Properties

Label 8349.2.a.i.1.2
Level $8349$
Weight $2$
Character 8349.1
Self dual yes
Analytic conductor $66.667$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8349,2,Mod(1,8349)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8349, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8349.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8349 = 3 \cdot 11^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8349.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.6671006476\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 69)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 8349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607 q^{2} -1.00000 q^{3} +3.00000 q^{4} +1.23607 q^{5} -2.23607 q^{6} -3.23607 q^{7} +2.23607 q^{8} +1.00000 q^{9} +2.76393 q^{10} -3.00000 q^{12} +4.47214 q^{13} -7.23607 q^{14} -1.23607 q^{15} -1.00000 q^{16} +2.76393 q^{17} +2.23607 q^{18} -7.23607 q^{19} +3.70820 q^{20} +3.23607 q^{21} +1.00000 q^{23} -2.23607 q^{24} -3.47214 q^{25} +10.0000 q^{26} -1.00000 q^{27} -9.70820 q^{28} -4.47214 q^{29} -2.76393 q^{30} -6.47214 q^{31} -6.70820 q^{32} +6.18034 q^{34} -4.00000 q^{35} +3.00000 q^{36} +4.47214 q^{37} -16.1803 q^{38} -4.47214 q^{39} +2.76393 q^{40} +10.9443 q^{41} +7.23607 q^{42} +5.70820 q^{43} +1.23607 q^{45} +2.23607 q^{46} -4.00000 q^{47} +1.00000 q^{48} +3.47214 q^{49} -7.76393 q^{50} -2.76393 q^{51} +13.4164 q^{52} -5.23607 q^{53} -2.23607 q^{54} -7.23607 q^{56} +7.23607 q^{57} -10.0000 q^{58} -4.94427 q^{59} -3.70820 q^{60} -4.47214 q^{61} -14.4721 q^{62} -3.23607 q^{63} -13.0000 q^{64} +5.52786 q^{65} +0.763932 q^{67} +8.29180 q^{68} -1.00000 q^{69} -8.94427 q^{70} -8.00000 q^{71} +2.23607 q^{72} -6.94427 q^{73} +10.0000 q^{74} +3.47214 q^{75} -21.7082 q^{76} -10.0000 q^{78} -9.70820 q^{79} -1.23607 q^{80} +1.00000 q^{81} +24.4721 q^{82} -4.00000 q^{83} +9.70820 q^{84} +3.41641 q^{85} +12.7639 q^{86} +4.47214 q^{87} -1.23607 q^{89} +2.76393 q^{90} -14.4721 q^{91} +3.00000 q^{92} +6.47214 q^{93} -8.94427 q^{94} -8.94427 q^{95} +6.70820 q^{96} +8.47214 q^{97} +7.76393 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 6 q^{4} - 2 q^{5} - 2 q^{7} + 2 q^{9} + 10 q^{10} - 6 q^{12} - 10 q^{14} + 2 q^{15} - 2 q^{16} + 10 q^{17} - 10 q^{19} - 6 q^{20} + 2 q^{21} + 2 q^{23} + 2 q^{25} + 20 q^{26} - 2 q^{27}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.23607 1.58114 0.790569 0.612372i \(-0.209785\pi\)
0.790569 + 0.612372i \(0.209785\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.00000 1.50000
\(5\) 1.23607 0.552786 0.276393 0.961045i \(-0.410861\pi\)
0.276393 + 0.961045i \(0.410861\pi\)
\(6\) −2.23607 −0.912871
\(7\) −3.23607 −1.22312 −0.611559 0.791199i \(-0.709457\pi\)
−0.611559 + 0.791199i \(0.709457\pi\)
\(8\) 2.23607 0.790569
\(9\) 1.00000 0.333333
\(10\) 2.76393 0.874032
\(11\) 0 0
\(12\) −3.00000 −0.866025
\(13\) 4.47214 1.24035 0.620174 0.784465i \(-0.287062\pi\)
0.620174 + 0.784465i \(0.287062\pi\)
\(14\) −7.23607 −1.93392
\(15\) −1.23607 −0.319151
\(16\) −1.00000 −0.250000
\(17\) 2.76393 0.670352 0.335176 0.942156i \(-0.391204\pi\)
0.335176 + 0.942156i \(0.391204\pi\)
\(18\) 2.23607 0.527046
\(19\) −7.23607 −1.66007 −0.830034 0.557713i \(-0.811679\pi\)
−0.830034 + 0.557713i \(0.811679\pi\)
\(20\) 3.70820 0.829180
\(21\) 3.23607 0.706168
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) −2.23607 −0.456435
\(25\) −3.47214 −0.694427
\(26\) 10.0000 1.96116
\(27\) −1.00000 −0.192450
\(28\) −9.70820 −1.83468
\(29\) −4.47214 −0.830455 −0.415227 0.909718i \(-0.636298\pi\)
−0.415227 + 0.909718i \(0.636298\pi\)
\(30\) −2.76393 −0.504623
\(31\) −6.47214 −1.16243 −0.581215 0.813750i \(-0.697422\pi\)
−0.581215 + 0.813750i \(0.697422\pi\)
\(32\) −6.70820 −1.18585
\(33\) 0 0
\(34\) 6.18034 1.05992
\(35\) −4.00000 −0.676123
\(36\) 3.00000 0.500000
\(37\) 4.47214 0.735215 0.367607 0.929981i \(-0.380177\pi\)
0.367607 + 0.929981i \(0.380177\pi\)
\(38\) −16.1803 −2.62480
\(39\) −4.47214 −0.716115
\(40\) 2.76393 0.437016
\(41\) 10.9443 1.70921 0.854604 0.519280i \(-0.173800\pi\)
0.854604 + 0.519280i \(0.173800\pi\)
\(42\) 7.23607 1.11655
\(43\) 5.70820 0.870493 0.435246 0.900311i \(-0.356661\pi\)
0.435246 + 0.900311i \(0.356661\pi\)
\(44\) 0 0
\(45\) 1.23607 0.184262
\(46\) 2.23607 0.329690
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 1.00000 0.144338
\(49\) 3.47214 0.496019
\(50\) −7.76393 −1.09799
\(51\) −2.76393 −0.387028
\(52\) 13.4164 1.86052
\(53\) −5.23607 −0.719229 −0.359615 0.933101i \(-0.617092\pi\)
−0.359615 + 0.933101i \(0.617092\pi\)
\(54\) −2.23607 −0.304290
\(55\) 0 0
\(56\) −7.23607 −0.966960
\(57\) 7.23607 0.958441
\(58\) −10.0000 −1.31306
\(59\) −4.94427 −0.643689 −0.321845 0.946792i \(-0.604303\pi\)
−0.321845 + 0.946792i \(0.604303\pi\)
\(60\) −3.70820 −0.478727
\(61\) −4.47214 −0.572598 −0.286299 0.958140i \(-0.592425\pi\)
−0.286299 + 0.958140i \(0.592425\pi\)
\(62\) −14.4721 −1.83796
\(63\) −3.23607 −0.407706
\(64\) −13.0000 −1.62500
\(65\) 5.52786 0.685647
\(66\) 0 0
