Properties

Label 8379.2.a.b.1.1
Level $8379$
Weight $2$
Character 8379.1
Self dual yes
Analytic conductor $66.907$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [8379,2,Mod(1,8379)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("8379.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8379, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 8379 = 3^{2} \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8379.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,0,2,-1,0,0,0,0,2,-4,0,4,0,0,-4,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.9066518536\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 399)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 8379.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +2.00000 q^{4} -1.00000 q^{5} +2.00000 q^{10} -4.00000 q^{11} +4.00000 q^{13} -4.00000 q^{16} -3.00000 q^{17} -1.00000 q^{19} -2.00000 q^{20} +8.00000 q^{22} +3.00000 q^{23} -4.00000 q^{25} -8.00000 q^{26} -10.0000 q^{29} +8.00000 q^{32} +6.00000 q^{34} -6.00000 q^{37} +2.00000 q^{38} -2.00000 q^{41} -7.00000 q^{43} -8.00000 q^{44} -6.00000 q^{46} +8.00000 q^{50} +8.00000 q^{52} +12.0000 q^{53} +4.00000 q^{55} +20.0000 q^{58} -12.0000 q^{59} +10.0000 q^{61} -8.00000 q^{64} -4.00000 q^{65} +10.0000 q^{67} -6.00000 q^{68} -6.00000 q^{71} +6.00000 q^{73} +12.0000 q^{74} -2.00000 q^{76} -10.0000 q^{79} +4.00000 q^{80} +4.00000 q^{82} -3.00000 q^{83} +3.00000 q^{85} +14.0000 q^{86} +14.0000 q^{89} +6.00000 q^{92} +1.00000 q^{95} -12.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −1.41421 −0.707107 0.707107i \(-0.750000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(3\) 0 0
\(4\) 2.00000 1.00000
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) −4.00000 −1.20605 −0.603023 0.797724i \(-0.706037\pi\)
−0.603023 + 0.797724i \(0.706037\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −4.00000 −1.00000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) −2.00000 −0.447214
\(21\) 0 0
\(22\) 8.00000 1.70561
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) −8.00000 −1.56893
\(27\) 0 0
\(28\) 0 0
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 8.00000 1.41421
\(33\) 0 0
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 2.00000 0.324443
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) −8.00000 −1.20605
\(45\) 0 0
\(46\) −6.00000 −0.884652
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 8.00000 1.13137
\(51\) 0 0
\(52\) 8.00000 1.10940
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) 20.0000 2.62613
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 10.0000 1.28037 0.640184 0.768221i \(-0.278858\pi\)
0.640184 + 0.768221i \(0.278858\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) −6.00000 −0.727607
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) 12.0000 1.39497
\(75\) 0 0
\(76\) −2.00000 −0.229416
\(77\) 0 0
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) 4.00000 0.447214
\(81\) 0 0
\(82\) 4.00000 0.441726
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 14.0000 1.50966
\(87\) 0 0
\(88\) 0 0
\(89\) 14.0000 1.48400 0.741999 0.670402i \(-0.233878\pi\)
0.741999 + 0.670402i \(0.233878\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 6.00000 0.625543
\(93\) 0 0
\(94\) 0 0
\(95\) 1.00000 0.102598
\(96\) 0 0
\(97\) −12.0000 −1.21842 −0.609208 0.793011i \(-0.708512\pi\)
−0.609208 + 0.793011i \(0.708512\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −8.00000 −0.800000
\(101\) −11.0000 −1.09454 −0.547270 0.836956i \(-0.684333\pi\)
−0.547270 + 0.836956i \(0.684333\pi\)
\(102\) 0 0
\(103\) 8.00000 0.788263 0.394132 0.919054i \(-0.371045\pi\)
0.394132 + 0.919054i \(0.371045\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −24.0000 −2.33109
