\) −17.3205 −1.04447
\(276\) 0 0
\(277\) 29.7128 1.78527 0.892635 0.450780i \(-0.148854\pi\)
0.892635 + 0.450780i \(0.148854\pi\)
\(278\) −6.92820 −0.415526
\(279\) 0 0
\(280\) 0 0
\(281\) 6.92820 0.413302 0.206651 0.978415i \(-0.433744\pi\)
0.206651 + 0.978415i \(0.433744\pi\)
\(282\) 0 0
\(283\) −8.00000 −0.475551 −0.237775 0.971320i \(-0.576418\pi\)
−0.237775 + 0.971320i \(0.576418\pi\)
\(284\) 3.46410 0.205557
\(285\) 0 0
\(286\) 20.7846 1.22902
\(287\) 0 0
\(288\) 0 0
\(289\) −1.00000 −0.0588235
\(290\) 0 0
\(291\) 0 0
\(292\) 8.00000 0.468165
\(293\) −32.7846 −1.91530 −0.957649 0.287939i \(-0.907030\pi\)
−0.957649 + 0.287939i \(0.907030\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 8.53590 0.496139
\(297\) 0 0
\(298\) 12.2487 0.709549
\(299\) −1.85641 −0.107359
\(300\) 0 0
\(301\) 0 0
\(302\) −18.0000 −1.03578
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 0 0
\(306\) 0 0
\(307\) −1.85641 −0.105951 −0.0529754 0.998596i \(-0.516870\pi\)
−0.0529754 + 0.998596i \(0.516870\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.9282 −1.41355 −0.706774 0.707439i \(-0.749850\pi\)
−0.706774 + 0.707439i \(0.749850\pi\)
\(312\) 0 0
\(313\) 9.07180 0.512768 0.256384 0.966575i \(-0.417469\pi\)
0.256384 + 0.966575i \(0.417469\pi\)
\(314\) 27.7128 1.56392
\(315\) 0 0
\(316\) 3.46410 0.194871
\(317\) −28.0000 −1.57264 −0.786318 0.617822i \(-0.788015\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 13.8564 0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −4.00000 −0.222566
\(324\) 0 0
\(325\) 17.3205 0.960769
\(326\) −18.9282 −1.04834
\(327\) 0 0
\(328\) −18.9282 −1.04514
\(329\) 0 0
\(330\) 0 0
\(331\) −36.2487 −1.99241 −0.996205 0.0870415i \(-0.972259\pi\)
−0.996205 + 0.0870415i \(0.972259\pi\)
\(332\) −8.92820 −0.489999
\(333\) 0 0
\(334\) −24.0000 −1.31322
\(335\) 0 0
\(336\) 0 0
\(337\) −6.00000 −0.326841 −0.163420 0.986557i \(-0.552253\pi\)
−0.163420 + 0.986557i \(0.552253\pi\)
\(338\) 1.73205 0.0942111
\(339\) 0 0
\(340\) 0 0
\(341\) 10.1436 0.549306
\(342\) 0 0
\(343\) 0 0
\(344\) −18.9282 −1.02054
\(345\) 0 0
\(346\) −30.9282 −1.66271
\(347\) 20.5359 1.10242 0.551212 0.834365i \(-0.314165\pi\)
0.551212 + 0.834365i \(0.314165\pi\)
\(348\) 0 0
\(349\) −22.9282 −1.22732 −0.613659 0.789571i \(-0.710303\pi\)
−0.613659 + 0.789571i \(0.710303\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 18.0000 0.959403
\(353\) 17.8564 0.950401 0.475200 0.879878i \(-0.342376\pi\)
0.475200 + 0.879878i \(0.342376\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −12.0000 −0.635999
\(357\) 0 0
\(358\) −7.85641 −0.415224
\(359\) −14.3923 −0.759597 −0.379798 0.925069i \(-0.624007\pi\)
−0.379798 + 0.925069i \(0.624007\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 16.1436 0.848488