\(67\) 0.763932 0.0933292 0.0466646 0.998911i \(-0.485141\pi\)
0.0466646 + 0.998911i \(0.485141\pi\)
\(68\) 8.29180 1.00553
\(69\) −1.00000 −0.120386
\(70\) −8.94427 −1.06904
\(71\) −8.00000 −0.949425 −0.474713 0.880141i \(-0.657448\pi\)
−0.474713 + 0.880141i \(0.657448\pi\)
\(72\) 2.23607 0.263523
\(73\) −6.94427 −0.812766 −0.406383 0.913703i \(-0.633210\pi\)
−0.406383 + 0.913703i \(0.633210\pi\)
\(74\) 10.0000 1.16248
\(75\) 3.47214 0.400928
\(76\) −21.7082 −2.49010
\(77\) 0 0
\(78\) −10.0000 −1.13228
\(79\) −9.70820 −1.09226 −0.546129 0.837701i \(-0.683899\pi\)
−0.546129 + 0.837701i \(0.683899\pi\)
\(80\) −1.23607 −0.138197
\(81\) 1.00000 0.111111
\(82\) 24.4721 2.70250
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 9.70820 1.05925
\(85\) 3.41641 0.370561
\(86\) 12.7639 1.37637
\(87\) 4.47214 0.479463
\(88\) 0 0
\(89\) −1.23607 −0.131023 −0.0655115 0.997852i \(-0.520868\pi\)
−0.0655115 + 0.997852i \(0.520868\pi\)
\(90\) 2.76393 0.291344
\(91\) −14.4721 −1.51709
\(92\) 3.00000 0.312772
\(93\) 6.47214 0.671129
\(94\) −8.94427 −0.922531
\(95\) −8.94427 −0.917663
\(96\) 6.70820 0.684653
\(97\) 8.47214 0.860215 0.430108 0.902778i \(-0.358476\pi\)
0.430108 + 0.902778i \(0.358476\pi\)
\(98\) 7.76393 0.784276
\(99\) 0 0
\(100\) −10.4164 −1.04164
\(101\) 6.94427 0.690981 0.345490 0.938422i \(-0.387713\pi\)
0.345490 + 0.938422i \(0.387713\pi\)
\(102\) −6.18034 −0.611945
\(103\) −11.2361 −1.10712 −0.553561 0.832808i \(-0.686732\pi\)
−0.553561 + 0.832808i \(0.686732\pi\)
\(104\) 10.0000 0.980581
\(105\) 4.00000 0.390360
\(106\) −11.7082 −1.13720
\(107\) −16.9443 −1.63806 −0.819032 0.573747i \(-0.805489\pi\)
−0.819032 + 0.573747i \(0.805489\pi\)
\(108\) −3.00000 −0.288675
\(109\) 14.9443 1.43140 0.715701 0.698407i \(-0.246107\pi\)
0.715701 + 0.698407i \(0.246107\pi\)
\(110\) 0 0
\(111\) −4.47214 −0.424476
\(112\) 3.23607 0.305780
\(113\) −6.18034 −0.581397 −0.290699 0.956815i \(-0.593888\pi\)
−0.290699 + 0.956815i \(0.593888\pi\)
\(114\) 16.1803 1.51543
\(115\) 1.23607 0.115264
\(116\) −13.4164 −1.24568
\(117\) 4.47214 0.413449
\(118\) −11.0557 −1.01776
\(119\) −8.94427 −0.819920
\(120\) −2.76393 −0.252311
\(121\) 0 0
\(122\) −10.0000 −0.905357
\(123\) −10.9443 −0.986812
\(124\) −19.4164 −1.74364
\(125\) −10.4721 −0.936656
\(126\) −7.23607 −0.644640
\(127\) −1.52786 −0.135576 −0.0677880 0.997700i \(-0.521594\pi\)
−0.0677880 + 0.997700i \(0.521594\pi\)
\(128\) −15.6525 −1.38350
\(129\) −5.70820 −0.502579
\(130\) 12.3607 1.08410
\(131\) −16.9443 −1.48043 −0.740214 0.672371i \(-0.765276\pi\)
−0.740214 + 0.672371i \(0.765276\pi\)
\(132\) 0 0
\(133\) 23.4164 2.03046
\(134\) 1.70820 0.147566
\(135\) −1.23607 −0.106384
\(136\) 6.18034 0.529960
\(137\) −1.23607 −0.105604 −0.0528022 0.998605i \(-0.516815\pi\)
−0.0528022 + 0.998605i \(0.516815\pi\)
\(138\) −2.23607 −0.190347
\(139\) 8.94427 0.758643 0.379322 0.925265i \(-0.376157\pi\)
0.379322 + 0.925265i \(0.376157\pi\)
\(140\) −12.0000 −1.01419
\(141\) 4.00000 0.336861
\(142\) −17.8885 −1.50117
\(143\) 0 0
\(144\) −1.00000 −0.0833333
\(145\) −5.52786 −0.459064
\(146\) −15.5279 −1.28510
\(147\) −3.47214 −0.286377
\(148\) 13.4164 1.10282
\(149\) 11.7082 0.959173 0.479587 0.877494i \(-0.340787\pi\)
0.479587 + 0.877494i \(0.340787\pi\)
\(150\) 7.76393 0.633922
\(151\) 16.0000 1.30206 0.651031 0.759051i \(-0.274337\pi\)
0.651031 + 0.759051i \(0.274337\pi\)
\(152\) −16.1803 −1.31240
\(153\) 2.76393 0.223451
\(154\) 0 0
\(155\) −8.00000 −0.642575
\(156\) −13.4164 −1.07417
\(157\) −3.52786 −0.281554 −0.140777 0.990041i \(-0.544960\pi\)
−0.140777 + 0.990041i \(0.544960\pi\)
\(158\) −21.7082 −1.72701
\(159\) 5.23607 0.415247
\(160\) −8.29180 −0.655524
\(161\) −3.23607 −0.255038
\(162\) 2.23607 0.175682
\(163\) 7.41641 0.580898 0.290449 0.956890i \(-0.406195\pi\)
0.290449 + 0.956890i \(0.406195\pi\)
\(164\) 32.8328 2.56381
\(165\) 0 0
\(166\) −8.94427 −0.694210
\(167\) −12.9443 −1.00166 −0.500829 0.865546i \(-0.666971\pi\)
−0.500829 + 0.865546i \(0.666971\pi\)
\(168\) 7.23607 0.558275
\(169\) 7.00000 0.538462
\(170\) 7.63932 0.585909
\(171\) −7.23607 −0.553356
\(172\) 17.1246 1.30574
\(173\) −4.47214 −0.340010 −0.170005 0.985443i \(-0.554378\pi\)
−0.170005 + 0.985443i \(0.554378\pi\)
\(174\) 10.0000 0.758098
\(175\) 11.2361 0.849367
\(176\) 0 0
\(177\) 4.94427 0.371634
\(178\) −2.76393 −0.207165
\(179\) 20.9443 1.56545 0.782724 0.622369i \(-0.213830\pi\)
0.782724 + 0.622369i \(0.213830\pi\)
\(180\) 3.70820 0.276393
\(181\) −11.8885 −0.883669 −0.441834 0.897097i \(-0.645672\pi\)
−0.441834 + 0.897097i \(0.645672\pi\)
\(182\) −32.3607 −2.39873
\(183\) 4.47214 0.330590
\(184\) 2.23607 0.164845
\(185\) 5.52786 0.406417
\(186\) 14.4721 1.06115
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) 3.23607 0.235389
\(190\) −20.0000 −1.45095
\(191\) 1.52786 0.110552 0.0552762 0.998471i \(-0.482396\pi\)
0.0552762 + 0.998471i \(0.482396\pi\)
\(192\) 13.0000 0.938194
\(193\) −17.4164 −1.25366 −0.626830 0.779156i \(-0.715648\pi\)
−0.626830 + 0.779156i \(0.715648\pi\)
\(194\) 18.9443 1.36012
