Properties

Label 8379.2.a.bb.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2,0,0,0,0,0,-6,0,0,8,0,0,-10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1197)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205 q^{2} +1.00000 q^{4} +1.73205 q^{5} +1.73205 q^{8} -3.00000 q^{10} +5.19615 q^{11} +4.00000 q^{13} -5.00000 q^{16} +6.92820 q^{17} -1.00000 q^{19} +1.73205 q^{20} -9.00000 q^{22} -8.66025 q^{23} -2.00000 q^{25} -6.92820 q^{26} -3.46410 q^{29} -2.00000 q^{31} +5.19615 q^{32} -12.0000 q^{34} +8.00000 q^{37} +1.73205 q^{38} +3.00000 q^{40} -3.46410 q^{41} -7.00000 q^{43} +5.19615 q^{44} +15.0000 q^{46} +8.66025 q^{47} +3.46410 q^{50} +4.00000 q^{52} -3.46410 q^{53} +9.00000 q^{55} +6.00000 q^{58} +6.92820 q^{59} +7.00000 q^{61} +3.46410 q^{62} +1.00000 q^{64} +6.92820 q^{65} +8.00000 q^{67} +6.92820 q^{68} +3.46410 q^{71} +7.00000 q^{73} -13.8564 q^{74} -1.00000 q^{76} +8.00000 q^{79} -8.66025 q^{80} +6.00000 q^{82} +5.19615 q^{83} +12.0000 q^{85} +12.1244 q^{86} +9.00000 q^{88} -6.92820 q^{89} -8.66025 q^{92} -15.0000 q^{94} -1.73205 q^{95} +10.0000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{4} - 6 q^{10} + 8 q^{13} - 10 q^{16} - 2 q^{19} - 18 q^{22} - 4 q^{25} - 4 q^{31} - 24 q^{34} + 16 q^{37} + 6 q^{40} - 14 q^{43} + 30 q^{46} + 8 q^{52} + 18 q^{55} + 12 q^{58} + 14 q^{61} + 2 q^{64}+ \cdots + 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.73205 −1.22474 −0.612372 0.790569i \(-0.709785\pi\)
−0.612372 + 0.790569i \(0.709785\pi\)
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 1.73205 0.774597 0.387298 0.921954i \(-0.373408\pi\)
0.387298 + 0.921954i \(0.373408\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.73205 0.612372
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 5.19615 1.56670 0.783349 0.621582i \(-0.213510\pi\)
0.783349 + 0.621582i \(0.213510\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −5.00000 −1.25000
\(17\) 6.92820 1.68034 0.840168 0.542326i \(-0.182456\pi\)
0.840168 + 0.542326i \(0.182456\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 1.73205 0.387298
\(21\) 0 0
\(22\) −9.00000 −1.91881
\(23\) −8.66025 −1.80579 −0.902894 0.429863i \(-0.858562\pi\)
−0.902894 + 0.429863i \(0.858562\pi\)
\(24\) 0 0
\(25\) −2.00000 −0.400000
\(26\) −6.92820 −1.35873
\(27\) 0 0
\(28\) 0 0
\(29\) −3.46410 −0.643268 −0.321634 0.946864i \(-0.604232\pi\)
−0.321634 + 0.946864i \(0.604232\pi\)
\(30\) 0 0
\(31\) −2.00000 −0.359211 −0.179605 0.983739i \(-0.557482\pi\)
−0.179605 + 0.983739i \(0.557482\pi\)
\(32\) 5.19615 0.918559
\(33\) 0 0
\(34\) −12.0000 −2.05798
\(35\) 0 0
\(36\) 0 0
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) 1.73205 0.280976
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) 5.19615 0.783349
\(45\) 0 0
\(46\) 15.0000 2.21163
\(47\) 8.66025 1.26323 0.631614 0.775283i \(-0.282393\pi\)
0.631614 + 0.775283i \(0.282393\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 3.46410 0.489898
\(51\) 0 0
\(52\) 4.00000 0.554700
\(53\) −3.46410 −0.475831 −0.237915 0.971286i \(-0.576464\pi\)
−0.237915 + 0.971286i \(0.576464\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) 6.00000 0.787839
\(59\) 6.92820 0.901975 0.450988 0.892530i \(-0.351072\pi\)
0.450988 + 0.892530i \(0.351072\pi\)
\(60\) 0 0
\(61\) 7.00000 0.896258 0.448129 0.893969i \(-0.352090\pi\)
0.448129 + 0.893969i \(0.352090\pi\)
\(62\) 3.46410 0.439941
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.92820 0.859338
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 6.92820 0.840168
\(69\) 0 0
\(70\) 0 0
\(71\) 3.46410 0.411113 0.205557 0.978645i \(-0.434100\pi\)
0.205557 + 0.978645i \(0.434100\pi\)
\(72\) 0 0
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) −13.8564 −1.61077
\(75\) 0 0
\(76\) −1.00000 −0.114708
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) −8.66025 −0.968246
\(81\) 0 0
\(82\) 6.00000 0.662589
\(83\) 5.19615 0.570352 0.285176 0.958475i \(-0.407948\pi\)
0.285176 + 0.958475i \(0.407948\pi\)
\(84\) 0 0
\(85\) 12.0000 1.30158
\(86\) 12.1244 1.30740
\(87\) 0 0
\(88\) 9.00000 0.959403