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.00000 −0.208798 −0.104399 0.994535i \(-0.533292\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) −2.67949 −0.139678
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 18.7846 0.972630 0.486315 0.873784i \(-0.338341\pi\)
0.486315 + 0.873784i \(0.338341\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) 8.53590 0.440205
\(377\) −13.8564 −0.713641
\(378\) 0 0
\(379\) 9.60770 0.493514 0.246757 0.969077i \(-0.420635\pi\)
0.246757 + 0.969077i \(0.420635\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −12.9282 −0.661464
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 17.3205 0.881591
\(387\) 0 0
\(388\) −19.4641 −0.988140
\(389\) 19.0718 0.966978 0.483489 0.875350i \(-0.339369\pi\)
0.483489 + 0.875350i \(0.339369\pi\)
\(390\) 0 0
\(391\) 2.14359 0.108406
\(392\) 0 0
\(393\) 0 0
\(394\) 15.4641 0.779070
\(395\) 0 0
\(396\) 0 0
\(397\) 28.7846 1.44466 0.722329 0.691549i \(-0.243072\pi\)
0.722329 + 0.691549i \(0.243072\pi\)
\(398\) −37.8564 −1.89757
\(399\) 0 0
\(400\) 25.0000 1.25000
\(401\) 1.07180 0.0535230 0.0267615 0.999642i \(-0.491481\pi\)
0.0267615 + 0.999642i \(0.491481\pi\)
\(402\) 0 0
\(403\) −10.1436 −0.505288
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.0718 0.846218
\(408\) 0 0
\(409\) 9.32051 0.460869 0.230435 0.973088i \(-0.425985\pi\)
0.230435 + 0.973088i \(0.425985\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 2.92820 0.144262
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −18.0000 −0.882523
\(417\) 0 0
\(418\) 6.00000 0.293470
\(419\) −36.6410 −1.79003 −0.895015 0.446035i \(-0.852836\pi\)
−0.895015 + 0.446035i \(0.852836\pi\)
\(420\) 0 0
\(421\) 4.92820 0.240186 0.120093 0.992763i \(-0.461681\pi\)
0.120093 + 0.992763i \(0.461681\pi\)
\(422\) 12.9282 0.629335
\(423\) 0 0
\(424\) 6.92820 0.336463
\(425\) −20.0000 −0.970143
\(426\) 0 0
\(427\) 0 0
\(428\) −2.39230 −0.115636
\(429\) 0 0
\(430\) 0 0
\(431\) 5.60770 0.270113 0.135057 0.990838i \(-0.456878\pi\)
0.135057 + 0.990838i \(0.456878\pi\)
\(432\) 0 0
\(433\) −25.3205 −1.21683 −0.608413 0.793621i \(-0.708194\pi\)
−0.608413 + 0.793621i \(0.708194\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 4.92820 0.236018
\(437\) −0.535898 −0.0256355
\(438\) 0 0
\(439\) −30.6410 −1.46242 −0.731208 0.682155i \(-0.761043\pi\)
−0.731208 + 0.682155i \(0.761043\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) −1.32051 −0.0627392 −0.0313696 0.999508i \(-0.509987\pi\)
−0.0313696 + 0.999508i \(0.509987\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 46.6410 2.20852
\(447\) 0 0
\(448\) 0 0
\(449\) −30.9282 −1.45959 −0.729796 0.683665i \(-0.760385\pi\)
−0.729796 + 0.683665i \(0.760385\pi\)
\(450\) 0 0
\(451\) −37.8564 −1.78259
\(452\) 18.9282 0.890308
\(453\) 0 0
\(454\) −3.21539 −0.150906
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) −12.0000 −0.560723