\(195\) −5.52786 −0.395859
\(196\) 10.4164 0.744029
\(197\) −17.4164 −1.24087 −0.620434 0.784259i \(-0.713043\pi\)
−0.620434 + 0.784259i \(0.713043\pi\)
\(198\) 0 0
\(199\) 9.70820 0.688196 0.344098 0.938934i \(-0.388185\pi\)
0.344098 + 0.938934i \(0.388185\pi\)
\(200\) −7.76393 −0.548993
\(201\) −0.763932 −0.0538836
\(202\) 15.5279 1.09254
\(203\) 14.4721 1.01574
\(204\) −8.29180 −0.580542
\(205\) 13.5279 0.944827
\(206\) −25.1246 −1.75051
\(207\) 1.00000 0.0695048
\(208\) −4.47214 −0.310087
\(209\) 0 0
\(210\) 8.94427 0.617213
\(211\) −13.5279 −0.931297 −0.465648 0.884970i \(-0.654179\pi\)
−0.465648 + 0.884970i \(0.654179\pi\)
\(212\) −15.7082 −1.07884
\(213\) 8.00000 0.548151
\(214\) −37.8885 −2.59001
\(215\) 7.05573 0.481197
\(216\) −2.23607 −0.152145
\(217\) 20.9443 1.42179
\(218\) 33.4164 2.26324
\(219\) 6.94427 0.469250
\(220\) 0 0
\(221\) 12.3607 0.831469
\(222\) −10.0000 −0.671156
\(223\) −25.8885 −1.73363 −0.866813 0.498634i \(-0.833835\pi\)
−0.866813 + 0.498634i \(0.833835\pi\)
\(224\) 21.7082 1.45044
\(225\) −3.47214 −0.231476
\(226\) −13.8197 −0.919270
\(227\) 13.5279 0.897876 0.448938 0.893563i \(-0.351802\pi\)
0.448938 + 0.893563i \(0.351802\pi\)
\(228\) 21.7082 1.43766
\(229\) 2.94427 0.194563 0.0972815 0.995257i \(-0.468985\pi\)
0.0972815 + 0.995257i \(0.468985\pi\)
\(230\) 2.76393 0.182248
\(231\) 0 0
\(232\) −10.0000 −0.656532
\(233\) 14.0000 0.917170 0.458585 0.888650i \(-0.348356\pi\)
0.458585 + 0.888650i \(0.348356\pi\)
\(234\) 10.0000 0.653720
\(235\) −4.94427 −0.322529
\(236\) −14.8328 −0.965534
\(237\) 9.70820 0.630616
\(238\) −20.0000 −1.29641
\(239\) −4.94427 −0.319818 −0.159909 0.987132i \(-0.551120\pi\)
−0.159909 + 0.987132i \(0.551120\pi\)
\(240\) 1.23607 0.0797878
\(241\) −19.5279 −1.25790 −0.628950 0.777446i \(-0.716515\pi\)
−0.628950 + 0.777446i \(0.716515\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −13.4164 −0.858898
\(245\) 4.29180 0.274193
\(246\) −24.4721 −1.56029
\(247\) −32.3607 −2.05906
\(248\) −14.4721 −0.918982
\(249\) 4.00000 0.253490
\(250\) −23.4164 −1.48098
\(251\) −10.4721 −0.660995 −0.330498 0.943807i \(-0.607217\pi\)
−0.330498 + 0.943807i \(0.607217\pi\)
\(252\) −9.70820 −0.611559
\(253\) 0 0
\(254\) −3.41641 −0.214364
\(255\) −3.41641 −0.213944
\(256\) −9.00000 −0.562500
\(257\) −22.0000 −1.37232 −0.686161 0.727450i \(-0.740706\pi\)
−0.686161 + 0.727450i \(0.740706\pi\)
\(258\) −12.7639 −0.794648
\(259\) −14.4721 −0.899255
\(260\) 16.5836 1.02847
\(261\) −4.47214 −0.276818
\(262\) −37.8885 −2.34076
\(263\) −6.47214 −0.399089 −0.199544 0.979889i \(-0.563946\pi\)
−0.199544 + 0.979889i \(0.563946\pi\)
\(264\) 0 0
\(265\) −6.47214 −0.397580
\(266\) 52.3607 3.21044
\(267\) 1.23607 0.0756461
\(268\) 2.29180 0.139994
\(269\) −0.472136 −0.0287866 −0.0143933 0.999896i \(-0.504582\pi\)
−0.0143933 + 0.999896i \(0.504582\pi\)
\(270\) −2.76393 −0.168208
\(271\) 17.5279 1.06474 0.532371 0.846511i \(-0.321301\pi\)
0.532371 + 0.846511i \(0.321301\pi\)
\(272\) −2.76393 −0.167588
\(273\) 14.4721 0.875894
\(274\) −2.76393 −0.166975
\(275\) 0 0
\(276\) −3.00000 −0.180579
\(277\) −15.8885 −0.954650 −0.477325 0.878727i \(-0.658394\pi\)
−0.477325 + 0.878727i \(0.658394\pi\)
\(278\) 20.0000 1.19952
\(279\) −6.47214 −0.387477
\(280\) −8.94427 −0.534522
\(281\) −24.6525 −1.47064 −0.735322 0.677718i \(-0.762969\pi\)
−0.735322 + 0.677718i \(0.762969\pi\)
\(282\) 8.94427 0.532624
\(283\) −5.70820 −0.339318 −0.169659 0.985503i \(-0.554267\pi\)
−0.169659 + 0.985503i \(0.554267\pi\)
\(284\) −24.0000 −1.42414
\(285\) 8.94427 0.529813
\(286\) 0 0
\(287\) −35.4164 −2.09056
\(288\) −6.70820 −0.395285
\(289\) −9.36068 −0.550628
\(290\) −12.3607 −0.725844
\(291\) −8.47214 −0.496645
\(292\) −20.8328 −1.21915
\(293\) −7.70820 −0.450318 −0.225159 0.974322i \(-0.572290\pi\)
−0.225159 + 0.974322i \(0.572290\pi\)
\(294\) −7.76393 −0.452802
\(295\) −6.11146 −0.355823
\(296\) 10.0000 0.581238
\(297\) 0 0
\(298\) 26.1803 1.51659
\(299\) 4.47214 0.258630
\(300\) 10.4164 0.601392
\(301\) −18.4721 −1.06472
\(302\) 35.7771 2.05874
\(303\) −6.94427 −0.398938
\(304\) 7.23607 0.415017
\(305\) −5.52786 −0.316525
\(306\) 6.18034 0.353307
\(307\) −2.47214 −0.141092 −0.0705461 0.997509i \(-0.522474\pi\)
−0.0705461 + 0.997509i \(0.522474\pi\)
\(308\) 0 0
\(309\) 11.2361 0.639198
\(310\) −17.8885 −1.01600
\(311\) 7.05573 0.400094 0.200047 0.979786i \(-0.435891\pi\)
0.200047 + 0.979786i \(0.435891\pi\)
\(312\) −10.0000 −0.566139
\(313\) 5.05573 0.285767 0.142883 0.989740i \(-0.454363\pi\)
0.142883 + 0.989740i \(0.454363\pi\)
\(314\) −7.88854 −0.445176
\(315\) −4.00000 −0.225374
\(316\) −29.1246 −1.63839
\(317\) 2.58359 0.145109 0.0725545 0.997364i \(-0.476885\pi\)
0.0725545 + 0.997364i \(0.476885\pi\)
\(318\) 11.7082 0.656563
\(319\) 0 0
\(320\) −16.0689 −0.898278
\(321\) 16.9443 0.945737
\(322\) −7.23607 −0.403250
\(323\) −20.0000 −1.11283
\(324\) 3.00000 0.166667
\(325\) −15.5279 −0.861331
\(326\) 16.5836 0.918480
\(327\) −14.9443 −0.826420
\(328\) 24.4721 1.35125