\(107\) −10.0000 −0.966736 −0.483368 0.875417i \(-0.660587\pi\)
−0.483368 + 0.875417i \(0.660587\pi\)
\(108\) 0 0
\(109\) −6.00000 −0.574696 −0.287348 0.957826i \(-0.592774\pi\)
−0.287348 + 0.957826i \(0.592774\pi\)
\(110\) −8.00000 −0.762770
\(111\) 0 0
\(112\) 0 0
\(113\) 8.00000 0.752577 0.376288 0.926503i \(-0.377200\pi\)
0.376288 + 0.926503i \(0.377200\pi\)
\(114\) 0 0
\(115\) −3.00000 −0.279751
\(116\) −20.0000 −1.85695
\(117\) 0 0
\(118\) 24.0000 2.20938
\(119\) 0 0
\(120\) 0 0
\(121\) 5.00000 0.454545
\(122\) −20.0000 −1.81071
\(123\) 0 0
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) 12.0000 1.06483 0.532414 0.846484i \(-0.321285\pi\)
0.532414 + 0.846484i \(0.321285\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 8.00000 0.701646
\(131\) 5.00000 0.436852 0.218426 0.975854i \(-0.429908\pi\)
0.218426 + 0.975854i \(0.429908\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −20.0000 −1.72774
\(135\) 0 0
\(136\) 0 0
\(137\) 18.0000 1.53784 0.768922 0.639343i \(-0.220793\pi\)
0.768922 + 0.639343i \(0.220793\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 12.0000 1.00702
\(143\) −16.0000 −1.33799
\(144\) 0 0
\(145\) 10.0000 0.830455
\(146\) −12.0000 −0.993127
\(147\) 0 0
\(148\) −12.0000 −0.986394
\(149\) 9.00000 0.737309 0.368654 0.929567i \(-0.379819\pi\)
0.368654 + 0.929567i \(0.379819\pi\)
\(150\) 0 0
\(151\) −10.0000 −0.813788 −0.406894 0.913475i \(-0.633388\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 1.00000 0.0798087 0.0399043 0.999204i \(-0.487295\pi\)
0.0399043 + 0.999204i \(0.487295\pi\)
\(158\) 20.0000 1.59111
\(159\) 0 0
\(160\) −8.00000 −0.632456
\(161\) 0 0
\(162\) 0 0
\(163\) 19.0000 1.48819 0.744097 0.668071i \(-0.232880\pi\)
0.744097 + 0.668071i \(0.232880\pi\)
\(164\) −4.00000 −0.312348
\(165\) 0 0
\(166\) 6.00000 0.465690
\(167\) 2.00000 0.154765 0.0773823 0.997001i \(-0.475344\pi\)
0.0773823 + 0.997001i \(0.475344\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) −6.00000 −0.460179
\(171\) 0 0
\(172\) −14.0000 −1.06749
\(173\) −14.0000 −1.06440 −0.532200 0.846619i \(-0.678635\pi\)
−0.532200 + 0.846619i \(0.678635\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 16.0000 1.20605
\(177\) 0 0
\(178\) −28.0000 −2.09869
\(179\) 16.0000 1.19590 0.597948 0.801535i \(-0.295983\pi\)
0.597948 + 0.801535i \(0.295983\pi\)
\(180\) 0 0
\(181\) −14.0000 −1.04061 −0.520306 0.853980i \(-0.674182\pi\)
−0.520306 + 0.853980i \(0.674182\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 6.00000 0.441129
\(186\) 0 0
\(187\) 12.0000 0.877527
\(188\) 0 0
\(189\) 0 0
\(190\) −2.00000 −0.145095
\(191\) 17.0000 1.23008 0.615038 0.788497i \(-0.289140\pi\)
0.615038 + 0.788497i \(0.289140\pi\)
\(192\) 0 0
\(193\) −16.0000 −1.15171 −0.575853 0.817554i \(-0.695330\pi\)
−0.575853 + 0.817554i \(0.695330\pi\)
\(194\) 24.0000 1.72310
\(195\) 0 0
\(196\) 0 0
\(197\) 11.0000 0.783718 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(198\) 0 0
\(199\) −27.0000 −1.91398 −0.956990 0.290122i \(-0.906304\pi\)
−0.956990 + 0.290122i \(0.906304\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 22.0000 1.54791
\(203\) 0 0
\(204\) 0 0
\(205\) 2.00000 0.139686
\(206\) −16.0000 −1.11477
\(207\) 0 0
\(208\) −16.0000 −1.10940
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 24.0000 1.64833
\(213\) 0 0
\(214\) 20.0000 1.36717
\(215\) 7.00000 0.477396
\(216\) 0 0
\(217\) 0 0
\(218\) 12.0000 0.812743
\(219\) 0 0
\(220\) 8.00000 0.539360
\(221\) −12.0000 −0.807207
\(222\) 0 0
\(223\) 10.0000 0.669650 0.334825 0.942280i \(-0.391323\pi\)
0.334825 + 0.942280i \(0.391323\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −16.0000 −1.06430
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 6.00000 0.395628
\(231\) 0 0
\(232\) 0 0
\(233\) −9.00000 −0.589610 −0.294805 0.955557i \(-0.595255\pi\)