\(89\) −6.92820 −0.734388 −0.367194 0.930144i \(-0.619682\pi\)
−0.367194 + 0.930144i \(0.619682\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −8.66025 −0.902894
\(93\) 0 0
\(94\) −15.0000 −1.54713
\(95\) −1.73205 −0.177705
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.00000 −0.200000
\(101\) 8.66025 0.861727 0.430864 0.902417i \(-0.358209\pi\)
0.430864 + 0.902417i \(0.358209\pi\)
\(102\) 0 0
\(103\) −14.0000 −1.37946 −0.689730 0.724066i \(-0.742271\pi\)
−0.689730 + 0.724066i \(0.742271\pi\)
\(104\) 6.92820 0.679366
\(105\) 0 0
\(106\) 6.00000 0.582772
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 20.0000 1.91565 0.957826 0.287348i \(-0.0927736\pi\)
0.957826 + 0.287348i \(0.0927736\pi\)
\(110\) −15.5885 −1.48630
\(111\) 0 0
\(112\) 0 0
\(113\) −10.3923 −0.977626 −0.488813 0.872389i \(-0.662570\pi\)
−0.488813 + 0.872389i \(0.662570\pi\)
\(114\) 0 0
\(115\) −15.0000 −1.39876
\(116\) −3.46410 −0.321634
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 16.0000 1.45455
\(122\) −12.1244 −1.09769
\(123\) 0 0
\(124\) −2.00000 −0.179605
\(125\) −12.1244 −1.08444
\(126\) 0 0
\(127\) 20.0000 1.77471 0.887357 0.461084i \(-0.152539\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) −12.1244 −1.07165
\(129\) 0 0
\(130\) −12.0000 −1.05247
\(131\) −3.46410 −0.302660 −0.151330 0.988483i \(-0.548356\pi\)
−0.151330 + 0.988483i \(0.548356\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −13.8564 −1.19701
\(135\) 0 0
\(136\) 12.0000 1.02899
\(137\) −8.66025 −0.739895 −0.369948 0.929053i \(-0.620624\pi\)
−0.369948 + 0.929053i \(0.620624\pi\)
\(138\) 0 0
\(139\) −17.0000 −1.44192 −0.720961 0.692976i \(-0.756299\pi\)
−0.720961 + 0.692976i \(0.756299\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −6.00000 −0.503509
\(143\) 20.7846 1.73810
\(144\) 0 0
\(145\) −6.00000 −0.498273
\(146\) −12.1244 −1.00342
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −1.73205 −0.141895 −0.0709476 0.997480i \(-0.522602\pi\)
−0.0709476 + 0.997480i \(0.522602\pi\)
\(150\) 0 0
\(151\) −22.0000 −1.79033 −0.895167 0.445730i \(-0.852944\pi\)
−0.895167 + 0.445730i \(0.852944\pi\)
\(152\) −1.73205 −0.140488
\(153\) 0 0
\(154\) 0 0
\(155\) −3.46410 −0.278243
\(156\) 0 0
\(157\) 13.0000 1.03751 0.518756 0.854922i \(-0.326395\pi\)
0.518756 + 0.854922i \(0.326395\pi\)
\(158\) −13.8564 −1.10236
\(159\) 0 0
\(160\) 9.00000 0.711512
\(161\) 0 0
\(162\) 0 0
\(163\) 11.0000 0.861586 0.430793 0.902451i \(-0.358234\pi\)
0.430793 + 0.902451i \(0.358234\pi\)
\(164\) −3.46410 −0.270501
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) −17.3205 −1.34030 −0.670151 0.742225i \(-0.733770\pi\)
−0.670151 + 0.742225i \(0.733770\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −20.7846 −1.59411
\(171\) 0 0
\(172\) −7.00000 −0.533745
\(173\) 6.92820 0.526742 0.263371 0.964695i \(-0.415166\pi\)
0.263371 + 0.964695i \(0.415166\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −25.9808 −1.95837
\(177\) 0 0
\(178\) 12.0000 0.899438
\(179\) −10.3923 −0.776757 −0.388379 0.921500i \(-0.626965\pi\)
−0.388379 + 0.921500i \(0.626965\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −15.0000 −1.10581
\(185\) 13.8564 1.01874
\(186\) 0 0
\(187\) 36.0000 2.63258
\(188\) 8.66025 0.631614
\(189\) 0 0
\(190\) 3.00000 0.217643
\(191\) −5.19615 −0.375980 −0.187990 0.982171i \(-0.560197\pi\)
−0.187990 + 0.982171i \(0.560197\pi\)
\(192\) 0 0
\(193\) 8.00000 0.575853 0.287926 0.957653i \(-0.407034\pi\)
0.287926 + 0.957653i \(0.407034\pi\)
\(194\) −17.3205 −1.24354
\(195\) 0 0
\(196\) 0 0
\(197\) −15.5885 −1.11063 −0.555316 0.831640i \(-0.687403\pi\)
−0.555316 + 0.831640i \(0.687403\pi\)
\(198\) 0 0
\(199\) 7.00000 0.496217 0.248108 0.968732i \(-0.420191\pi\)
0.248108 + 0.968732i \(0.420191\pi\)
\(200\) −3.46410 −0.244949
\(201\) 0 0
\(202\) −15.0000 −1.05540
\(203\) 0 0
\(204\) 0 0
\(205\) −6.00000 −0.419058
\(206\) 24.2487 1.68949
\(207\) 0 0
\(208\) −20.0000 −1.38675
\(209\) −5.19615 −0.359425
\(210\) 0 0
\(211\) −4.00000 −0.275371 −0.137686 0.990476i \(-0.543966\pi\)
−0.137686 + 0.990476i \(0.543966\pi\)