\(459\) 0 0
\(460\) 0 0
\(461\) 32.0000 1.49039 0.745194 0.666847i \(-0.232357\pi\)
0.745194 + 0.666847i \(0.232357\pi\)
\(462\) 0 0
\(463\) 13.8564 0.643962 0.321981 0.946746i \(-0.395651\pi\)
0.321981 + 0.946746i \(0.395651\pi\)
\(464\) −20.0000 −0.928477
\(465\) 0 0
\(466\) −34.3923 −1.59319
\(467\) −4.92820 −0.228050 −0.114025 0.993478i \(-0.536374\pi\)
−0.114025 + 0.993478i \(0.536374\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −13.8564 −0.637793
\(473\) −37.8564 −1.74064
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) −14.7846 −0.676232
\(479\) −23.0718 −1.05418 −0.527089 0.849810i \(-0.676716\pi\)
−0.527089 + 0.849810i \(0.676716\pi\)
\(480\) 0 0
\(481\) −17.0718 −0.778407
\(482\) −6.00000 −0.273293
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 0 0
\(486\) 0 0
\(487\) −18.3923 −0.833435 −0.416717 0.909036i \(-0.636820\pi\)
−0.416717 + 0.909036i \(0.636820\pi\)
\(488\) −1.85641 −0.0840356
\(489\) 0 0
\(490\) 0 0
\(491\) −33.3205 −1.50373 −0.751867 0.659315i \(-0.770846\pi\)
−0.751867 + 0.659315i \(0.770846\pi\)
\(492\) 0 0
\(493\) 16.0000 0.720604
\(494\) −6.00000 −0.269953
\(495\) 0 0
\(496\) −14.6410 −0.657401
\(497\) 0 0
\(498\) 0 0
\(499\) 10.9282 0.489214 0.244607 0.969622i \(-0.421341\pi\)
0.244607 + 0.969622i \(0.421341\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −1.60770 −0.0717549
\(503\) 32.6410 1.45539 0.727695 0.685900i \(-0.240591\pi\)
0.727695 + 0.685900i \(0.240591\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −3.21539 −0.142942
\(507\) 0 0
\(508\) −19.4641 −0.863580
\(509\) 1.85641 0.0822838 0.0411419 0.999153i \(-0.486900\pi\)
0.0411419 + 0.999153i \(0.486900\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −30.9282 −1.36418
\(515\) 0 0
\(516\) 0 0
\(517\) 17.0718 0.750817
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.9282 −1.17975 −0.589873 0.807496i \(-0.700822\pi\)
−0.589873 + 0.807496i \(0.700822\pi\)
\(522\) 0 0
\(523\) −33.8564 −1.48044 −0.740219 0.672366i \(-0.765278\pi\)
−0.740219 + 0.672366i \(0.765278\pi\)
\(524\) −4.92820 −0.215290
\(525\) 0 0
\(526\) −0.928203 −0.0404716
\(527\) 11.7128 0.510218
\(528\) 0 0
\(529\) −22.7128 −0.987514
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 37.8564 1.63974
\(534\) 0 0
\(535\) 0 0
\(536\) −11.0718 −0.478229
\(537\) 0 0
\(538\) −5.07180 −0.218661
\(539\) 0 0
\(540\) 0 0
\(541\) 10.0000 0.429934 0.214967 0.976621i \(-0.431036\pi\)
0.214967 + 0.976621i \(0.431036\pi\)
\(542\) 3.21539 0.138113
\(543\) 0 0
\(544\) 20.7846 0.891133
\(545\) 0 0
\(546\) 0 0
\(547\) 7.46410 0.319142 0.159571 0.987186i \(-0.448989\pi\)
0.159571 + 0.987186i \(0.448989\pi\)
\(548\) −14.0000 −0.598050
\(549\) 0 0
\(550\) 30.0000 1.27920
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) 0 0