\(329\) 12.9443 0.713641
\(330\) 0 0
\(331\) 23.4164 1.28708 0.643541 0.765412i \(-0.277465\pi\)
0.643541 + 0.765412i \(0.277465\pi\)
\(332\) −12.0000 −0.658586
\(333\) 4.47214 0.245072
\(334\) −28.9443 −1.58376
\(335\) 0.944272 0.0515911
\(336\) −3.23607 −0.176542
\(337\) 14.3607 0.782276 0.391138 0.920332i \(-0.372082\pi\)
0.391138 + 0.920332i \(0.372082\pi\)
\(338\) 15.6525 0.851382
\(339\) 6.18034 0.335670
\(340\) 10.2492 0.555842
\(341\) 0 0
\(342\) −16.1803 −0.874933
\(343\) 11.4164 0.616428
\(344\) 12.7639 0.688185
\(345\) −1.23607 −0.0665477
\(346\) −10.0000 −0.537603
\(347\) 9.88854 0.530845 0.265422 0.964132i \(-0.414489\pi\)
0.265422 + 0.964132i \(0.414489\pi\)
\(348\) 13.4164 0.719195
\(349\) 23.5279 1.25942 0.629709 0.776831i \(-0.283174\pi\)
0.629709 + 0.776831i \(0.283174\pi\)
\(350\) 25.1246 1.34297
\(351\) −4.47214 −0.238705
\(352\) 0 0
\(353\) −17.4164 −0.926982 −0.463491 0.886102i \(-0.653403\pi\)
−0.463491 + 0.886102i \(0.653403\pi\)
\(354\) 11.0557 0.587605
\(355\) −9.88854 −0.524829
\(356\) −3.70820 −0.196534
\(357\) 8.94427 0.473381
\(358\) 46.8328 2.47519
\(359\) −6.47214 −0.341586 −0.170793 0.985307i \(-0.554633\pi\)
−0.170793 + 0.985307i \(0.554633\pi\)
\(360\) 2.76393 0.145672
\(361\) 33.3607 1.75583
\(362\) −26.5836 −1.39720
\(363\) 0 0
\(364\) −43.4164 −2.27564
\(365\) −8.58359 −0.449286
\(366\) 10.0000 0.522708
\(367\) 25.7082 1.34196 0.670979 0.741477i \(-0.265874\pi\)
0.670979 + 0.741477i \(0.265874\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 10.9443 0.569736
\(370\) 12.3607 0.642601
\(371\) 16.9443 0.879703
\(372\) 19.4164 1.00669
\(373\) −20.4721 −1.06001 −0.530004 0.847995i \(-0.677809\pi\)
−0.530004 + 0.847995i \(0.677809\pi\)
\(374\) 0 0
\(375\) 10.4721 0.540779
\(376\) −8.94427 −0.461266
\(377\) −20.0000 −1.03005
\(378\) 7.23607 0.372183
\(379\) 30.0689 1.54453 0.772267 0.635298i \(-0.219123\pi\)
0.772267 + 0.635298i \(0.219123\pi\)
\(380\) −26.8328 −1.37649
\(381\) 1.52786 0.0782748
\(382\) 3.41641 0.174799
\(383\) 25.5279 1.30441 0.652206 0.758041i \(-0.273844\pi\)
0.652206 + 0.758041i \(0.273844\pi\)
\(384\) 15.6525 0.798762
\(385\) 0 0
\(386\) −38.9443 −1.98221
\(387\) 5.70820 0.290164
\(388\) 25.4164 1.29032
\(389\) 20.6525 1.04712 0.523561 0.851988i \(-0.324603\pi\)
0.523561 + 0.851988i \(0.324603\pi\)
\(390\) −12.3607 −0.625907
\(391\) 2.76393 0.139778
\(392\) 7.76393 0.392138
\(393\) 16.9443 0.854725
\(394\) −38.9443 −1.96198
\(395\) −12.0000 −0.603786
\(396\) 0 0
\(397\) −2.00000 −0.100377 −0.0501886 0.998740i \(-0.515982\pi\)
−0.0501886 + 0.998740i \(0.515982\pi\)
\(398\) 21.7082 1.08813
\(399\) −23.4164 −1.17229
\(400\) 3.47214 0.173607
\(401\) 20.0689 1.00219 0.501096 0.865392i \(-0.332930\pi\)
0.501096 + 0.865392i \(0.332930\pi\)
\(402\) −1.70820 −0.0851975
\(403\) −28.9443 −1.44182
\(404\) 20.8328 1.03647
\(405\) 1.23607 0.0614207
\(406\) 32.3607 1.60603
\(407\) 0 0
\(408\) −6.18034 −0.305972
\(409\) −17.4164 −0.861186 −0.430593 0.902546i \(-0.641696\pi\)
−0.430593 + 0.902546i \(0.641696\pi\)
\(410\) 30.2492 1.49390
\(411\) 1.23607 0.0609707
\(412\) −33.7082 −1.66068
\(413\) 16.0000 0.787309
\(414\) 2.23607 0.109897
\(415\) −4.94427 −0.242705
\(416\) −30.0000 −1.47087
\(417\) −8.94427 −0.438003
\(418\) 0 0
\(419\) 13.8885 0.678500 0.339250 0.940696i \(-0.389827\pi\)
0.339250 + 0.940696i \(0.389827\pi\)
\(420\) 12.0000 0.585540
\(421\) −30.9443 −1.50813 −0.754066 0.656799i \(-0.771910\pi\)
−0.754066 + 0.656799i \(0.771910\pi\)
\(422\) −30.2492 −1.47251
\(423\) −4.00000 −0.194487
\(424\) −11.7082 −0.568601
\(425\) −9.59675 −0.465511
\(426\) 17.8885 0.866703
\(427\) 14.4721 0.700356
\(428\) −50.8328 −2.45710
\(429\) 0 0
\(430\) 15.7771 0.760839
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 1.00000 0.0481125
\(433\) 27.8885 1.34024 0.670119 0.742254i \(-0.266243\pi\)
0.670119 + 0.742254i \(0.266243\pi\)
\(434\) 46.8328 2.24805
\(435\) 5.52786 0.265041
\(436\) 44.8328 2.14710
\(437\) −7.23607 −0.346148
\(438\) 15.5279 0.741950
\(439\) 9.88854 0.471954 0.235977 0.971759i \(-0.424171\pi\)
0.235977 + 0.971759i \(0.424171\pi\)
\(440\) 0 0
\(441\) 3.47214 0.165340
\(442\) 27.6393 1.31467
\(443\) −34.8328 −1.65496 −0.827479 0.561497i \(-0.810225\pi\)
−0.827479 + 0.561497i \(0.810225\pi\)
\(444\) −13.4164 −0.636715
\(445\) −1.52786 −0.0724277
\(446\) −57.8885 −2.74110
\(447\) −11.7082 −0.553779
\(448\) 42.0689 1.98757
\(449\) 14.9443 0.705264 0.352632 0.935762i \(-0.385287\pi\)
0.352632 + 0.935762i \(0.385287\pi\)
\(450\) −7.76393 −0.365995
\(451\) 0 0
\(452\) −18.5410 −0.872096
\(453\) −16.0000 −0.751746
\(454\) 30.2492 1.41967
\(455\) −17.8885 −0.838628
\(456\) 16.1803 0.757714
\(457\) −8.47214 −0.396310 −0.198155 0.980171i \(-0.563495\pi\)
−0.198155 + 0.980171i \(0.563495\pi\)
\(458\) 6.58359 0.307631
\(459\) −2.76393 −0.129009
\(460\) 3.70820 0.172896
\(461\) 5.41641 0.252267 0.126134 0.992013i \(-0.459743\pi\)
0.126134 + 0.992013i \(0.459743\pi\)
\(462\) 0 0
\(463\) −12.9443 −0.601571 −0.300786 0.953692i \(-0.597249\pi\)