\(212\) −3.46410 −0.237915
\(213\) 0 0
\(214\) 0 0
\(215\) −12.1244 −0.826874
\(216\) 0 0
\(217\) 0 0
\(218\) −34.6410 −2.34619
\(219\) 0 0
\(220\) 9.00000 0.606780
\(221\) 27.7128 1.86417
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 18.0000 1.19734
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −2.00000 −0.132164 −0.0660819 0.997814i \(-0.521050\pi\)
−0.0660819 + 0.997814i \(0.521050\pi\)
\(230\) 25.9808 1.71312
\(231\) 0 0
\(232\) −6.00000 −0.393919
\(233\) −6.92820 −0.453882 −0.226941 0.973909i \(-0.572872\pi\)
−0.226941 + 0.973909i \(0.572872\pi\)
\(234\) 0 0
\(235\) 15.0000 0.978492
\(236\) 6.92820 0.450988
\(237\) 0 0
\(238\) 0 0
\(239\) 10.3923 0.672222 0.336111 0.941822i \(-0.390888\pi\)
0.336111 + 0.941822i \(0.390888\pi\)
\(240\) 0 0
\(241\) 28.0000 1.80364 0.901819 0.432113i \(-0.142232\pi\)
0.901819 + 0.432113i \(0.142232\pi\)
\(242\) −27.7128 −1.78145
\(243\) 0 0
\(244\) 7.00000 0.448129
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) −3.46410 −0.219971
\(249\) 0 0
\(250\) 21.0000 1.32816
\(251\) −1.73205 −0.109326 −0.0546630 0.998505i \(-0.517408\pi\)
−0.0546630 + 0.998505i \(0.517408\pi\)
\(252\) 0 0
\(253\) −45.0000 −2.82913
\(254\) −34.6410 −2.17357
\(255\) 0 0
\(256\) 19.0000 1.18750
\(257\) 24.2487 1.51259 0.756297 0.654229i \(-0.227007\pi\)
0.756297 + 0.654229i \(0.227007\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 6.92820 0.429669
\(261\) 0 0
\(262\) 6.00000 0.370681
\(263\) 24.2487 1.49524 0.747620 0.664127i \(-0.231197\pi\)
0.747620 + 0.664127i \(0.231197\pi\)
\(264\) 0 0
\(265\) −6.00000 −0.368577
\(266\) 0 0
\(267\) 0 0
\(268\) 8.00000 0.488678
\(269\) 6.92820 0.422420 0.211210 0.977441i \(-0.432260\pi\)
0.211210 + 0.977441i \(0.432260\pi\)
\(270\) 0 0
\(271\) −11.0000 −0.668202 −0.334101 0.942537i \(-0.608433\pi\)
−0.334101 + 0.942537i \(0.608433\pi\)
\(272\) −34.6410 −2.10042
\(273\) 0 0
\(274\) 15.0000 0.906183
\(275\) −10.3923 −0.626680
\(276\) 0 0
\(277\) −13.0000 −0.781094 −0.390547 0.920583i \(-0.627714\pi\)
−0.390547 + 0.920583i \(0.627714\pi\)
\(278\) 29.4449 1.76599
\(279\) 0 0
\(280\) 0 0
\(281\) 17.3205 1.03325 0.516627 0.856210i \(-0.327187\pi\)
0.516627 + 0.856210i \(0.327187\pi\)
\(282\) 0 0
\(283\) 31.0000 1.84276 0.921379 0.388664i \(-0.127063\pi\)
0.921379 + 0.388664i \(0.127063\pi\)
\(284\) 3.46410 0.205557
\(285\) 0 0
\(286\) −36.0000 −2.12872
\(287\) 0 0
\(288\) 0 0
\(289\) 31.0000 1.82353
\(290\) 10.3923 0.610257
\(291\) 0 0
\(292\) 7.00000 0.409644
\(293\) 31.1769 1.82137 0.910687 0.413096i \(-0.135553\pi\)
0.910687 + 0.413096i \(0.135553\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 13.8564 0.805387
\(297\) 0 0
\(298\) 3.00000 0.173785
\(299\) −34.6410 −2.00334
\(300\) 0 0
\(301\) 0 0
\(302\) 38.1051 2.19270
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 12.1244 0.694239
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 6.00000 0.340777
\(311\) −31.1769 −1.76788 −0.883940 0.467600i \(-0.845119\pi\)
−0.883940 + 0.467600i \(0.845119\pi\)
\(312\) 0 0
\(313\) −29.0000 −1.63918 −0.819588 0.572953i \(-0.805798\pi\)
−0.819588 + 0.572953i \(0.805798\pi\)
\(314\) −22.5167 −1.27069
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −3.46410 −0.194563 −0.0972817 0.995257i \(-0.531015\pi\)
−0.0972817 + 0.995257i \(0.531015\pi\)
\(318\) 0 0
\(319\) −18.0000 −1.00781
\(320\) 1.73205 0.0968246
\(321\) 0 0
\(322\) 0 0
\(323\) −6.92820 −0.385496
\(324\) 0 0
\(325\) −8.00000 −0.443760
\(326\) −19.0526 −1.05522
\(327\) 0 0
\(328\) −6.00000 −0.331295
\(329\) 0 0
\(330\) 0 0
\(331\) 14.0000 0.769510 0.384755 0.923019i \(-0.374286\pi\)
0.384755 + 0.923019i \(0.374286\pi\)
\(332\) 5.19615 0.285176
\(333\) 0 0
\(334\) 30.0000 1.64153
\(335\) 13.8564 0.757056
\(336\) 0 0
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) −5.19615 −0.282633
\(339\) 0 0
\(340\) 12.0000 0.650791
\(341\) −10.3923 −0.562775
\(342\) 0 0
\(343\) 0 0
\(344\) −12.1244 −0.653701
\(345\) 0 0
\(346\) −12.0000 −0.645124
\(347\) −1.73205 −0.0929814 −0.0464907 0.998919i \(-0.514804\pi\)