−0.294805 + 0.955557i \(0.595255\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −24.0000 −1.56227
\(237\) 0 0
\(238\) 0 0
\(239\) −9.00000 −0.582162 −0.291081 0.956698i \(-0.594015\pi\)
−0.291081 + 0.956698i \(0.594015\pi\)
\(240\) 0 0
\(241\) −28.0000 −1.80364 −0.901819 0.432113i \(-0.857768\pi\)
−0.901819 + 0.432113i \(0.857768\pi\)
\(242\) −10.0000 −0.642824
\(243\) 0 0
\(244\) 20.0000 1.28037
\(245\) 0 0
\(246\) 0 0
\(247\) −4.00000 −0.254514
\(248\) 0 0
\(249\) 0 0
\(250\) −18.0000 −1.13842
\(251\) 23.0000 1.45175 0.725874 0.687828i \(-0.241436\pi\)
0.725874 + 0.687828i \(0.241436\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) −24.0000 −1.50589
\(255\) 0 0
\(256\) 16.0000 1.00000
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −8.00000 −0.496139
\(261\) 0 0
\(262\) −10.0000 −0.617802
\(263\) 17.0000 1.04826 0.524132 0.851637i \(-0.324390\pi\)
0.524132 + 0.851637i \(0.324390\pi\)
\(264\) 0 0
\(265\) −12.0000 −0.737154
\(266\) 0 0
\(267\) 0 0
\(268\) 20.0000 1.22169
\(269\) 18.0000 1.09748 0.548740 0.835993i \(-0.315108\pi\)
0.548740 + 0.835993i \(0.315108\pi\)
\(270\) 0 0
\(271\) −23.0000 −1.39715 −0.698575 0.715537i \(-0.746182\pi\)
−0.698575 + 0.715537i \(0.746182\pi\)
\(272\) 12.0000 0.727607
\(273\) 0 0
\(274\) −36.0000 −2.17484
\(275\) 16.0000 0.964836
\(276\) 0 0
\(277\) 22.0000 1.32185 0.660926 0.750451i \(-0.270164\pi\)
0.660926 + 0.750451i \(0.270164\pi\)
\(278\) 24.0000 1.43942
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 0 0
\(283\) 1.00000 0.0594438 0.0297219 0.999558i \(-0.490538\pi\)
0.0297219 + 0.999558i \(0.490538\pi\)
\(284\) −12.0000 −0.712069
\(285\) 0 0
\(286\) 32.0000 1.89220
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −20.0000 −1.17444
\(291\) 0 0
\(292\) 12.0000 0.702247
\(293\) 16.0000 0.934730 0.467365 0.884064i \(-0.345203\pi\)
0.467365 + 0.884064i \(0.345203\pi\)
\(294\) 0 0
\(295\) 12.0000 0.698667
\(296\) 0 0
\(297\) 0 0
\(298\) −18.0000 −1.04271
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 0 0
\(302\) 20.0000 1.15087
\(303\) 0 0
\(304\) 4.00000 0.229416
\(305\) −10.0000 −0.572598
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.00000 −0.170114 −0.0850572 0.996376i \(-0.527107\pi\)
−0.0850572 + 0.996376i \(0.527107\pi\)
\(312\) 0 0
\(313\) 11.0000 0.621757 0.310878 0.950450i \(-0.399377\pi\)
0.310878 + 0.950450i \(0.399377\pi\)
\(314\) −2.00000 −0.112867
\(315\) 0 0
\(316\) −20.0000 −1.12509
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 40.0000 2.23957
\(320\) 8.00000 0.447214
\(321\) 0 0
\(322\) 0 0
\(323\) 3.00000 0.166924
\(324\) 0 0
\(325\) −16.0000 −0.887520
\(326\) −38.0000 −2.10463
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −22.0000 −1.20923 −0.604615 0.796518i \(-0.706673\pi\)
−0.604615 + 0.796518i \(0.706673\pi\)
\(332\) −6.00000 −0.329293
\(333\) 0 0
\(334\) −4.00000 −0.218870
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −8.00000 −0.435788 −0.217894 0.975972i \(-0.569919\pi\)
−0.217894 + 0.975972i \(0.569919\pi\)
\(338\) −6.00000 −0.326357
\(339\) 0 0
\(340\) 6.00000 0.325396
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 28.0000 1.50529
\(347\) −29.0000 −1.55680 −0.778401 0.627768i \(-0.783969\pi\)
−0.778401 + 0.627768i \(0.783969\pi\)
\(348\) 0 0
\(349\) 13.0000 0.695874 0.347937 0.937518i \(-0.386882\pi\)
0.347937 + 0.937518i \(0.386882\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −32.0000 −1.70561
\(353\) 26.0000 1.38384 0.691920 0.721974i \(-0.256765\pi\)
0.691920 + 0.721974i \(0.256765\pi\)
\(354\) 0 0
\(355\) 6.00000 0.318447
\(356\) 28.0000 1.48400
\(357\) 0 0
\(358\) −32.0000 −1.69125
\(359\) −20.0000 −1.05556 −0.527780 0.849381i \(-0.676975\pi\)
−0.527780 + 0.849381i \(0.676975\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 28.0000 1.47165