\(554\) −51.4641 −2.18650
\(555\) 0 0
\(556\) 4.00000 0.169638
\(557\) −3.07180 −0.130156 −0.0650781 0.997880i \(-0.520730\pi\)
−0.0650781 + 0.997880i \(0.520730\pi\)
\(558\) 0 0
\(559\) 37.8564 1.60116
\(560\) 0 0
\(561\) 0 0
\(562\) −12.0000 −0.506189
\(563\) −17.8564 −0.752558 −0.376279 0.926506i \(-0.622797\pi\)
−0.376279 + 0.926506i \(0.622797\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 13.8564 0.582428
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) −24.7846 −1.03902 −0.519512 0.854463i \(-0.673886\pi\)
−0.519512 + 0.854463i \(0.673886\pi\)
\(570\) 0 0
\(571\) −17.8564 −0.747267 −0.373634 0.927576i \(-0.621888\pi\)
−0.373634 + 0.927576i \(0.621888\pi\)
\(572\) −12.0000 −0.501745
\(573\) 0 0
\(574\) 0 0
\(575\) −2.67949 −0.111743
\(576\) 0 0
\(577\) −28.7846 −1.19832 −0.599159 0.800630i \(-0.704498\pi\)
−0.599159 + 0.800630i \(0.704498\pi\)
\(578\) 1.73205 0.0720438
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 13.8564 0.573874
\(584\) 13.8564 0.573382
\(585\) 0 0
\(586\) 56.7846 2.34575
\(587\) 11.0718 0.456982 0.228491 0.973546i \(-0.426621\pi\)
0.228491 + 0.973546i \(0.426621\pi\)
\(588\) 0 0
\(589\) −2.92820 −0.120655
\(590\) 0 0
\(591\) 0 0
\(592\) −24.6410 −1.01274
\(593\) −15.7128 −0.645248 −0.322624 0.946527i \(-0.604565\pi\)
−0.322624 + 0.946527i \(0.604565\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −7.07180 −0.289672
\(597\) 0 0
\(598\) 3.21539 0.131487
\(599\) 34.3923 1.40523 0.702616 0.711569i \(-0.252015\pi\)
0.702616 + 0.711569i \(0.252015\pi\)
\(600\) 0 0
\(601\) 2.39230 0.0975842 0.0487921 0.998809i \(-0.484463\pi\)
0.0487921 + 0.998809i \(0.484463\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 10.3923 0.422857
\(605\) 0 0
\(606\) 0 0
\(607\) −24.7846 −1.00598 −0.502988 0.864293i \(-0.667766\pi\)
−0.502988 + 0.864293i \(0.667766\pi\)
\(608\) −5.19615 −0.210732
\(609\) 0 0
\(610\) 0 0
\(611\) −17.0718 −0.690651
\(612\) 0 0
\(613\) −7.85641 −0.317317 −0.158659 0.987333i \(-0.550717\pi\)
−0.158659 + 0.987333i \(0.550717\pi\)
\(614\) 3.21539 0.129763
\(615\) 0 0
\(616\) 0 0
\(617\) 31.8564 1.28249 0.641245 0.767336i \(-0.278418\pi\)
0.641245 + 0.767336i \(0.278418\pi\)
\(618\) 0 0
\(619\) −32.0000 −1.28619 −0.643094 0.765787i \(-0.722350\pi\)
−0.643094 + 0.765787i \(0.722350\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 43.1769 1.73124
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) −15.7128 −0.628010
\(627\) 0 0
\(628\) −16.0000 −0.638470
\(629\) 19.7128 0.786001
\(630\) 0 0
\(631\) −12.7846 −0.508947 −0.254474 0.967080i \(-0.581902\pi\)
−0.254474 + 0.967080i \(0.581902\pi\)
\(632\) 6.00000 0.238667
\(633\) 0 0
\(634\) 48.4974 1.92608
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) −24.0000 −0.950169
\(639\) 0 0
\(640\) 0 0
\(641\) 26.9282 1.06360 0.531800 0.846870i \(-0.321516\pi\)