−0.0464907 + 0.998919i \(0.514804\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 27.0000 1.43910
\(353\) 20.7846 1.10625 0.553127 0.833097i \(-0.313435\pi\)
0.553127 + 0.833097i \(0.313435\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) −6.92820 −0.367194
\(357\) 0 0
\(358\) 18.0000 0.951330
\(359\) 8.66025 0.457071 0.228535 0.973536i \(-0.426606\pi\)
0.228535 + 0.973536i \(0.426606\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 24.2487 1.27448
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1244 0.634618
\(366\) 0 0
\(367\) −8.00000 −0.417597 −0.208798 0.977959i \(-0.566955\pi\)
−0.208798 + 0.977959i \(0.566955\pi\)
\(368\) 43.3013 2.25723
\(369\) 0 0
\(370\) −24.0000 −1.24770
\(371\) 0 0
\(372\) 0 0
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) −62.3538 −3.22424
\(375\) 0 0
\(376\) 15.0000 0.773566
\(377\) −13.8564 −0.713641
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −1.73205 −0.0888523
\(381\) 0 0
\(382\) 9.00000 0.460480
\(383\) −34.6410 −1.77007 −0.885037 0.465521i \(-0.845867\pi\)
−0.885037 + 0.465521i \(0.845867\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −13.8564 −0.705273
\(387\) 0 0
\(388\) 10.0000 0.507673
\(389\) 27.7128 1.40510 0.702548 0.711637i \(-0.252046\pi\)
0.702548 + 0.711637i \(0.252046\pi\)
\(390\) 0 0
\(391\) −60.0000 −3.03433
\(392\) 0 0
\(393\) 0 0
\(394\) 27.0000 1.36024
\(395\) 13.8564 0.697191
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) −12.1244 −0.607739
\(399\) 0 0
\(400\) 10.0000 0.500000
\(401\) −27.7128 −1.38391 −0.691956 0.721940i \(-0.743251\pi\)
−0.691956 + 0.721940i \(0.743251\pi\)
\(402\) 0 0
\(403\) −8.00000 −0.398508
\(404\) 8.66025 0.430864
\(405\) 0 0
\(406\) 0 0
\(407\) 41.5692 2.06051
\(408\) 0 0
\(409\) −14.0000 −0.692255 −0.346128 0.938187i \(-0.612504\pi\)
−0.346128 + 0.938187i \(0.612504\pi\)
\(410\) 10.3923 0.513239
\(411\) 0 0
\(412\) −14.0000 −0.689730
\(413\) 0 0
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) 20.7846 1.01905
\(417\) 0 0
\(418\) 9.00000 0.440204
\(419\) 15.5885 0.761546 0.380773 0.924669i \(-0.375658\pi\)
0.380773 + 0.924669i \(0.375658\pi\)
\(420\) 0 0
\(421\) 2.00000 0.0974740 0.0487370 0.998812i \(-0.484480\pi\)
0.0487370 + 0.998812i \(0.484480\pi\)
\(422\) 6.92820 0.337260
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −13.8564 −0.672134
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 21.0000 1.01271
\(431\) 38.1051 1.83546 0.917729 0.397206i \(-0.130020\pi\)
0.917729 + 0.397206i \(0.130020\pi\)
\(432\) 0 0
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 20.0000 0.957826
\(437\) 8.66025 0.414276
\(438\) 0 0
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 15.5885 0.743151
\(441\) 0 0
\(442\) −48.0000 −2.28313
\(443\) −3.46410 −0.164584 −0.0822922 0.996608i \(-0.526224\pi\)
−0.0822922 + 0.996608i \(0.526224\pi\)
\(444\) 0 0
\(445\) −12.0000 −0.568855
\(446\) −17.3205 −0.820150
\(447\) 0 0
\(448\) 0 0
\(449\) −20.7846 −0.980886 −0.490443 0.871473i \(-0.663165\pi\)
−0.490443 + 0.871473i \(0.663165\pi\)
\(450\) 0 0
\(451\) −18.0000 −0.847587
\(452\) −10.3923 −0.488813
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 23.0000 1.07589 0.537947 0.842978i \(-0.319200\pi\)
0.537947 + 0.842978i \(0.319200\pi\)
\(458\) 3.46410 0.161867
\(459\) 0 0
\(460\) −15.0000 −0.699379
\(461\) −8.66025 −0.403348 −0.201674 0.979453i \(-0.564638\pi\)
−0.201674 + 0.979453i \(0.564638\pi\)
\(462\) 0 0
\(463\) −7.00000 −0.325318 −0.162659 0.986682i \(-0.552007\pi\)
−0.162659 + 0.986682i \(0.552007\pi\)
\(464\) 17.3205 0.804084
\(465\) 0 0
\(466\) 12.0000 0.555889
\(467\) −36.3731 −1.68314 −0.841572 0.540144i \(-0.818370\pi\)
−0.841572 + 0.540144i \(0.818370\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −25.9808 −1.19840
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) −36.3731 −1.67244
\(474\) 0 0
\(475\) 2.00000 0.0917663
\(476\) 0 0
\(477\) 0 0
\(478\) −18.0000 −0.823301
\(479\) −22.5167 −1.02881 −0.514406 0.857547i \(-0.671988\pi\)
−0.514406 + 0.857547i \(0.671988\pi\)
\(480\) 0 0
\(481\) 32.0000 1.45907
\(482\) −48.4974 −2.20900
\(483\) 0 0
\(484\) 16.0000 0.727273