\(363\) 0 0
\(364\) 0 0
\(365\) −6.00000 −0.314054
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −12.0000 −0.625543
\(369\) 0 0
\(370\) −12.0000 −0.623850
\(371\) 0 0
\(372\) 0 0
\(373\) 32.0000 1.65690 0.828449 0.560065i \(-0.189224\pi\)
0.828449 + 0.560065i \(0.189224\pi\)
\(374\) −24.0000 −1.24101
\(375\) 0 0
\(376\) 0 0
\(377\) −40.0000 −2.06010
\(378\) 0 0
\(379\) 12.0000 0.616399 0.308199 0.951322i \(-0.400274\pi\)
0.308199 + 0.951322i \(0.400274\pi\)
\(380\) 2.00000 0.102598
\(381\) 0 0
\(382\) −34.0000 −1.73959
\(383\) −12.0000 −0.613171 −0.306586 0.951843i \(-0.599187\pi\)
−0.306586 + 0.951843i \(0.599187\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 32.0000 1.62876
\(387\) 0 0
\(388\) −24.0000 −1.21842
\(389\) 3.00000 0.152106 0.0760530 0.997104i \(-0.475768\pi\)
0.0760530 + 0.997104i \(0.475768\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) −22.0000 −1.10834
\(395\) 10.0000 0.503155
\(396\) 0 0
\(397\) −15.0000 −0.752828 −0.376414 0.926451i \(-0.622843\pi\)
−0.376414 + 0.926451i \(0.622843\pi\)
\(398\) 54.0000 2.70678
\(399\) 0 0
\(400\) 16.0000 0.800000
\(401\) 12.0000 0.599251 0.299626 0.954057i \(-0.403138\pi\)
0.299626 + 0.954057i \(0.403138\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −22.0000 −1.09454
\(405\) 0 0
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) 32.0000 1.58230 0.791149 0.611623i \(-0.209483\pi\)
0.791149 + 0.611623i \(0.209483\pi\)
\(410\) −4.00000 −0.197546
\(411\) 0 0
\(412\) 16.0000 0.788263
\(413\) 0 0
\(414\) 0 0
\(415\) 3.00000 0.147264
\(416\) 32.0000 1.56893
\(417\) 0 0
\(418\) −8.00000 −0.391293
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 8.00000 0.389896 0.194948 0.980814i \(-0.437546\pi\)
0.194948 + 0.980814i \(0.437546\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) −20.0000 −0.966736
\(429\) 0 0
\(430\) −14.0000 −0.675140
\(431\) 12.0000 0.578020 0.289010 0.957326i \(-0.406674\pi\)
0.289010 + 0.957326i \(0.406674\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −12.0000 −0.574696
\(437\) −3.00000 −0.143509
\(438\) 0 0
\(439\) 30.0000 1.43182 0.715911 0.698192i \(-0.246012\pi\)
0.715911 + 0.698192i \(0.246012\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 24.0000 1.14156
\(443\) 21.0000 0.997740 0.498870 0.866677i \(-0.333748\pi\)
0.498870 + 0.866677i \(0.333748\pi\)
\(444\) 0 0
\(445\) −14.0000 −0.663664
\(446\) −20.0000 −0.947027
\(447\) 0 0
\(448\) 0 0
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) 8.00000 0.376705
\(452\) 16.0000 0.752577
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 22.0000 1.02912 0.514558 0.857455i \(-0.327956\pi\)
0.514558 + 0.857455i \(0.327956\pi\)
\(458\) 14.0000 0.654177
\(459\) 0 0
\(460\) −6.00000 −0.279751
\(461\) −26.0000 −1.21094 −0.605470 0.795868i \(-0.707015\pi\)
−0.605470 + 0.795868i \(0.707015\pi\)
\(462\) 0 0
\(463\) 4.00000 0.185896 0.0929479 0.995671i \(-0.470371\pi\)
0.0929479 + 0.995671i \(0.470371\pi\)
\(464\) 40.0000 1.85695
\(465\) 0 0
\(466\) 18.0000 0.833834
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 28.0000 1.28744
\(474\) 0 0
\(475\) 4.00000 0.183533
\(476\) 0 0
\(477\) 0 0
\(478\) 18.0000 0.823301
\(479\) −11.0000 −0.502603 −0.251301 0.967909i \(-0.580859\pi\)
−0.251301 + 0.967909i \(0.580859\pi\)
\(480\) 0 0
\(481\) −24.0000 −1.09431
\(482\) 56.0000 2.55073
\(483\) 0 0
\(484\) 10.0000 0.454545
\(485\) 12.0000 0.544892
\(486\) 0 0
\(487\) −32.0000 −1.45006 −0.725029 0.688718i \(-0.758174\pi\)
−0.725029 + 0.688718i \(0.758174\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.00000 0.0451294 0.0225647 0.999745i \(-0.492817\pi\)
0.0225647 + 0.999745i \(0.492817\pi\)
\(492\) 0 0
\(493\) 30.0000 1.35113
\(494\) 8.00000 0.359937