0.531800 + 0.846870i \(0.321516\pi\)
\(642\) 0 0
\(643\) 37.5692 1.48159 0.740793 0.671734i \(-0.234450\pi\)
0.740793 + 0.671734i \(0.234450\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 6.92820 0.272587
\(647\) 42.7846 1.68204 0.841018 0.541007i \(-0.181957\pi\)
0.841018 + 0.541007i \(0.181957\pi\)
\(648\) 0 0
\(649\) −27.7128 −1.08782
\(650\) −30.0000 −1.17670
\(651\) 0 0
\(652\) 10.9282 0.427981
\(653\) −32.6410 −1.27734 −0.638671 0.769480i \(-0.720515\pi\)
−0.638671 + 0.769480i \(0.720515\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 54.6410 2.13337
\(657\) 0 0
\(658\) 0 0
\(659\) −3.46410 −0.134942 −0.0674711 0.997721i \(-0.521493\pi\)
−0.0674711 + 0.997721i \(0.521493\pi\)
\(660\) 0 0
\(661\) 23.1769 0.901477 0.450739 0.892656i \(-0.351161\pi\)
0.450739 + 0.892656i \(0.351161\pi\)
\(662\) 62.7846 2.44019
\(663\) 0 0
\(664\) −15.4641 −0.600124
\(665\) 0 0
\(666\) 0 0
\(667\) 2.14359 0.0830003
\(668\) 13.8564 0.536120
\(669\) 0 0
\(670\) 0 0
\(671\) −3.71281 −0.143332
\(672\) 0 0
\(673\) 12.1436 0.468101 0.234051 0.972224i \(-0.424802\pi\)
0.234051 + 0.972224i \(0.424802\pi\)
\(674\) 10.3923 0.400297
\(675\) 0 0
\(676\) −1.00000 −0.0384615
\(677\) −36.0000 −1.38359 −0.691796 0.722093i \(-0.743180\pi\)
−0.691796 + 0.722093i \(0.743180\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) −17.5692 −0.672760
\(683\) −8.24871 −0.315628 −0.157814 0.987469i \(-0.550445\pi\)
−0.157814 + 0.987469i \(0.550445\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 54.6410 2.08317
\(689\) −13.8564 −0.527887
\(690\) 0 0
\(691\) 8.00000 0.304334 0.152167 0.988355i \(-0.451375\pi\)
0.152167 + 0.988355i \(0.451375\pi\)
\(692\) 17.8564 0.678799
\(693\) 0 0
\(694\) −35.5692 −1.35019
\(695\) 0 0
\(696\) 0 0
\(697\) −43.7128 −1.65574
\(698\) 39.7128 1.50315
\(699\) 0 0
\(700\) 0 0
\(701\) 8.92820 0.337214 0.168607 0.985683i \(-0.446073\pi\)
0.168607 + 0.985683i \(0.446073\pi\)
\(702\) 0 0
\(703\) −4.92820 −0.185871
\(704\) 3.46410 0.130558
\(705\) 0 0
\(706\) −30.9282 −1.16400
\(707\) 0 0
\(708\) 0 0
\(709\) 12.1436 0.456062 0.228031 0.973654i \(-0.426771\pi\)
0.228031 + 0.973654i \(0.426771\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −20.7846 −0.778936
\(713\) 1.56922 0.0587677
\(714\) 0 0
\(715\) 0 0
\(716\) 4.53590 0.169514
\(717\) 0 0
\(718\) 24.9282 0.930312
\(719\) −40.6410 −1.51565 −0.757827 0.652455i \(-0.773739\pi\)
−0.757827 + 0.652455i \(0.773739\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.73205 −0.0644603
\(723\) 0 0
\(724\) −9.32051 −0.346394
\(725\) −20.0000 −0.742781
\(726\) 0 0
\(727\) −47.7128 −1.76957 −0.884785 0.465999i \(-0.845695\pi\)
−0.884785 + 0.465999i \(0.845695\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −43.7128 −1.61678
\(732\) 0 0
\(733\) −50.6410 −1.87047 −0.935234 0.354029i \(-0.884811\pi\)