\(485\) 17.3205 0.786484
\(486\) 0 0
\(487\) 2.00000 0.0906287 0.0453143 0.998973i \(-0.485571\pi\)
0.0453143 + 0.998973i \(0.485571\pi\)
\(488\) 12.1244 0.548844
\(489\) 0 0
\(490\) 0 0
\(491\) −22.5167 −1.01616 −0.508081 0.861309i \(-0.669645\pi\)
−0.508081 + 0.861309i \(0.669645\pi\)
\(492\) 0 0
\(493\) −24.0000 −1.08091
\(494\) 6.92820 0.311715
\(495\) 0 0
\(496\) 10.0000 0.449013
\(497\) 0 0
\(498\) 0 0
\(499\) 5.00000 0.223831 0.111915 0.993718i \(-0.464301\pi\)
0.111915 + 0.993718i \(0.464301\pi\)
\(500\) −12.1244 −0.542218
\(501\) 0 0
\(502\) 3.00000 0.133897
\(503\) −1.73205 −0.0772283 −0.0386142 0.999254i \(-0.512294\pi\)
−0.0386142 + 0.999254i \(0.512294\pi\)
\(504\) 0 0
\(505\) 15.0000 0.667491
\(506\) 77.9423 3.46496
\(507\) 0 0
\(508\) 20.0000 0.887357
\(509\) −38.1051 −1.68898 −0.844490 0.535572i \(-0.820096\pi\)
−0.844490 + 0.535572i \(0.820096\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −8.66025 −0.382733
\(513\) 0 0
\(514\) −42.0000 −1.85254
\(515\) −24.2487 −1.06853
\(516\) 0 0
\(517\) 45.0000 1.97910
\(518\) 0 0
\(519\) 0 0
\(520\) 12.0000 0.526235
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −2.00000 −0.0874539 −0.0437269 0.999044i \(-0.513923\pi\)
−0.0437269 + 0.999044i \(0.513923\pi\)
\(524\) −3.46410 −0.151330
\(525\) 0 0
\(526\) −42.0000 −1.83129
\(527\) −13.8564 −0.603595
\(528\) 0 0
\(529\) 52.0000 2.26087
\(530\) 10.3923 0.451413
\(531\) 0 0
\(532\) 0 0
\(533\) −13.8564 −0.600188
\(534\) 0 0
\(535\) 0 0
\(536\) 13.8564 0.598506
\(537\) 0 0
\(538\) −12.0000 −0.517357
\(539\) 0 0
\(540\) 0 0
\(541\) −25.0000 −1.07483 −0.537417 0.843317i \(-0.680600\pi\)
−0.537417 + 0.843317i \(0.680600\pi\)
\(542\) 19.0526 0.818377
\(543\) 0 0
\(544\) 36.0000 1.54349
\(545\) 34.6410 1.48386
\(546\) 0 0
\(547\) 38.0000 1.62476 0.812381 0.583127i \(-0.198171\pi\)
0.812381 + 0.583127i \(0.198171\pi\)
\(548\) −8.66025 −0.369948
\(549\) 0 0
\(550\) 18.0000 0.767523
\(551\) 3.46410 0.147576
\(552\) 0 0
\(553\) 0 0
\(554\) 22.5167 0.956641
\(555\) 0 0
\(556\) −17.0000 −0.720961
\(557\) −19.0526 −0.807283 −0.403641 0.914917i \(-0.632256\pi\)
−0.403641 + 0.914917i \(0.632256\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) 0 0
\(561\) 0 0
\(562\) −30.0000 −1.26547
\(563\) −20.7846 −0.875967 −0.437983 0.898983i \(-0.644307\pi\)
−0.437983 + 0.898983i \(0.644307\pi\)
\(564\) 0 0
\(565\) −18.0000 −0.757266
\(566\) −53.6936 −2.25691
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 31.1769 1.30700 0.653502 0.756925i \(-0.273299\pi\)
0.653502 + 0.756925i \(0.273299\pi\)
\(570\) 0 0
\(571\) −25.0000 −1.04622 −0.523109 0.852266i \(-0.675228\pi\)
−0.523109 + 0.852266i \(0.675228\pi\)
\(572\) 20.7846 0.869048
\(573\) 0 0
\(574\) 0 0
\(575\) 17.3205 0.722315
\(576\) 0 0
\(577\) −17.0000 −0.707719 −0.353860 0.935299i \(-0.615131\pi\)
−0.353860 + 0.935299i \(0.615131\pi\)
\(578\) −53.6936 −2.23336
\(579\) 0 0
\(580\) −6.00000 −0.249136
\(581\) 0 0
\(582\) 0 0
\(583\) −18.0000 −0.745484
\(584\) 12.1244 0.501709
\(585\) 0 0
\(586\) −54.0000 −2.23072
\(587\) −3.46410 −0.142979 −0.0714894 0.997441i \(-0.522775\pi\)
−0.0714894 + 0.997441i \(0.522775\pi\)
\(588\) 0 0
\(589\) 2.00000 0.0824086
\(590\) −20.7846 −0.855689
\(591\) 0 0
\(592\) −40.0000 −1.64399
\(593\) 8.66025 0.355634 0.177817 0.984064i \(-0.443096\pi\)
0.177817 + 0.984064i \(0.443096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.73205 −0.0709476
\(597\) 0 0
\(598\) 60.0000 2.45358
\(599\) 17.3205 0.707697 0.353848 0.935303i \(-0.384873\pi\)
0.353848 + 0.935303i \(0.384873\pi\)
\(600\) 0 0
\(601\) 40.0000 1.63163 0.815817 0.578310i \(-0.196288\pi\)
0.815817 + 0.578310i \(0.196288\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −22.0000 −0.895167
\(605\) 27.7128 1.12669
\(606\) 0 0
\(607\) −20.0000 −0.811775 −0.405887 0.913923i \(-0.633038\pi\)
−0.405887 + 0.913923i \(0.633038\pi\)
\(608\) −5.19615 −0.210732
\(609\) 0 0
\(610\) −21.0000 −0.850265
\(611\) 34.6410 1.40143
\(612\) 0 0
\(613\) 38.0000 1.53481 0.767403 0.641165i \(-0.221549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 3.46410 0.139800