−0.300786 + 0.953692i \(0.597249\pi\)
\(464\) 4.47214 0.207614
\(465\) 8.00000 0.370991
\(466\) 31.3050 1.45017
\(467\) 20.3607 0.942180 0.471090 0.882085i \(-0.343861\pi\)
0.471090 + 0.882085i \(0.343861\pi\)
\(468\) 13.4164 0.620174
\(469\) −2.47214 −0.114153
\(470\) −11.0557 −0.509963
\(471\) 3.52786 0.162555
\(472\) −11.0557 −0.508881
\(473\) 0 0
\(474\) 21.7082 0.997091
\(475\) 25.1246 1.15280
\(476\) −26.8328 −1.22988
\(477\) −5.23607 −0.239743
\(478\) −11.0557 −0.505677
\(479\) 33.8885 1.54841 0.774204 0.632937i \(-0.218151\pi\)
0.774204 + 0.632937i \(0.218151\pi\)
\(480\) 8.29180 0.378467
\(481\) 20.0000 0.911922
\(482\) −43.6656 −1.98892
\(483\) 3.23607 0.147246
\(484\) 0 0
\(485\) 10.4721 0.475515
\(486\) −2.23607 −0.101430
\(487\) 24.0000 1.08754 0.543772 0.839233i \(-0.316996\pi\)
0.543772 + 0.839233i \(0.316996\pi\)
\(488\) −10.0000 −0.452679
\(489\) −7.41641 −0.335382
\(490\) 9.59675 0.433537
\(491\) −40.0000 −1.80517 −0.902587 0.430507i \(-0.858335\pi\)
−0.902587 + 0.430507i \(0.858335\pi\)
\(492\) −32.8328 −1.48022
\(493\) −12.3607 −0.556697
\(494\) −72.3607 −3.25566
\(495\) 0 0
\(496\) 6.47214 0.290607
\(497\) 25.8885 1.16126
\(498\) 8.94427 0.400802
\(499\) −12.3607 −0.553340 −0.276670 0.960965i \(-0.589231\pi\)
−0.276670 + 0.960965i \(0.589231\pi\)
\(500\) −31.4164 −1.40498
\(501\) 12.9443 0.578307
\(502\) −23.4164 −1.04513
\(503\) 19.0557 0.849653 0.424826 0.905275i \(-0.360335\pi\)
0.424826 + 0.905275i \(0.360335\pi\)
\(504\) −7.23607 −0.322320
\(505\) 8.58359 0.381965
\(506\) 0 0
\(507\) −7.00000 −0.310881
\(508\) −4.58359 −0.203364
\(509\) −16.4721 −0.730115 −0.365057 0.930985i \(-0.618951\pi\)
−0.365057 + 0.930985i \(0.618951\pi\)
\(510\) −7.63932 −0.338275
\(511\) 22.4721 0.994109
\(512\) 11.1803 0.494106
\(513\) 7.23607 0.319480
\(514\) −49.1935 −2.16983
\(515\) −13.8885 −0.612002
\(516\) −17.1246 −0.753869
\(517\) 0 0
\(518\) −32.3607 −1.42185
\(519\) 4.47214 0.196305
\(520\) 12.3607 0.542052
\(521\) −33.2361 −1.45610 −0.728049 0.685525i \(-0.759573\pi\)
−0.728049 + 0.685525i \(0.759573\pi\)
\(522\) −10.0000 −0.437688
\(523\) −15.5967 −0.681998 −0.340999 0.940064i \(-0.610765\pi\)
−0.340999 + 0.940064i \(0.610765\pi\)
\(524\) −50.8328 −2.22064
\(525\) −11.2361 −0.490382
\(526\) −14.4721 −0.631015
\(527\) −17.8885 −0.779237
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −14.4721 −0.628629
\(531\) −4.94427 −0.214563
\(532\) 70.2492 3.04569
\(533\) 48.9443 2.12001
\(534\) 2.76393 0.119607
\(535\) −20.9443 −0.905500
\(536\) 1.70820 0.0737832
\(537\) −20.9443 −0.903812
\(538\) −1.05573 −0.0455157
\(539\) 0 0
\(540\) −3.70820 −0.159576
\(541\) 15.5279 0.667595 0.333798 0.942645i \(-0.391670\pi\)
0.333798 + 0.942645i \(0.391670\pi\)
\(542\) 39.1935 1.68350
\(543\) 11.8885 0.510186
\(544\) −18.5410 −0.794940
\(545\) 18.4721 0.791259
\(546\) 32.3607 1.38491
\(547\) −13.5279 −0.578410 −0.289205 0.957267i \(-0.593391\pi\)
−0.289205 + 0.957267i \(0.593391\pi\)
\(548\) −3.70820 −0.158407
\(549\) −4.47214 −0.190866
\(550\) 0 0
\(551\) 32.3607 1.37861
\(552\) −2.23607 −0.0951734
\(553\) 31.4164 1.33596
\(554\) −35.5279 −1.50943
\(555\) −5.52786 −0.234645
\(556\) 26.8328 1.13796
\(557\) 42.1803 1.78724 0.893619 0.448826i \(-0.148158\pi\)
0.893619 + 0.448826i \(0.148158\pi\)
\(558\) −14.4721 −0.612654
\(559\) 25.5279 1.07971
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) −55.1246 −2.32529
\(563\) 7.41641 0.312564 0.156282 0.987712i \(-0.450049\pi\)
0.156282 + 0.987712i \(0.450049\pi\)
\(564\) 12.0000 0.505291
\(565\) −7.63932 −0.321389
\(566\) −12.7639 −0.536508
\(567\) −3.23607 −0.135902
\(568\) −17.8885 −0.750587
\(569\) 10.7639 0.451248 0.225624 0.974215i \(-0.427558\pi\)
0.225624 + 0.974215i \(0.427558\pi\)
\(570\) 20.0000 0.837708
\(571\) −29.7082 −1.24325 −0.621625 0.783315i \(-0.713527\pi\)
−0.621625 + 0.783315i \(0.713527\pi\)
\(572\) 0 0
\(573\) −1.52786 −0.0638274
\(574\) −79.1935 −3.30547
\(575\) −3.47214 −0.144798
\(576\) −13.0000 −0.541667
\(577\) 7.52786 0.313389 0.156695 0.987647i \(-0.449916\pi\)
0.156695 + 0.987647i \(0.449916\pi\)
\(578\) −20.9311 −0.870620
\(579\) 17.4164 0.723801
\(580\) −16.5836 −0.688596
\(581\) 12.9443 0.537019
\(582\) −18.9443 −0.785265
\(583\) 0 0
\(584\) −15.5279 −0.642548
\(585\) 5.52786 0.228549
\(586\) −17.2361 −0.712015
\(587\) −0.944272 −0.0389743 −0.0194871 0.999810i \(-0.506203\pi\)
−0.0194871 + 0.999810i \(0.506203\pi\)
\(588\) −10.4164 −0.429565
\(589\) 46.8328 1.92971
\(590\) −13.6656 −0.562605
\(591\) 17.4164 0.716415
\(592\) −4.47214 −0.183804
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) −11.0557 −0.453241
\(596\) 35.1246 1.43876
\(597\) −9.70820 −0.397330
\(598\) 10.0000 0.408930
\(599\) −3.05573 −0.124854 −0.0624268 0.998050i \(-0.519884\pi\)
−0.0624268 + 0.998050i \(0.519884\pi\)
\(600\) 7.76393 0.316961
\(601\) 42.3607 1.72793 0.863964 0.503553i \(-0.167974\pi\)
0.863964 + 0.503553i \(0.167974\pi\)
\(602\) −41.3050 −1.68346
\(603\) 0.763932 0.0311097
\(604\) 48.0000 1.95309
\(605\) 0 0