−0.935234 + 0.354029i \(0.884811\pi\)
\(734\) 6.92820 0.255725
\(735\) 0 0
\(736\) 2.78461 0.102642
\(737\) −22.1436 −0.815670
\(738\) 0 0
\(739\) −25.8564 −0.951143 −0.475572 0.879677i \(-0.657759\pi\)
−0.475572 + 0.879677i \(0.657759\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.2487 0.889599 0.444799 0.895630i \(-0.353275\pi\)
0.444799 + 0.895630i \(0.353275\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −32.5359 −1.19122
\(747\) 0 0
\(748\) 13.8564 0.506640
\(749\) 0 0
\(750\) 0 0
\(751\) 11.4641 0.418331 0.209166 0.977880i \(-0.432925\pi\)
0.209166 + 0.977880i \(0.432925\pi\)
\(752\) −24.6410 −0.898565
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) 0 0
\(756\) 0 0
\(757\) −51.8564 −1.88475 −0.942377 0.334554i \(-0.891414\pi\)
−0.942377 + 0.334554i \(0.891414\pi\)
\(758\) −16.6410 −0.604429
\(759\) 0 0
\(760\) 0 0
\(761\) −31.7128 −1.14959 −0.574794 0.818298i \(-0.694918\pi\)
−0.574794 + 0.818298i \(0.694918\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7.46410 0.270042
\(765\) 0 0
\(766\) −6.92820 −0.250326
\(767\) 27.7128 1.00065
\(768\) 0 0
\(769\) −34.6410 −1.24919 −0.624593 0.780950i \(-0.714735\pi\)
−0.624593 + 0.780950i \(0.714735\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −10.0000 −0.359908
\(773\) 7.71281 0.277411 0.138705 0.990334i \(-0.455706\pi\)
0.138705 + 0.990334i \(0.455706\pi\)
\(774\) 0 0
\(775\) −14.6410 −0.525921
\(776\) −33.7128 −1.21022
\(777\) 0 0
\(778\) −33.0333 −1.18430
\(779\) 10.9282 0.391544
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) −3.71281 −0.132770
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 6.14359 0.218995 0.109498 0.993987i \(-0.465076\pi\)
0.109498 + 0.993987i \(0.465076\pi\)
\(788\) −8.92820 −0.318054
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.71281 0.131846
\(794\) −49.8564 −1.76934
\(795\) 0 0
\(796\) 21.8564 0.774680
\(797\) −24.7846 −0.877916 −0.438958 0.898508i \(-0.644652\pi\)
−0.438958 + 0.898508i \(0.644652\pi\)
\(798\) 0 0
\(799\) 19.7128 0.697389
\(800\) −25.9808 −0.918559
\(801\) 0 0
\(802\) −1.85641 −0.0655520
\(803\) 27.7128 0.977964
\(804\) 0 0
\(805\) 0 0
\(806\) 17.5692 0.618849
\(807\) 0 0
\(808\) 0 0
\(809\) 37.7128 1.32591 0.662956 0.748658i \(-0.269302\pi\)
0.662956 + 0.748658i \(0.269302\pi\)
\(810\) 0 0
\(811\) 7.71281 0.270833 0.135417 0.990789i \(-0.456763\pi\)
0.135417 + 0.990789i \(0.456763\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −29.5692 −1.03640
\(815\) 0 0
\(816\) 0 0
\(817\) 10.9282 0.382329
\(818\) −16.1436 −0.564448
\(819\) 0 0
\(820\) 0 0
\(821\) 2.78461 0.0971835 0.0485918 0.998819i \(-0.484527\pi\)
0.0485918 + 0.998819i \(0.484527\pi\)
\(822\) 0 0
\(823\) −18.1436 −0.632446 −0.316223 0.948685i \(-0.602415\pi\)
−0.316223 + 0.948685i \(0.602415\pi\)