\(615\) 0 0
\(616\) 0 0
\(617\) −19.0526 −0.767027 −0.383514 0.923535i \(-0.625286\pi\)
−0.383514 + 0.923535i \(0.625286\pi\)
\(618\) 0 0
\(619\) −41.0000 −1.64793 −0.823965 0.566641i \(-0.808243\pi\)
−0.823965 + 0.566641i \(0.808243\pi\)
\(620\) −3.46410 −0.139122
\(621\) 0 0
\(622\) 54.0000 2.16520
\(623\) 0 0
\(624\) 0 0
\(625\) −11.0000 −0.440000
\(626\) 50.2295 2.00757
\(627\) 0 0
\(628\) 13.0000 0.518756
\(629\) 55.4256 2.20996
\(630\) 0 0
\(631\) −13.0000 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(632\) 13.8564 0.551178
\(633\) 0 0
\(634\) 6.00000 0.238290
\(635\) 34.6410 1.37469
\(636\) 0 0
\(637\) 0 0
\(638\) 31.1769 1.23431
\(639\) 0 0
\(640\) −21.0000 −0.830098
\(641\) 13.8564 0.547295 0.273648 0.961830i \(-0.411770\pi\)
0.273648 + 0.961830i \(0.411770\pi\)
\(642\) 0 0
\(643\) −32.0000 −1.26196 −0.630978 0.775800i \(-0.717346\pi\)
−0.630978 + 0.775800i \(0.717346\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 12.0000 0.472134
\(647\) −25.9808 −1.02141 −0.510705 0.859756i \(-0.670615\pi\)
−0.510705 + 0.859756i \(0.670615\pi\)
\(648\) 0 0
\(649\) 36.0000 1.41312
\(650\) 13.8564 0.543493
\(651\) 0 0
\(652\) 11.0000 0.430793
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) −6.00000 −0.234439
\(656\) 17.3205 0.676252
\(657\) 0 0
\(658\) 0 0
\(659\) 17.3205 0.674711 0.337356 0.941377i \(-0.390468\pi\)
0.337356 + 0.941377i \(0.390468\pi\)
\(660\) 0 0
\(661\) −8.00000 −0.311164 −0.155582 0.987823i \(-0.549725\pi\)
−0.155582 + 0.987823i \(0.549725\pi\)
\(662\) −24.2487 −0.942453
\(663\) 0 0
\(664\) 9.00000 0.349268
\(665\) 0 0
\(666\) 0 0
\(667\) 30.0000 1.16160
\(668\) −17.3205 −0.670151
\(669\) 0 0
\(670\) −24.0000 −0.927201
\(671\) 36.3731 1.40417
\(672\) 0 0
\(673\) −4.00000 −0.154189 −0.0770943 0.997024i \(-0.524564\pi\)
−0.0770943 + 0.997024i \(0.524564\pi\)
\(674\) −24.2487 −0.934025
\(675\) 0 0
\(676\) 3.00000 0.115385
\(677\) 20.7846 0.798817 0.399409 0.916773i \(-0.369215\pi\)
0.399409 + 0.916773i \(0.369215\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 20.7846 0.797053
\(681\) 0 0
\(682\) 18.0000 0.689256
\(683\) 10.3923 0.397650 0.198825 0.980035i \(-0.436287\pi\)
0.198825 + 0.980035i \(0.436287\pi\)
\(684\) 0 0
\(685\) −15.0000 −0.573121
\(686\) 0 0
\(687\) 0 0
\(688\) 35.0000 1.33436
\(689\) −13.8564 −0.527887
\(690\) 0 0
\(691\) 4.00000 0.152167 0.0760836 0.997101i \(-0.475758\pi\)
0.0760836 + 0.997101i \(0.475758\pi\)
\(692\) 6.92820 0.263371
\(693\) 0 0
\(694\) 3.00000 0.113878
\(695\) −29.4449 −1.11691
\(696\) 0 0
\(697\) −24.0000 −0.909065
\(698\) −17.3205 −0.655591
\(699\) 0 0
\(700\) 0 0
\(701\) −1.73205 −0.0654187 −0.0327093 0.999465i \(-0.510414\pi\)
−0.0327093 + 0.999465i \(0.510414\pi\)
\(702\) 0 0
\(703\) −8.00000 −0.301726
\(704\) 5.19615 0.195837
\(705\) 0 0
\(706\) −36.0000 −1.35488
\(707\) 0 0
\(708\) 0 0
\(709\) 17.0000 0.638448 0.319224 0.947679i \(-0.396578\pi\)
0.319224 + 0.947679i \(0.396578\pi\)
\(710\) −10.3923 −0.390016
\(711\) 0 0
\(712\) −12.0000 −0.449719
\(713\) 17.3205 0.648658
\(714\) 0 0
\(715\) 36.0000 1.34632
\(716\) −10.3923 −0.388379
\(717\) 0 0
\(718\) −15.0000 −0.559795
\(719\) −3.46410 −0.129189 −0.0645946 0.997912i \(-0.520575\pi\)
−0.0645946 + 0.997912i \(0.520575\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.73205 −0.0644603
\(723\) 0 0
\(724\) −14.0000 −0.520306
\(725\) 6.92820 0.257307
\(726\) 0 0
\(727\) −11.0000 −0.407967 −0.203984 0.978974i \(-0.565389\pi\)
−0.203984 + 0.978974i \(0.565389\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −21.0000 −0.777245
\(731\) −48.4974 −1.79374
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 13.8564 0.511449
\(735\) 0 0
\(736\) −45.0000 −1.65872
\(737\) 41.5692 1.53122
\(738\) 0 0
\(739\) 32.0000 1.17714 0.588570 0.808447i \(-0.299691\pi\)
0.588570 + 0.808447i \(0.299691\pi\)
\(740\) 13.8564 0.509372
\(741\) 0 0
\(742\) 0 0
\(743\) 34.6410 1.27086 0.635428 0.772160i \(-0.280824\pi\)
0.635428 + 0.772160i \(0.280824\pi\)
\(744\) 0 0
\(745\) −3.00000 −0.109911
\(746\) 6.92820 0.253660
\(747\) 0 0