\(606\) −15.5279 −0.630776
\(607\) 14.8328 0.602045 0.301023 0.953617i \(-0.402672\pi\)
0.301023 + 0.953617i \(0.402672\pi\)
\(608\) 48.5410 1.96860
\(609\) −14.4721 −0.586441
\(610\) −12.3607 −0.500469
\(611\) −17.8885 −0.723693
\(612\) 8.29180 0.335176
\(613\) 40.4721 1.63465 0.817327 0.576174i \(-0.195455\pi\)
0.817327 + 0.576174i \(0.195455\pi\)
\(614\) −5.52786 −0.223086
\(615\) −13.5279 −0.545496
\(616\) 0 0
\(617\) −20.2918 −0.816917 −0.408458 0.912777i \(-0.633934\pi\)
−0.408458 + 0.912777i \(0.633934\pi\)
\(618\) 25.1246 1.01066
\(619\) −9.12461 −0.366749 −0.183375 0.983043i \(-0.558702\pi\)
−0.183375 + 0.983043i \(0.558702\pi\)
\(620\) −24.0000 −0.963863
\(621\) −1.00000 −0.0401286
\(622\) 15.7771 0.632604
\(623\) 4.00000 0.160257
\(624\) 4.47214 0.179029
\(625\) 4.41641 0.176656
\(626\) 11.3050 0.451837
\(627\) 0 0
\(628\) −10.5836 −0.422331
\(629\) 12.3607 0.492853
\(630\) −8.94427 −0.356348
\(631\) −16.1803 −0.644129 −0.322065 0.946718i \(-0.604377\pi\)
−0.322065 + 0.946718i \(0.604377\pi\)
\(632\) −21.7082 −0.863506
\(633\) 13.5279 0.537684
\(634\) 5.77709 0.229437
\(635\) −1.88854 −0.0749446
\(636\) 15.7082 0.622871
\(637\) 15.5279 0.615236
\(638\) 0 0
\(639\) −8.00000 −0.316475
\(640\) −19.3475 −0.764778
\(641\) 49.0132 1.93590 0.967952 0.251137i \(-0.0808044\pi\)
0.967952 + 0.251137i \(0.0808044\pi\)
\(642\) 37.8885 1.49534
\(643\) 38.0689 1.50129 0.750645 0.660706i \(-0.229743\pi\)
0.750645 + 0.660706i \(0.229743\pi\)
\(644\) −9.70820 −0.382557
\(645\) −7.05573 −0.277819
\(646\) −44.7214 −1.75954
\(647\) 12.0000 0.471769 0.235884 0.971781i \(-0.424201\pi\)
0.235884 + 0.971781i \(0.424201\pi\)
\(648\) 2.23607 0.0878410
\(649\) 0 0
\(650\) −34.7214 −1.36188
\(651\) −20.9443 −0.820871
\(652\) 22.2492 0.871347
\(653\) −22.9443 −0.897879 −0.448939 0.893562i \(-0.648198\pi\)
−0.448939 + 0.893562i \(0.648198\pi\)
\(654\) −33.4164 −1.30668
\(655\) −20.9443 −0.818360
\(656\) −10.9443 −0.427302
\(657\) −6.94427 −0.270922
\(658\) 28.9443 1.12837
\(659\) −36.3607 −1.41641 −0.708205 0.706006i \(-0.750495\pi\)
−0.708205 + 0.706006i \(0.750495\pi\)
\(660\) 0 0
\(661\) −11.5279 −0.448382 −0.224191 0.974545i \(-0.571974\pi\)
−0.224191 + 0.974545i \(0.571974\pi\)
\(662\) 52.3607 2.03506
\(663\) −12.3607 −0.480049
\(664\) −8.94427 −0.347105
\(665\) 28.9443 1.12241
\(666\) 10.0000 0.387492
\(667\) −4.47214 −0.173162
\(668\) −38.8328 −1.50249
\(669\) 25.8885 1.00091
\(670\) 2.11146 0.0815727
\(671\) 0 0
\(672\) −21.7082 −0.837412
\(673\) −2.58359 −0.0995902 −0.0497951 0.998759i \(-0.515857\pi\)
−0.0497951 + 0.998759i \(0.515857\pi\)
\(674\) 32.1115 1.23689
\(675\) 3.47214 0.133643
\(676\) 21.0000 0.807692
\(677\) 47.4853 1.82501 0.912504 0.409068i \(-0.134146\pi\)
0.912504 + 0.409068i \(0.134146\pi\)
\(678\) 13.8197 0.530741
\(679\) −27.4164 −1.05215
\(680\) 7.63932 0.292955
\(681\) −13.5279 −0.518389
\(682\) 0 0
\(683\) −20.0000 −0.765279 −0.382639 0.923898i \(-0.624985\pi\)
−0.382639 + 0.923898i \(0.624985\pi\)
\(684\) −21.7082 −0.830034
\(685\) −1.52786 −0.0583767
\(686\) 25.5279 0.974658
\(687\) −2.94427 −0.112331
\(688\) −5.70820 −0.217623
\(689\) −23.4164 −0.892094
\(690\) −2.76393 −0.105221
\(691\) 4.36068 0.165888 0.0829440 0.996554i \(-0.473568\pi\)
0.0829440 + 0.996554i \(0.473568\pi\)
\(692\) −13.4164 −0.510015
\(693\) 0 0
\(694\) 22.1115 0.839339
\(695\) 11.0557 0.419368
\(696\) 10.0000 0.379049
\(697\) 30.2492 1.14577
\(698\) 52.6099 1.99131
\(699\) −14.0000 −0.529529
\(700\) 33.7082 1.27405
\(701\) −25.2361 −0.953153 −0.476577 0.879133i \(-0.658122\pi\)
−0.476577 + 0.879133i \(0.658122\pi\)
\(702\) −10.0000 −0.377426
\(703\) −32.3607 −1.22051
\(704\) 0 0
\(705\) 4.94427 0.186212
\(706\) −38.9443 −1.46569
\(707\) −22.4721 −0.845152
\(708\) 14.8328 0.557451
\(709\) −32.8328 −1.23306 −0.616531 0.787331i \(-0.711463\pi\)
−0.616531 + 0.787331i \(0.711463\pi\)
\(710\) −22.1115 −0.829828
\(711\) −9.70820 −0.364086
\(712\) −2.76393 −0.103583
\(713\) −6.47214 −0.242383
\(714\) 20.0000 0.748481
\(715\) 0 0
\(716\) 62.8328 2.34817
\(717\) 4.94427 0.184647
\(718\) −14.4721 −0.540095
\(719\) 4.00000 0.149175 0.0745874 0.997214i \(-0.476236\pi\)
0.0745874 + 0.997214i \(0.476236\pi\)
\(720\) −1.23607 −0.0460655
\(721\) 36.3607 1.35414
\(722\) 74.5967 2.77620
\(723\) 19.5279 0.726249
\(724\) −35.6656 −1.32550
\(725\) 15.5279 0.576690
\(726\) 0 0
\(727\) 1.34752 0.0499769 0.0249885 0.999688i \(-0.492045\pi\)
0.0249885 + 0.999688i \(0.492045\pi\)
\(728\) −32.3607 −1.19937
\(729\) 1.00000 0.0370370
\(730\) −19.1935 −0.710383
\(731\) 15.7771 0.583537
\(732\) 13.4164 0.495885
\(733\) −22.0000 −0.812589 −0.406294 0.913742i \(-0.633179\pi\)
−0.406294 + 0.913742i \(0.633179\pi\)
\(734\) 57.4853 2.12182
\(735\) −4.29180 −0.158305
\(736\) −6.70820 −0.247268
\(737\) 0 0
\(738\) 24.4721 0.900832
\(739\) 26.8328 0.987061 0.493531 0.869728i \(-0.335706\pi\)
0.493531 + 0.869728i \(0.335706\pi\)
\(740\) 16.5836 0.609625
\(741\) 32.3607 1.18880
\(742\) 37.8885 1.39093
\(743\) 24.3607 0.893707 0.446853 0.894607i \(-0.352545\pi\)