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.00000 0.313363 0.156682 0.987649i \(-0.449920\pi\)
0.156682 + 0.987649i \(0.449920\pi\)
\(500\) 18.0000 0.804984
\(501\) 0 0
\(502\) −46.0000 −2.05308
\(503\) 3.00000 0.133763 0.0668817 0.997761i \(-0.478695\pi\)
0.0668817 + 0.997761i \(0.478695\pi\)
\(504\) 0 0
\(505\) 11.0000 0.489494
\(506\) 24.0000 1.06693
\(507\) 0 0
\(508\) 24.0000 1.06483
\(509\) −38.0000 −1.68432 −0.842160 0.539227i \(-0.818716\pi\)
−0.842160 + 0.539227i \(0.818716\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) 4.00000 0.176432
\(515\) −8.00000 −0.352522
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 40.0000 1.74908 0.874539 0.484955i \(-0.161164\pi\)
0.874539 + 0.484955i \(0.161164\pi\)
\(524\) 10.0000 0.436852
\(525\) 0 0
\(526\) −34.0000 −1.48247
\(527\) 0 0
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) 24.0000 1.04249
\(531\) 0 0
\(532\) 0 0
\(533\) −8.00000 −0.346518
\(534\) 0 0
\(535\) 10.0000 0.432338
\(536\) 0 0
\(537\) 0 0
\(538\) −36.0000 −1.55207
\(539\) 0 0
\(540\) 0 0
\(541\) 35.0000 1.50477 0.752384 0.658725i \(-0.228904\pi\)
0.752384 + 0.658725i \(0.228904\pi\)
\(542\) 46.0000 1.97587
\(543\) 0 0
\(544\) −24.0000 −1.02899
\(545\) 6.00000 0.257012
\(546\) 0 0
\(547\) −2.00000 −0.0855138 −0.0427569 0.999086i \(-0.513614\pi\)
−0.0427569 + 0.999086i \(0.513614\pi\)
\(548\) 36.0000 1.53784
\(549\) 0 0
\(550\) −32.0000 −1.36448
\(551\) 10.0000 0.426014
\(552\) 0 0
\(553\) 0 0
\(554\) −44.0000 −1.86938
\(555\) 0 0
\(556\) −24.0000 −1.01783
\(557\) −7.00000 −0.296600 −0.148300 0.988942i \(-0.547380\pi\)
−0.148300 + 0.988942i \(0.547380\pi\)
\(558\) 0 0
\(559\) −28.0000 −1.18427
\(560\) 0 0
\(561\) 0 0
\(562\) 40.0000 1.68730
\(563\) −10.0000 −0.421450 −0.210725 0.977545i \(-0.567582\pi\)
−0.210725 + 0.977545i \(0.567582\pi\)
\(564\) 0 0
\(565\) −8.00000 −0.336563
\(566\) −2.00000 −0.0840663
\(567\) 0 0
\(568\) 0 0
\(569\) 20.0000 0.838444 0.419222 0.907884i \(-0.362303\pi\)
0.419222 + 0.907884i \(0.362303\pi\)
\(570\) 0 0
\(571\) 5.00000 0.209243 0.104622 0.994512i \(-0.466637\pi\)
0.104622 + 0.994512i \(0.466637\pi\)
\(572\) −32.0000 −1.33799
\(573\) 0 0
\(574\) 0 0
\(575\) −12.0000 −0.500435
\(576\) 0 0
\(577\) −2.00000 −0.0832611 −0.0416305 0.999133i \(-0.513255\pi\)
−0.0416305 + 0.999133i \(0.513255\pi\)
\(578\) 16.0000 0.665512
\(579\) 0 0
\(580\) 20.0000 0.830455
\(581\) 0 0
\(582\) 0 0
\(583\) −48.0000 −1.98796
\(584\) 0 0
\(585\) 0 0
\(586\) −32.0000 −1.32191
\(587\) −7.00000 −0.288921 −0.144460 0.989511i \(-0.546145\pi\)
−0.144460 + 0.989511i \(0.546145\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) −24.0000 −0.988064
\(591\) 0 0
\(592\) 24.0000 0.986394
\(593\) 39.0000 1.60154 0.800769 0.598973i \(-0.204424\pi\)
0.800769 + 0.598973i \(0.204424\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) 0 0
\(598\) −24.0000 −0.981433
\(599\) −12.0000 −0.490307 −0.245153 0.969484i \(-0.578838\pi\)
−0.245153 + 0.969484i \(0.578838\pi\)
\(600\) 0 0
\(601\) −30.0000 −1.22373 −0.611863 0.790964i \(-0.709580\pi\)
−0.611863 + 0.790964i \(0.709580\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −20.0000 −0.813788
\(605\) −5.00000 −0.203279
\(606\) 0 0
\(607\) −22.0000 −0.892952 −0.446476 0.894795i \(-0.647321\pi\)
−0.446476 + 0.894795i \(0.647321\pi\)
\(608\) −8.00000 −0.324443
\(609\) 0 0
\(610\) 20.0000 0.809776
\(611\) 0 0
\(612\) 0 0
\(613\) 25.0000 1.00974 0.504870 0.863195i \(-0.331540\pi\)
0.504870 + 0.863195i \(0.331540\pi\)
\(614\) −44.0000 −1.77570
\(615\) 0 0
\(616\) 0 0
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) 0 0
\(619\) −35.0000 −1.40677 −0.703384 0.710810i \(-0.748329\pi\)
−0.703384 + 0.710810i \(0.748329\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) 0 0