\(748\) 36.0000 1.31629
\(749\) 0 0
\(750\) 0 0
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) −43.3013 −1.57903
\(753\) 0 0
\(754\) 24.0000 0.874028
\(755\) −38.1051 −1.38679
\(756\) 0 0
\(757\) 41.0000 1.49017 0.745085 0.666969i \(-0.232409\pi\)
0.745085 + 0.666969i \(0.232409\pi\)
\(758\) 27.7128 1.00657
\(759\) 0 0
\(760\) −3.00000 −0.108821
\(761\) 15.5885 0.565081 0.282541 0.959255i \(-0.408823\pi\)
0.282541 + 0.959255i \(0.408823\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −5.19615 −0.187990
\(765\) 0 0
\(766\) 60.0000 2.16789
\(767\) 27.7128 1.00065
\(768\) 0 0
\(769\) −5.00000 −0.180305 −0.0901523 0.995928i \(-0.528735\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.00000 0.287926
\(773\) 34.6410 1.24595 0.622975 0.782241i \(-0.285924\pi\)
0.622975 + 0.782241i \(0.285924\pi\)
\(774\) 0 0
\(775\) 4.00000 0.143684
\(776\) 17.3205 0.621770
\(777\) 0 0
\(778\) −48.0000 −1.72088
\(779\) 3.46410 0.124114
\(780\) 0 0
\(781\) 18.0000 0.644091
\(782\) 103.923 3.71628
\(783\) 0 0
\(784\) 0 0
\(785\) 22.5167 0.803654
\(786\) 0 0
\(787\) −32.0000 −1.14068 −0.570338 0.821410i \(-0.693188\pi\)
−0.570338 + 0.821410i \(0.693188\pi\)
\(788\) −15.5885 −0.555316
\(789\) 0 0
\(790\) −24.0000 −0.853882
\(791\) 0 0
\(792\) 0 0
\(793\) 28.0000 0.994309
\(794\) 3.46410 0.122936
\(795\) 0 0
\(796\) 7.00000 0.248108
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 60.0000 2.12265
\(800\) −10.3923 −0.367423
\(801\) 0 0
\(802\) 48.0000 1.69494
\(803\) 36.3731 1.28358
\(804\) 0 0
\(805\) 0 0
\(806\) 13.8564 0.488071
\(807\) 0 0
\(808\) 15.0000 0.527698
\(809\) −5.19615 −0.182687 −0.0913435 0.995819i \(-0.529116\pi\)
−0.0913435 + 0.995819i \(0.529116\pi\)
\(810\) 0 0
\(811\) 22.0000 0.772524 0.386262 0.922389i \(-0.373766\pi\)
0.386262 + 0.922389i \(0.373766\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −72.0000 −2.52360
\(815\) 19.0526 0.667382
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) 24.2487 0.847836
\(819\) 0 0
\(820\) −6.00000 −0.209529
\(821\) −50.2295 −1.75302 −0.876510 0.481383i \(-0.840135\pi\)
−0.876510 + 0.481383i \(0.840135\pi\)
\(822\) 0 0
\(823\) 41.0000 1.42917 0.714585 0.699549i \(-0.246616\pi\)
0.714585 + 0.699549i \(0.246616\pi\)
\(824\) −24.2487 −0.844744
\(825\) 0 0
\(826\) 0 0
\(827\) 27.7128 0.963669 0.481834 0.876262i \(-0.339971\pi\)
0.481834 + 0.876262i \(0.339971\pi\)
\(828\) 0 0
\(829\) 28.0000 0.972480 0.486240 0.873825i \(-0.338368\pi\)
0.486240 + 0.873825i \(0.338368\pi\)
\(830\) −15.5885 −0.541083
\(831\) 0 0
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) 0 0
\(835\) −30.0000 −1.03819
\(836\) −5.19615 −0.179713
\(837\) 0 0
\(838\) −27.0000 −0.932700
\(839\) 27.7128 0.956753 0.478376 0.878155i \(-0.341226\pi\)
0.478376 + 0.878155i \(0.341226\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) −3.46410 −0.119381
\(843\) 0 0
\(844\) −4.00000 −0.137686
\(845\) 5.19615 0.178753
\(846\) 0 0
\(847\) 0 0
\(848\) 17.3205 0.594789
\(849\) 0 0
\(850\) 24.0000 0.823193
\(851\) −69.2820 −2.37496
\(852\) 0 0
\(853\) −35.0000 −1.19838 −0.599189 0.800608i \(-0.704510\pi\)
−0.599189 + 0.800608i \(0.704510\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −34.6410 −1.18331 −0.591657 0.806190i \(-0.701526\pi\)
−0.591657 + 0.806190i \(0.701526\pi\)
\(858\) 0 0
\(859\) 37.0000 1.26242 0.631212 0.775610i \(-0.282558\pi\)
0.631212 + 0.775610i \(0.282558\pi\)
\(860\) −12.1244 −0.413437
\(861\) 0 0
\(862\) −66.0000 −2.24797
\(863\) 10.3923 0.353758 0.176879 0.984233i \(-0.443400\pi\)
0.176879 + 0.984233i \(0.443400\pi\)
\(864\) 0 0
\(865\) 12.0000 0.408012
\(866\) −6.92820 −0.235430
\(867\) 0 0
\(868\) 0 0
\(869\) 41.5692 1.41014
\(870\) 0 0
\(871\) 32.0000 1.08428
\(872\) 34.6410 1.17309
\(873\) 0 0
\(874\) −15.0000 −0.507383
\(875\) 0 0
\(876\) 0 0
\(877\) −28.0000 −0.945493 −0.472746 0.881199i \(-0.656737\pi\)
−0.472746 + 0.881199i \(0.656737\pi\)
\(878\) −48.4974 −1.63671
\(879\) 0 0
\(880\) −45.0000 −1.51695
\(881\) −20.7846 −0.700251 −0.350126 0.936703i \(-0.613861\pi\)
−0.350126 + 0.936703i \(0.613861\pi\)
\(882\) 0 0