\(824\) 5.07180 0.176684
\(825\) 0 0
\(826\) 0 0
\(827\) −2.39230 −0.0831886 −0.0415943 0.999135i \(-0.513244\pi\)
−0.0415943 + 0.999135i \(0.513244\pi\)
\(828\) 0 0
\(829\) −32.2487 −1.12004 −0.560022 0.828478i \(-0.689207\pi\)
−0.560022 + 0.828478i \(0.689207\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −3.46410 −0.120096
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) −3.46410 −0.119808
\(837\) 0 0
\(838\) 63.4641 2.19233
\(839\) −33.8564 −1.16885 −0.584426 0.811447i \(-0.698680\pi\)
−0.584426 + 0.811447i \(0.698680\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) −8.53590 −0.294166
\(843\) 0 0
\(844\) −7.46410 −0.256925
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) −20.0000 −0.686803
\(849\) 0 0
\(850\) 34.6410 1.18818
\(851\) 2.64102 0.0905329
\(852\) 0 0
\(853\) 35.7128 1.22278 0.611392 0.791328i \(-0.290610\pi\)
0.611392 + 0.791328i \(0.290610\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −4.14359 −0.141625
\(857\) −25.8564 −0.883238 −0.441619 0.897203i \(-0.645596\pi\)
−0.441619 + 0.897203i \(0.645596\pi\)
\(858\) 0 0
\(859\) −53.8564 −1.83756 −0.918778 0.394774i \(-0.870823\pi\)
−0.918778 + 0.394774i \(0.870823\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −9.71281 −0.330820
\(863\) 5.60770 0.190888 0.0954441 0.995435i \(-0.469573\pi\)
0.0954441 + 0.995435i \(0.469573\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 43.8564 1.49030
\(867\) 0 0
\(868\) 0 0
\(869\) 12.0000 0.407072
\(870\) 0 0
\(871\) 22.1436 0.750307
\(872\) 8.53590 0.289062
\(873\) 0 0
\(874\) 0.928203 0.0313969
\(875\) 0 0
\(876\) 0 0
\(877\) −58.7846 −1.98502 −0.992508 0.122183i \(-0.961011\pi\)
−0.992508 + 0.122183i \(0.961011\pi\)
\(878\) 53.0718 1.79109
\(879\) 0 0
\(880\) 0 0
\(881\) 45.5692 1.53527 0.767633 0.640890i \(-0.221434\pi\)
0.767633 + 0.640890i \(0.221434\pi\)
\(882\) 0 0
\(883\) 24.7846 0.834069 0.417034 0.908891i \(-0.363070\pi\)
0.417034 + 0.908891i \(0.363070\pi\)
\(884\) −13.8564 −0.466041
\(885\) 0 0
\(886\) 2.28719 0.0768396
\(887\) −53.8564 −1.80832 −0.904161 0.427193i \(-0.859503\pi\)
−0.904161 + 0.427193i \(0.859503\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −26.9282 −0.901623
\(893\) −4.92820 −0.164916
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 53.5692 1.78763
\(899\) 11.7128 0.390644
\(900\) 0 0
\(901\) 16.0000 0.533037
\(902\) 65.5692 2.18322
\(903\) 0 0
\(904\) 32.7846 1.09040
\(905\) 0 0
\(906\) 0 0
\(907\) −10.6795 −0.354607 −0.177303 0.984156i \(-0.556737\pi\)
−0.177303 + 0.984156i \(0.556737\pi\)
\(908\) 1.85641 0.0616070
\(909\) 0 0
\(910\) 0 0
\(911\) −55.1769 −1.82809 −0.914046 0.405610i \(-0.867059\pi\)
−0.914046 + 0.405610i \(0.867059\pi\)
\(912\) 0 0
\(913\) −30.9282 −1.02357
\(914\) −31.1769 −1.03124
\(915\) 0 0
\(916\) 6.92820 0.228914
\(917\) 0 0
\(918\) 0 0