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) −22.0000 −0.879297
\(627\) 0 0
\(628\) 2.00000 0.0798087
\(629\) 18.0000 0.717707
\(630\) 0 0
\(631\) 5.00000 0.199047 0.0995234 0.995035i \(-0.468268\pi\)
0.0995234 + 0.995035i \(0.468268\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −12.0000 −0.476205
\(636\) 0 0
\(637\) 0 0
\(638\) −80.0000 −3.16723
\(639\) 0 0
\(640\) 0 0
\(641\) 30.0000 1.18493 0.592464 0.805597i \(-0.298155\pi\)
0.592464 + 0.805597i \(0.298155\pi\)
\(642\) 0 0
\(643\) 11.0000 0.433798 0.216899 0.976194i \(-0.430406\pi\)
0.216899 + 0.976194i \(0.430406\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −6.00000 −0.236067
\(647\) −23.0000 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(648\) 0 0
\(649\) 48.0000 1.88416
\(650\) 32.0000 1.25514
\(651\) 0 0
\(652\) 38.0000 1.48819
\(653\) 21.0000 0.821794 0.410897 0.911682i \(-0.365216\pi\)
0.410897 + 0.911682i \(0.365216\pi\)
\(654\) 0 0
\(655\) −5.00000 −0.195366
\(656\) 8.00000 0.312348
\(657\) 0 0
\(658\) 0 0
\(659\) 30.0000 1.16863 0.584317 0.811525i \(-0.301362\pi\)
0.584317 + 0.811525i \(0.301362\pi\)
\(660\) 0 0
\(661\) 40.0000 1.55582 0.777910 0.628376i \(-0.216280\pi\)
0.777910 + 0.628376i \(0.216280\pi\)
\(662\) 44.0000 1.71011
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −30.0000 −1.16160
\(668\) 4.00000 0.154765
\(669\) 0 0
\(670\) 20.0000 0.772667
\(671\) −40.0000 −1.54418
\(672\) 0 0
\(673\) 16.0000 0.616755 0.308377 0.951264i \(-0.400214\pi\)
0.308377 + 0.951264i \(0.400214\pi\)
\(674\) 16.0000 0.616297
\(675\) 0 0
\(676\) 6.00000 0.230769
\(677\) −30.0000 −1.15299 −0.576497 0.817099i \(-0.695581\pi\)
−0.576497 + 0.817099i \(0.695581\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36.0000 1.37750 0.688751 0.724998i \(-0.258159\pi\)
0.688751 + 0.724998i \(0.258159\pi\)
\(684\) 0 0
\(685\) −18.0000 −0.687745
\(686\) 0 0
\(687\) 0 0
\(688\) 28.0000 1.06749
\(689\) 48.0000 1.82865
\(690\) 0 0
\(691\) 41.0000 1.55971 0.779857 0.625958i \(-0.215292\pi\)
0.779857 + 0.625958i \(0.215292\pi\)
\(692\) −28.0000 −1.06440
\(693\) 0 0
\(694\) 58.0000 2.20165
\(695\) 12.0000 0.455186
\(696\) 0 0
\(697\) 6.00000 0.227266
\(698\) −26.0000 −0.984115
\(699\) 0 0
\(700\) 0 0
\(701\) 21.0000 0.793159 0.396580 0.918000i \(-0.370197\pi\)
0.396580 + 0.918000i \(0.370197\pi\)
\(702\) 0 0
\(703\) 6.00000 0.226294
\(704\) 32.0000 1.20605
\(705\) 0 0
\(706\) −52.0000 −1.95705
\(707\) 0 0
\(708\) 0 0
\(709\) 21.0000 0.788672 0.394336 0.918966i \(-0.370975\pi\)
0.394336 + 0.918966i \(0.370975\pi\)
\(710\) −12.0000 −0.450352
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 16.0000 0.598366
\(716\) 32.0000 1.19590
\(717\) 0 0
\(718\) 40.0000 1.49279
\(719\) −21.0000 −0.783168 −0.391584 0.920142i \(-0.628073\pi\)
−0.391584 + 0.920142i \(0.628073\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −2.00000 −0.0744323
\(723\) 0 0
\(724\) −28.0000 −1.04061
\(725\) 40.0000 1.48556
\(726\) 0 0
\(727\) 47.0000 1.74313 0.871567 0.490277i \(-0.163104\pi\)
0.871567 + 0.490277i \(0.163104\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) 21.0000 0.776713
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 24.0000 0.884652
\(737\) −40.0000 −1.47342
\(738\) 0 0
\(739\) 51.0000 1.87607 0.938033 0.346547i \(-0.112646\pi\)
0.938033 + 0.346547i \(0.112646\pi\)
\(740\) 12.0000 0.441129
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) −9.00000 −0.329734
\(746\) −64.0000 −2.34321
\(747\) 0 0
\(748\) 24.0000 0.877527
\(749\) 0 0
\(750\) 0 0
\(751\) −14.0000 −0.510867 −0.255434 0.966827i \(-0.582218\pi\)
−0.255434 + 0.966827i \(0.582218\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 80.0000 2.91343
\(755\) 10.0000 0.363937
\(756\) 0 0
\(757\) 2.00000 0.0726912 0.0363456 0.999339i \(-0.488428\pi\)