\(883\) 20.0000 0.673054 0.336527 0.941674i \(-0.390748\pi\)
0.336527 + 0.941674i \(0.390748\pi\)
\(884\) 27.7128 0.932083
\(885\) 0 0
\(886\) 6.00000 0.201574
\(887\) 3.46410 0.116313 0.0581566 0.998307i \(-0.481478\pi\)
0.0581566 + 0.998307i \(0.481478\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 20.7846 0.696702
\(891\) 0 0
\(892\) 10.0000 0.334825
\(893\) −8.66025 −0.289804
\(894\) 0 0
\(895\) −18.0000 −0.601674
\(896\) 0 0
\(897\) 0 0
\(898\) 36.0000 1.20134
\(899\) 6.92820 0.231069
\(900\) 0 0
\(901\) −24.0000 −0.799556
\(902\) 31.1769 1.03808
\(903\) 0 0
\(904\) −18.0000 −0.598671
\(905\) −24.2487 −0.806054
\(906\) 0 0
\(907\) −10.0000 −0.332045 −0.166022 0.986122i \(-0.553092\pi\)
−0.166022 + 0.986122i \(0.553092\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 31.1769 1.03294 0.516469 0.856306i \(-0.327246\pi\)
0.516469 + 0.856306i \(0.327246\pi\)
\(912\) 0 0
\(913\) 27.0000 0.893570
\(914\) −39.8372 −1.31770
\(915\) 0 0
\(916\) −2.00000 −0.0660819
\(917\) 0 0
\(918\) 0 0
\(919\) 17.0000 0.560778 0.280389 0.959886i \(-0.409536\pi\)
0.280389 + 0.959886i \(0.409536\pi\)
\(920\) −25.9808 −0.856560
\(921\) 0 0
\(922\) 15.0000 0.493999
\(923\) 13.8564 0.456089
\(924\) 0 0
\(925\) −16.0000 −0.526077
\(926\) 12.1244 0.398431
\(927\) 0 0
\(928\) −18.0000 −0.590879
\(929\) 43.3013 1.42067 0.710334 0.703864i \(-0.248544\pi\)
0.710334 + 0.703864i \(0.248544\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −6.92820 −0.226941
\(933\) 0 0
\(934\) 63.0000 2.06142
\(935\) 62.3538 2.03919
\(936\) 0 0
\(937\) 43.0000 1.40475 0.702374 0.711808i \(-0.252123\pi\)
0.702374 + 0.711808i \(0.252123\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 15.0000 0.489246
\(941\) 3.46410 0.112926 0.0564632 0.998405i \(-0.482018\pi\)
0.0564632 + 0.998405i \(0.482018\pi\)
\(942\) 0 0
\(943\) 30.0000 0.976934
\(944\) −34.6410 −1.12747
\(945\) 0 0
\(946\) 63.0000 2.04831
\(947\) −17.3205 −0.562841 −0.281420 0.959585i \(-0.590806\pi\)
−0.281420 + 0.959585i \(0.590806\pi\)
\(948\) 0 0
\(949\) 28.0000 0.908918
\(950\) −3.46410 −0.112390
\(951\) 0 0
\(952\) 0 0
\(953\) −48.4974 −1.57099 −0.785493 0.618871i \(-0.787590\pi\)
−0.785493 + 0.618871i \(0.787590\pi\)
\(954\) 0 0
\(955\) −9.00000 −0.291233
\(956\) 10.3923 0.336111
\(957\) 0 0
\(958\) 39.0000 1.26003
\(959\) 0 0
\(960\) 0 0
\(961\) −27.0000 −0.870968
\(962\) −55.4256 −1.78699
\(963\) 0 0
\(964\) 28.0000 0.901819
\(965\) 13.8564 0.446054
\(966\) 0 0
\(967\) 8.00000 0.257263 0.128631 0.991692i \(-0.458942\pi\)
0.128631 + 0.991692i \(0.458942\pi\)
\(968\) 27.7128 0.890724
\(969\) 0 0
\(970\) −30.0000 −0.963242
\(971\) −13.8564 −0.444673 −0.222337 0.974970i \(-0.571368\pi\)
−0.222337 + 0.974970i \(0.571368\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −3.46410 −0.110997
\(975\) 0 0
\(976\) −35.0000 −1.12032
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) 0 0
\(982\) 39.0000 1.24454
\(983\) −45.0333 −1.43634 −0.718170 0.695868i \(-0.755020\pi\)
−0.718170 + 0.695868i \(0.755020\pi\)
\(984\) 0 0
\(985\) −27.0000 −0.860292
\(986\) 41.5692 1.32383
\(987\) 0 0
\(988\) −4.00000 −0.127257
\(989\) 60.6218 1.92766
\(990\) 0 0
\(991\) −52.0000 −1.65183 −0.825917 0.563791i \(-0.809342\pi\)
−0.825917 + 0.563791i \(0.809342\pi\)
\(992\) −10.3923 −0.329956
\(993\) 0 0
\(994\) 0 0
\(995\) 12.1244 0.384368
\(996\) 0 0
\(997\) −38.0000 −1.20347 −0.601736 0.798695i \(-0.705524\pi\)
−0.601736 + 0.798695i \(0.705524\pi\)
\(998\) −8.66025 −0.274136
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.bb.1.1 2
3.2 odd 2 inner 8379.2.a.bb.1.2 2
7.3 odd 6 1197.2.j.f.856.2 yes 4
7.5 odd 6 1197.2.j.f.172.2 yes 4
7.6 odd 2 8379.2.a.be.1.1 2
21.5 even 6 1197.2.j.f.172.1 4
21.17 even 6 1197.2.j.f.856.1 yes 4
21.20 even 2 8379.2.a.be.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1197.2.j.f.172.1 4 21.5 even 6
1197.2.j.f.172.2 yes 4 7.5 odd 6
1197.2.j.f.856.1 yes 4 21.17 even 6
1197.2.j.f.856.2 yes 4 7.3 odd 6
8379.2.a.bb.1.1 2 1.1 even 1 trivial
8379.2.a.bb.1.2 2 3.2 odd 2 inner
8379.2.a.be.1.1 2 7.6 odd 2
8379.2.a.be.1.2 2 21.20 even 2