\(919\) −8.00000 −0.263896 −0.131948 0.991257i \(-0.542123\pi\)
−0.131948 + 0.991257i \(0.542123\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −55.4256 −1.82535
\(923\) −12.0000 −0.394985
\(924\) 0 0
\(925\) −24.6410 −0.810192
\(926\) −24.0000 −0.788689
\(927\) 0 0
\(928\) 20.7846 0.682288
\(929\) −44.0000 −1.44359 −0.721797 0.692105i \(-0.756683\pi\)
−0.721797 + 0.692105i \(0.756683\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 19.8564 0.650418
\(933\) 0 0
\(934\) 8.53590 0.279303
\(935\) 0 0
\(936\) 0 0
\(937\) 12.7846 0.417655 0.208827 0.977952i \(-0.433035\pi\)
0.208827 + 0.977952i \(0.433035\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.7128 −1.29460 −0.647300 0.762235i \(-0.724102\pi\)
−0.647300 + 0.762235i \(0.724102\pi\)
\(942\) 0 0
\(943\) −5.85641 −0.190711
\(944\) 40.0000 1.30189
\(945\) 0 0
\(946\) 65.5692 2.13184
\(947\) 41.3205 1.34274 0.671368 0.741124i \(-0.265707\pi\)
0.671368 + 0.741124i \(0.265707\pi\)
\(948\) 0 0
\(949\) −27.7128 −0.899596
\(950\) −8.66025 −0.280976
\(951\) 0 0
\(952\) 0 0
\(953\) 17.0718 0.553010 0.276505 0.961013i \(-0.410824\pi\)
0.276505 + 0.961013i \(0.410824\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 8.53590 0.276071
\(957\) 0 0
\(958\) 39.9615 1.29110
\(959\) 0 0
\(960\) 0 0
\(961\) −22.4256 −0.723407
\(962\) 29.5692 0.953350
\(963\) 0 0
\(964\) 3.46410 0.111571
\(965\) 0 0
\(966\) 0 0
\(967\) −12.7846 −0.411125 −0.205563 0.978644i \(-0.565902\pi\)
−0.205563 + 0.978644i \(0.565902\pi\)
\(968\) 1.73205 0.0556702
\(969\) 0 0
\(970\) 0 0
\(971\) −22.1436 −0.710622 −0.355311 0.934748i \(-0.615625\pi\)
−0.355311 + 0.934748i \(0.615625\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.8564 1.02075
\(975\) 0 0
\(976\) 5.35898 0.171537
\(977\) 58.6410 1.87609 0.938046 0.346510i \(-0.112633\pi\)
0.938046 + 0.346510i \(0.112633\pi\)
\(978\) 0 0
\(979\) −41.5692 −1.32856
\(980\) 0 0
\(981\) 0 0
\(982\) 57.7128 1.84169
\(983\) −3.71281 −0.118420 −0.0592102 0.998246i \(-0.518858\pi\)
−0.0592102 + 0.998246i \(0.518858\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −27.7128 −0.882556
\(987\) 0 0
\(988\) 3.46410 0.110208
\(989\) −5.85641 −0.186223
\(990\) 0 0
\(991\) −53.0333 −1.68466 −0.842329 0.538963i \(-0.818816\pi\)
−0.842329 + 0.538963i \(0.818816\pi\)
\(992\) 15.2154 0.483089
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −2.14359 −0.0678883 −0.0339441 0.999424i \(-0.510807\pi\)
−0.0339441 + 0.999424i \(0.510807\pi\)
\(998\) −18.9282 −0.599162
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bd.1.1 2
3.2 odd 2 2793.2.a.r.1.2 yes 2
7.6 odd 2 8379.2.a.bc.1.1 2
21.20 even 2 2793.2.a.q.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.2.a.q.1.2 2 21.20 even 2
2793.2.a.r.1.2 yes 2 3.2 odd 2
8379.2.a.bc.1.1 2 7.6 odd 2
8379.2.a.bd.1.1 2 1.1 even 1 trivial