0.0363456 + 0.999339i \(0.488428\pi\)
\(758\) −24.0000 −0.871719
\(759\) 0 0
\(760\) 0 0
\(761\) 21.0000 0.761249 0.380625 0.924730i \(-0.375709\pi\)
0.380625 + 0.924730i \(0.375709\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 34.0000 1.23008
\(765\) 0 0
\(766\) 24.0000 0.867155
\(767\) −48.0000 −1.73318
\(768\) 0 0
\(769\) −37.0000 −1.33425 −0.667127 0.744944i \(-0.732476\pi\)
−0.667127 + 0.744944i \(0.732476\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −32.0000 −1.15171
\(773\) 28.0000 1.00709 0.503545 0.863969i \(-0.332029\pi\)
0.503545 + 0.863969i \(0.332029\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −6.00000 −0.215110
\(779\) 2.00000 0.0716574
\(780\) 0 0
\(781\) 24.0000 0.858788
\(782\) 18.0000 0.643679
\(783\) 0 0
\(784\) 0 0
\(785\) −1.00000 −0.0356915
\(786\) 0 0
\(787\) 46.0000 1.63972 0.819861 0.572562i \(-0.194050\pi\)
0.819861 + 0.572562i \(0.194050\pi\)
\(788\) 22.0000 0.783718
\(789\) 0 0
\(790\) −20.0000 −0.711568
\(791\) 0 0
\(792\) 0 0
\(793\) 40.0000 1.42044
\(794\) 30.0000 1.06466
\(795\) 0 0
\(796\) −54.0000 −1.91398
\(797\) −4.00000 −0.141687 −0.0708436 0.997487i \(-0.522569\pi\)
−0.0708436 + 0.997487i \(0.522569\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −32.0000 −1.13137
\(801\) 0 0
\(802\) −24.0000 −0.847469
\(803\) −24.0000 −0.846942
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27.0000 0.949269 0.474635 0.880183i \(-0.342580\pi\)
0.474635 + 0.880183i \(0.342580\pi\)
\(810\) 0 0
\(811\) 32.0000 1.12367 0.561836 0.827249i \(-0.310095\pi\)
0.561836 + 0.827249i \(0.310095\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) −48.0000 −1.68240
\(815\) −19.0000 −0.665541
\(816\) 0 0
\(817\) 7.00000 0.244899
\(818\) −64.0000 −2.23771
\(819\) 0 0
\(820\) 4.00000 0.139686
\(821\) 10.0000 0.349002 0.174501 0.984657i \(-0.444169\pi\)
0.174501 + 0.984657i \(0.444169\pi\)
\(822\) 0 0
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.00000 0.208640 0.104320 0.994544i \(-0.466733\pi\)
0.104320 + 0.994544i \(0.466733\pi\)
\(828\) 0 0
\(829\) −52.0000 −1.80603 −0.903017 0.429604i \(-0.858653\pi\)
−0.903017 + 0.429604i \(0.858653\pi\)
\(830\) −6.00000 −0.208263
\(831\) 0 0
\(832\) −32.0000 −1.10940
\(833\) 0 0
\(834\) 0 0
\(835\) −2.00000 −0.0692129
\(836\) 8.00000 0.276686
\(837\) 0 0
\(838\) −18.0000 −0.621800
\(839\) 56.0000 1.93333 0.966667 0.256036i \(-0.0824164\pi\)
0.966667 + 0.256036i \(0.0824164\pi\)
\(840\) 0 0
\(841\) 71.0000 2.44828
\(842\) −16.0000 −0.551396
\(843\) 0 0
\(844\) 8.00000 0.275371
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) 0 0
\(848\) −48.0000 −1.64833
\(849\) 0 0
\(850\) −24.0000 −0.823193
\(851\) −18.0000 −0.617032
\(852\) 0 0
\(853\) −37.0000 −1.26686 −0.633428 0.773802i \(-0.718353\pi\)
−0.633428 + 0.773802i \(0.718353\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −40.0000 −1.36637 −0.683187 0.730243i \(-0.739407\pi\)
−0.683187 + 0.730243i \(0.739407\pi\)
\(858\) 0 0
\(859\) 17.0000 0.580033 0.290016 0.957022i \(-0.406339\pi\)
0.290016 + 0.957022i \(0.406339\pi\)
\(860\) 14.0000 0.477396
\(861\) 0 0
\(862\) −24.0000 −0.817443
\(863\) 12.0000 0.408485 0.204242 0.978920i \(-0.434527\pi\)
0.204242 + 0.978920i \(0.434527\pi\)
\(864\) 0 0
\(865\) 14.0000 0.476014
\(866\) 28.0000 0.951479
\(867\) 0 0
\(868\) 0 0
\(869\) 40.0000 1.35691
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) 0 0
\(873\) 0 0
\(874\) 6.00000 0.202953
\(875\) 0 0
\(876\) 0 0
\(877\) −32.0000 −1.08056 −0.540282 0.841484i \(-0.681682\pi\)
−0.540282 + 0.841484i \(0.681682\pi\)
\(878\) −60.0000 −2.02490
\(879\) 0 0
\(880\) −16.0000 −0.539360
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) 47.0000 1.58168 0.790838 0.612026i \(-0.209645\pi\)
0.790838 + 0.612026i \(0.209645\pi\)