0.446853 + 0.894607i \(0.352545\pi\)
\(744\) 14.4721 0.530574
\(745\) 14.4721 0.530218
\(746\) −45.7771 −1.67602
\(747\) −4.00000 −0.146352
\(748\) 0 0
\(749\) 54.8328 2.00355
\(750\) 23.4164 0.855046
\(751\) 50.0689 1.82704 0.913520 0.406794i \(-0.133353\pi\)
0.913520 + 0.406794i \(0.133353\pi\)
\(752\) 4.00000 0.145865
\(753\) 10.4721 0.381626
\(754\) −44.7214 −1.62866
\(755\) 19.7771 0.719762
\(756\) 9.70820 0.353084
\(757\) 39.8885 1.44977 0.724887 0.688868i \(-0.241892\pi\)
0.724887 + 0.688868i \(0.241892\pi\)
\(758\) 67.2361 2.44212
\(759\) 0 0
\(760\) −20.0000 −0.725476
\(761\) −42.3607 −1.53557 −0.767787 0.640706i \(-0.778642\pi\)
−0.767787 + 0.640706i \(0.778642\pi\)
\(762\) 3.41641 0.123763
\(763\) −48.3607 −1.75077
\(764\) 4.58359 0.165829
\(765\) 3.41641 0.123520
\(766\) 57.0820 2.06246
\(767\) −22.1115 −0.798398
\(768\) 9.00000 0.324760
\(769\) −16.8328 −0.607007 −0.303503 0.952830i \(-0.598156\pi\)
−0.303503 + 0.952830i \(0.598156\pi\)
\(770\) 0 0
\(771\) 22.0000 0.792311
\(772\) −52.2492 −1.88049
\(773\) 36.2918 1.30533 0.652663 0.757649i \(-0.273652\pi\)
0.652663 + 0.757649i \(0.273652\pi\)
\(774\) 12.7639 0.458790
\(775\) 22.4721 0.807223
\(776\) 18.9443 0.680060
\(777\) 14.4721 0.519185
\(778\) 46.1803 1.65565
\(779\) −79.1935 −2.83740
\(780\) −16.5836 −0.593788
\(781\) 0 0
\(782\) 6.18034 0.221009
\(783\) 4.47214 0.159821
\(784\) −3.47214 −0.124005
\(785\) −4.36068 −0.155639
\(786\) 37.8885 1.35144
\(787\) 13.7082 0.488645 0.244322 0.969694i \(-0.421434\pi\)
0.244322 + 0.969694i \(0.421434\pi\)
\(788\) −52.2492 −1.86130
\(789\) 6.47214 0.230414
\(790\) −26.8328 −0.954669
\(791\) 20.0000 0.711118
\(792\) 0 0
\(793\) −20.0000 −0.710221
\(794\) −4.47214 −0.158710
\(795\) 6.47214 0.229543
\(796\) 29.1246 1.03229
\(797\) 12.6525 0.448174 0.224087 0.974569i \(-0.428060\pi\)
0.224087 + 0.974569i \(0.428060\pi\)
\(798\) −52.3607 −1.85355
\(799\) −11.0557 −0.391124
\(800\) 23.2918 0.823489
\(801\) −1.23607 −0.0436743
\(802\) 44.8754 1.58461
\(803\) 0 0
\(804\) −2.29180 −0.0808254
\(805\) −4.00000 −0.140981
\(806\) −64.7214 −2.27971
\(807\) 0.472136 0.0166200
\(808\) 15.5279 0.546268
\(809\) 43.3050 1.52252 0.761261 0.648446i \(-0.224581\pi\)
0.761261 + 0.648446i \(0.224581\pi\)
\(810\) 2.76393 0.0971147
\(811\) 23.4164 0.822261 0.411131 0.911576i \(-0.365134\pi\)
0.411131 + 0.911576i \(0.365134\pi\)
\(812\) 43.4164 1.52362
\(813\) −17.5279 −0.614729
\(814\) 0 0
\(815\) 9.16718 0.321112
\(816\) 2.76393 0.0967570
\(817\) −41.3050 −1.44508
\(818\) −38.9443 −1.36165
\(819\) −14.4721 −0.505697
\(820\) 40.5836 1.41724
\(821\) −12.1115 −0.422693 −0.211346 0.977411i \(-0.567785\pi\)
−0.211346 + 0.977411i \(0.567785\pi\)
\(822\) 2.76393 0.0964032
\(823\) −25.5279 −0.889845 −0.444923 0.895569i \(-0.646769\pi\)
−0.444923 + 0.895569i \(0.646769\pi\)
\(824\) −25.1246 −0.875257
\(825\) 0 0
\(826\) 35.7771 1.24484
\(827\) −8.58359 −0.298481 −0.149240 0.988801i \(-0.547683\pi\)
−0.149240 + 0.988801i \(0.547683\pi\)
\(828\) 3.00000 0.104257
\(829\) 10.3607 0.359841 0.179921 0.983681i \(-0.442416\pi\)
0.179921 + 0.983681i \(0.442416\pi\)
\(830\) −11.0557 −0.383750
\(831\) 15.8885 0.551167
\(832\) −58.1378 −2.01556
\(833\) 9.59675 0.332508
\(834\) −20.0000 −0.692543
\(835\) −16.0000 −0.553703
\(836\) 0 0
\(837\) 6.47214 0.223710
\(838\) 31.0557 1.07280
\(839\) −12.5836 −0.434434 −0.217217 0.976123i \(-0.569698\pi\)
−0.217217 + 0.976123i \(0.569698\pi\)
\(840\) 8.94427 0.308607
\(841\) −9.00000 −0.310345
\(842\) −69.1935 −2.38457
\(843\) 24.6525 0.849076
\(844\) −40.5836 −1.39694
\(845\) 8.65248 0.297654
\(846\) −8.94427 −0.307510
\(847\) 0 0
\(848\) 5.23607 0.179807
\(849\) 5.70820 0.195905
\(850\) −21.4590 −0.736037
\(851\) 4.47214 0.153303
\(852\) 24.0000 0.822226
\(853\) −22.0000 −0.753266 −0.376633 0.926363i \(-0.622918\pi\)
−0.376633 + 0.926363i \(0.622918\pi\)
\(854\) 32.3607 1.10736
\(855\) −8.94427 −0.305888
\(856\) −37.8885 −1.29500
\(857\) 42.9443 1.46695 0.733474 0.679717i \(-0.237898\pi\)
0.733474 + 0.679717i \(0.237898\pi\)
\(858\) 0 0
\(859\) −7.05573 −0.240738 −0.120369 0.992729i \(-0.538408\pi\)
−0.120369 + 0.992729i \(0.538408\pi\)
\(860\) 21.1672 0.721795
\(861\) 35.4164 1.20699
\(862\) −17.8885 −0.609286
\(863\) −4.00000 −0.136162 −0.0680808 0.997680i \(-0.521688\pi\)
−0.0680808 + 0.997680i \(0.521688\pi\)
\(864\) 6.70820 0.228218
\(865\) −5.52786 −0.187953
\(866\) 62.3607 2.11910
\(867\) 9.36068 0.317905
\(868\) 62.8328 2.13268
\(869\) 0 0
\(870\) 12.3607 0.419066
\(871\) 3.41641 0.115761
\(872\) 33.4164 1.13162
\(873\) 8.47214 0.286738
\(874\) −16.1803 −0.547308
\(875\) 33.8885 1.14564
\(876\) 20.8328 0.703876
\(877\) −33.0557 −1.11621 −0.558106 0.829769i \(-0.688472\pi\)
−0.558106 + 0.829769i \(0.688472\pi\)
\(878\) 22.1115 0.746226
\(879\) 7.70820 0.259991
\(880\) 0 0
\(881\) 26.5410 0.894190 0.447095 0.894487i \(-0.352459\pi\)
0.447095 + 0.894487i \(0.352459\pi\)
\(882\) 7.76393 0.261425
\(883\) −7.41641 −0.249582 −0.124791 0.992183i \(-0.539826\pi\)
−0.124791 + 0.992183i \(0.539826\pi\)
\(884\) 37.0820 1.24720
\(885\) 6.11146 0.205434
\(886\) −77.8885 −2.61672
\(887\) −31.0557 −1.04275 −0.521375 0.853328i \(-0.674581\pi\)
−0.521375 + 0.853328i \(0.674581\pi\)
\(888\) −10.0000 −0.335578
\(889\) 4.94427 0.165826
\(890\) −3.41641 −0.114518
\(891\) 0 0
\(892\) −77.6656 −2.60044
\(893\) 28.9443 0.968583
\(894\) −26.1803 −0.875602
\(895\) 25.8885 0.865359
\(896\) 50.6525 1.69218
\(897\) −4.47214 −0.149320
\(898\) 33.4164 1.11512
\(899\) 28.9443 0.965346
\(900\) −10.4164 −0.347214
\(901\) −14.4721 −0.482137
\(902\) 0 0
\(903\) 18.4721 0.614714
\(904\) −13.8197 −0.459635
\(905\) −14.6950 −0.488480
\(906\) −35.7771 −1.18861
\(907\) −1.12461 −0.0373421 −0.0186711 0.999826i \(-0.505944\pi\)
−0.0186711 + 0.999826i \(0.505944\pi\)
\(908\) 40.5836 1.34681
\(909\) 6.94427 0.230327
\(910\) −40.0000 −1.32599
\(911\) −40.7214 −1.34916 −0.674579 0.738202i \(-0.735675\pi\)
−0.674579 + 0.738202i \(0.735675\pi\)
\(912\) −7.23607 −0.239610
\(913\) 0 0
\(914\) −18.9443 −0.626621
\(915\) 5.52786 0.182746
\(916\) 8.83282 0.291844
\(917\) 54.8328 1.81074
\(918\) −6.18034 −0.203982
\(919\) 23.0132 0.759134 0.379567 0.925164i \(-0.376073\pi\)
0.379567 + 0.925164i \(0.376073\pi\)
\(920\) 2.76393 0.0911241
\(921\) 2.47214 0.0814596
\(922\) 12.1115 0.398870
\(923\) −35.7771 −1.17762
\(924\) 0 0
\(925\) −15.5279 −0.510553
\(926\) −28.9443 −0.951168
\(927\) −11.2361 −0.369041
\(928\) 30.0000 0.984798
\(929\) −28.8328 −0.945974 −0.472987 0.881069i \(-0.656824\pi\)
−0.472987 + 0.881069i \(0.656824\pi\)
\(930\) 17.8885 0.586588
\(931\) −25.1246 −0.823426
\(932\) 42.0000 1.37576
\(933\) −7.05573 −0.230994
\(934\) 45.5279 1.48972
\(935\) 0 0
\(936\) 10.0000 0.326860
\(937\) 12.8328 0.419230 0.209615 0.977784i \(-0.432779\pi\)
0.209615 + 0.977784i \(0.432779\pi\)
\(938\) −5.52786 −0.180491
\(939\) −5.05573 −0.164987
\(940\) −14.8328 −0.483793
\(941\) 42.5410 1.38680 0.693399 0.720554i \(-0.256112\pi\)
0.693399 + 0.720554i \(0.256112\pi\)
\(942\) 7.88854 0.257023
\(943\) 10.9443 0.356395
\(944\) 4.94427 0.160922
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) −1.16718 −0.0379284 −0.0189642 0.999820i \(-0.506037\pi\)
−0.0189642 + 0.999820i \(0.506037\pi\)
\(948\) 29.1246 0.945923
\(949\) −31.0557 −1.00811
\(950\) 56.1803 1.82273
\(951\) −2.58359 −0.0837787
\(952\) −20.0000 −0.648204
\(953\) −12.0689 −0.390949 −0.195475 0.980709i \(-0.562625\pi\)
−0.195475 + 0.980709i \(0.562625\pi\)
\(954\) −11.7082 −0.379067
\(955\) 1.88854 0.0611118
\(956\) −14.8328 −0.479728
\(957\) 0 0
\(958\) 75.7771 2.44825
\(959\) 4.00000 0.129167
\(960\) 16.0689 0.518621
\(961\) 10.8885 0.351243
\(962\) 44.7214 1.44187
\(963\) −16.9443 −0.546022
\(964\) −58.5836 −1.88685
\(965\) −21.5279 −0.693006
\(966\) 7.23607 0.232817
\(967\) 7.63932 0.245664 0.122832 0.992427i \(-0.460802\pi\)
0.122832 + 0.992427i \(0.460802\pi\)
\(968\) 0 0
\(969\) 20.0000 0.642493
\(970\) 23.4164 0.751856
\(971\) 17.3050 0.555342 0.277671 0.960676i \(-0.410437\pi\)
0.277671 + 0.960676i \(0.410437\pi\)
\(972\) −3.00000 −0.0962250
\(973\) −28.9443 −0.927911
\(974\) 53.6656 1.71956
\(975\) 15.5279 0.497290
\(976\) 4.47214 0.143150
\(977\) −32.0689 −1.02597 −0.512987 0.858396i \(-0.671461\pi\)
−0.512987 + 0.858396i \(0.671461\pi\)
\(978\) −16.5836 −0.530285
\(979\) 0 0
\(980\) 12.8754 0.411289
\(981\) 14.9443 0.477134
\(982\) −89.4427 −2.85423
\(983\) 22.8328 0.728254 0.364127 0.931349i \(-0.381367\pi\)
0.364127 + 0.931349i \(0.381367\pi\)
\(984\) −24.4721 −0.780143
\(985\) −21.5279 −0.685935
\(986\) −27.6393 −0.880215
\(987\) −12.9443 −0.412021
\(988\) −97.0820 −3.08859
\(989\) 5.70820 0.181510
\(990\) 0 0
\(991\) −1.52786 −0.0485342 −0.0242671 0.999706i \(-0.507725\pi\)
−0.0242671 + 0.999706i \(0.507725\pi\)
\(992\) 43.4164 1.37847
\(993\) −23.4164 −0.743097
\(994\) 57.8885 1.83611
\(995\) 12.0000 0.380426
\(996\) 12.0000 0.380235
\(997\) −42.3607 −1.34158 −0.670788 0.741649i \(-0.734044\pi\)
−0.670788 + 0.741649i \(0.734044\pi\)
\(998\) −27.6393 −0.874907
\(999\) −4.47214 −0.141492
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8349.2.a.i.1.2 2
11.10 odd 2 69.2.a.b.1.1 2
33.32 even 2 207.2.a.c.1.2 2
44.43 even 2 1104.2.a.m.1.2 2
55.32 even 4 1725.2.b.o.1174.2 4
55.43 even 4 1725.2.b.o.1174.3 4
55.54 odd 2 1725.2.a.ba.1.2 2
77.76 even 2 3381.2.a.t.1.1 2
88.21 odd 2 4416.2.a.bm.1.1 2
88.43 even 2 4416.2.a.bg.1.1 2
132.131 odd 2 3312.2.a.bb.1.1 2
165.164 even 2 5175.2.a.bk.1.1 2
253.252 even 2 1587.2.a.i.1.1 2
759.758 odd 2 4761.2.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
69.2.a.b.1.1 2 11.10 odd 2
207.2.a.c.1.2 2 33.32 even 2
1104.2.a.m.1.2 2 44.43 even 2
1587.2.a.i.1.1 2 253.252 even 2
1725.2.a.ba.1.2 2 55.54 odd 2
1725.2.b.o.1174.2 4 55.32 even 4
1725.2.b.o.1174.3 4 55.43 even 4
3312.2.a.bb.1.1 2 132.131 odd 2
3381.2.a.t.1.1 2 77.76 even 2
4416.2.a.bg.1.1 2 88.43 even 2
4416.2.a.bm.1.1 2 88.21 odd 2
4761.2.a.v.1.2 2 759.758 odd 2
5175.2.a.bk.1.1 2 165.164 even 2
8349.2.a.i.1.2 2 1.1 even 1 trivial