\(884\) −24.0000 −0.807207
\(885\) 0 0
\(886\) −42.0000 −1.41102
\(887\) −14.0000 −0.470074 −0.235037 0.971986i \(-0.575521\pi\)
−0.235037 + 0.971986i \(0.575521\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 28.0000 0.938562
\(891\) 0 0
\(892\) 20.0000 0.669650
\(893\) 0 0
\(894\) 0 0
\(895\) −16.0000 −0.534821
\(896\) 0 0
\(897\) 0 0
\(898\) 12.0000 0.400445
\(899\) 0 0
\(900\) 0 0
\(901\) −36.0000 −1.19933
\(902\) −16.0000 −0.532742
\(903\) 0 0
\(904\) 0 0
\(905\) 14.0000 0.465376
\(906\) 0 0
\(907\) 20.0000 0.664089 0.332045 0.943264i \(-0.392262\pi\)
0.332045 + 0.943264i \(0.392262\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 42.0000 1.39152 0.695761 0.718273i \(-0.255067\pi\)
0.695761 + 0.718273i \(0.255067\pi\)
\(912\) 0 0
\(913\) 12.0000 0.397142
\(914\) −44.0000 −1.45539
\(915\) 0 0
\(916\) −14.0000 −0.462573
\(917\) 0 0
\(918\) 0 0
\(919\) −7.00000 −0.230909 −0.115454 0.993313i \(-0.536832\pi\)
−0.115454 + 0.993313i \(0.536832\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 52.0000 1.71253
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 24.0000 0.789115
\(926\) −8.00000 −0.262896
\(927\) 0 0
\(928\) −80.0000 −2.62613
\(929\) 55.0000 1.80449 0.902246 0.431222i \(-0.141918\pi\)
0.902246 + 0.431222i \(0.141918\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −18.0000 −0.589610
\(933\) 0 0
\(934\) 72.0000 2.35591
\(935\) −12.0000 −0.392442
\(936\) 0 0
\(937\) 57.0000 1.86211 0.931054 0.364880i \(-0.118890\pi\)
0.931054 + 0.364880i \(0.118890\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −20.0000 −0.651981 −0.325991 0.945373i \(-0.605698\pi\)
−0.325991 + 0.945373i \(0.605698\pi\)
\(942\) 0 0
\(943\) −6.00000 −0.195387
\(944\) 48.0000 1.56227
\(945\) 0 0
\(946\) −56.0000 −1.82072
\(947\) 28.0000 0.909878 0.454939 0.890523i \(-0.349661\pi\)
0.454939 + 0.890523i \(0.349661\pi\)
\(948\) 0 0
\(949\) 24.0000 0.779073
\(950\) −8.00000 −0.259554
\(951\) 0 0
\(952\) 0 0
\(953\) 34.0000 1.10137 0.550684 0.834714i \(-0.314367\pi\)
0.550684 + 0.834714i \(0.314367\pi\)
\(954\) 0 0
\(955\) −17.0000 −0.550107
\(956\) −18.0000 −0.582162
\(957\) 0 0
\(958\) 22.0000 0.710788
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 48.0000 1.54758
\(963\) 0 0
\(964\) −56.0000 −1.80364
\(965\) 16.0000 0.515058
\(966\) 0 0
\(967\) −32.0000 −1.02905 −0.514525 0.857475i \(-0.672032\pi\)
−0.514525 + 0.857475i \(0.672032\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −24.0000 −0.770594
\(971\) −48.0000 −1.54039 −0.770197 0.637806i \(-0.779842\pi\)
−0.770197 + 0.637806i \(0.779842\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 64.0000 2.05069
\(975\) 0 0
\(976\) −40.0000 −1.28037
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 0 0
\(979\) −56.0000 −1.78977
\(980\) 0 0
\(981\) 0 0
\(982\) −2.00000 −0.0638226
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 0 0
\(985\) −11.0000 −0.350489
\(986\) −60.0000 −1.91079
\(987\) 0 0
\(988\) −8.00000 −0.254514
\(989\) −21.0000 −0.667761
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 27.0000 0.855958
\(996\) 0 0
\(997\) 25.0000 0.791758 0.395879 0.918303i \(-0.370440\pi\)
0.395879 + 0.918303i \(0.370440\pi\)
\(998\) −14.0000 −0.443162
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8379.2.a.b.1.1 1
3.2 odd 2 2793.2.a.l.1.1 1
7.2 even 3 1197.2.j.b.172.1 2
7.4 even 3 1197.2.j.b.856.1 2
7.6 odd 2 8379.2.a.c.1.1 1
21.2 odd 6 399.2.j.a.172.1 yes 2
21.11 odd 6 399.2.j.a.58.1 2
21.20 even 2 2793.2.a.k.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
399.2.j.a.58.1 2 21.11 odd 6
399.2.j.a.172.1 yes 2 21.2 odd 6
1197.2.j.b.172.1 2 7.2 even 3
1197.2.j.b.856.1 2 7.4 even 3
2793.2.a.k.1.1 1 21.20 even 2
2793.2.a.l.1.1 1 3.2 odd 2
8379.2.a.b.1.1 1 1.1 even 1 trivial
8379.2.a.c.1.1 1 7.6 odd 2