Properties

Label 833.2.v.b.508.1
Level $833$
Weight $2$
Character 833.508
Analytic conductor $6.652$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,2,Mod(128,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.v (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,4,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 508.1
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 833.508
Dual form 833.2.v.b.569.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.624844 + 2.33195i) q^{2} +(-1.07313 - 0.141281i) q^{3} +(-3.31552 - 1.91421i) q^{4} +(0.607206 + 0.465926i) q^{5} +(1.00000 - 2.41421i) q^{6} +(3.12132 - 3.12132i) q^{8} +(-1.76612 - 0.473232i) q^{9} +(-1.46593 + 1.12484i) q^{10} +(-1.59077 - 2.07313i) q^{11} +(3.28754 + 2.52262i) q^{12} -1.41421i q^{13} +(-0.585786 - 0.585786i) q^{15} +(1.50000 + 2.59808i) q^{16} +(1.18386 + 3.94949i) q^{17} +(2.20711 - 3.82282i) q^{18} +(0.214413 - 0.800199i) q^{19} +(-1.12132 - 2.70711i) q^{20} +(5.82843 - 2.41421i) q^{22} +(4.73703 - 0.623642i) q^{23} +(-3.79057 + 2.90861i) q^{24} +(-1.14248 - 4.26380i) q^{25} +(3.29788 + 0.883663i) q^{26} +(4.82843 + 2.00000i) q^{27} +(-0.292893 + 0.121320i) q^{29} +(1.73205 - 1.00000i) q^{30} +(7.77231 + 1.02324i) q^{31} +(1.53175 - 0.410432i) q^{32} +(1.41421 + 2.44949i) q^{33} +(-9.94975 + 0.292893i) q^{34} +(4.94975 + 4.94975i) q^{36} +(5.62422 - 7.32963i) q^{37} +(1.73205 + 1.00000i) q^{38} +(-0.199801 + 1.51764i) q^{39} +(3.34959 - 0.440982i) q^{40} +(1.12132 + 0.464466i) q^{41} +(-0.585786 + 0.585786i) q^{43} +(1.30581 + 9.91858i) q^{44} +(-0.851911 - 1.11023i) q^{45} +(-1.50561 + 11.4362i) q^{46} +(-4.47871 + 2.58579i) q^{47} +(-1.24264 - 3.00000i) q^{48} +10.6569 q^{50} +(-0.712455 - 4.40558i) q^{51} +(-2.70711 + 4.68885i) q^{52} +(1.36603 - 0.366025i) q^{53} +(-7.68092 + 10.0100i) q^{54} -2.00000i q^{55} +(-0.343146 + 0.828427i) q^{57} +(-0.0999004 - 0.758819i) q^{58} +(1.55291 + 5.79555i) q^{59} +(0.820863 + 3.06350i) q^{60} +(0.499502 + 3.79410i) q^{61} +(-7.24264 + 17.4853i) q^{62} +9.82843i q^{64} +(0.658919 - 0.858719i) q^{65} +(-6.59575 + 1.76733i) q^{66} +(-0.585786 + 1.01461i) q^{67} +(3.63505 - 15.3608i) q^{68} -5.17157 q^{69} +(-2.07107 - 5.00000i) q^{71} +(-6.98975 + 4.03553i) q^{72} +(1.68827 - 12.8237i) q^{73} +(13.5781 + 17.6953i) q^{74} +(0.623642 + 4.73703i) q^{75} +(-2.24264 + 2.24264i) q^{76} +(-3.41421 - 1.41421i) q^{78} +(-4.73703 + 0.623642i) q^{79} +(-0.299701 + 2.27646i) q^{80} +(-0.148586 - 0.0857864i) q^{81} +(-1.78376 + 2.32465i) q^{82} +(8.24264 + 8.24264i) q^{83} +(-1.12132 + 2.94975i) q^{85} +(-1.00000 - 1.73205i) q^{86} +(0.331453 - 0.0888127i) q^{87} +(-11.4362 - 1.50561i) q^{88} +(5.70346 - 3.29289i) q^{89} +(3.12132 - 1.29289i) q^{90} +(-16.8995 - 7.00000i) q^{92} +(-8.19615 - 2.19615i) q^{93} +(-3.23143 - 12.0599i) q^{94} +(0.503026 - 0.385986i) q^{95} +(-1.70176 + 0.224041i) q^{96} +(9.53553 - 3.94975i) q^{97} +(1.82843 + 4.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{3} + 8 q^{6} + 8 q^{8} - 8 q^{9} - 4 q^{10} + 4 q^{11} + 4 q^{12} - 16 q^{15} + 12 q^{16} + 12 q^{18} - 8 q^{19} + 8 q^{20} + 24 q^{22} - 4 q^{23} - 12 q^{24} + 4 q^{25} + 4 q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.624844 + 2.33195i −0.441832 + 1.64894i 0.282337 + 0.959315i \(0.408890\pi\)
−0.724168 + 0.689623i \(0.757776\pi\)
\(3\) −1.07313 0.141281i −0.619573 0.0815684i −0.185796 0.982588i \(-0.559486\pi\)
−0.433777 + 0.901020i \(0.642820\pi\)
\(4\) −3.31552 1.91421i −1.65776 0.957107i
\(5\) 0.607206 + 0.465926i 0.271551 + 0.208368i 0.735556 0.677464i \(-0.236921\pi\)
−0.464005 + 0.885833i \(0.653588\pi\)
\(6\) 1.00000 2.41421i 0.408248 0.985599i
\(7\) 0 0
\(8\) 3.12132 3.12132i 1.10355 1.10355i
\(9\) −1.76612 0.473232i −0.588708 0.157744i
\(10\) −1.46593 + 1.12484i −0.463566 + 0.355707i
\(11\) −1.59077 2.07313i −0.479635 0.625073i 0.489381 0.872070i \(-0.337223\pi\)
−0.969016 + 0.246997i \(0.920556\pi\)
\(12\) 3.28754 + 2.52262i 0.949032 + 0.728218i
\(13\) 1.41421i 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) 0 0
\(15\) −0.585786 0.585786i −0.151249 0.151249i
\(16\) 1.50000 + 2.59808i 0.375000 + 0.649519i
\(17\) 1.18386 + 3.94949i 0.287129 + 0.957892i
\(18\) 2.20711 3.82282i 0.520220 0.901048i
\(19\) 0.214413 0.800199i 0.0491897 0.183578i −0.936960 0.349437i \(-0.886373\pi\)
0.986150 + 0.165859i \(0.0530396\pi\)
\(20\) −1.12132 2.70711i −0.250735 0.605327i
\(21\) 0 0
\(22\) 5.82843 2.41421i 1.24262 0.514712i
\(23\) 4.73703 0.623642i 0.987740 0.130038i 0.380691 0.924702i \(-0.375686\pi\)
0.607049 + 0.794664i \(0.292353\pi\)
\(24\) −3.79057 + 2.90861i −0.773747 + 0.593717i
\(25\) −1.14248 4.26380i −0.228497 0.852761i
\(26\) 3.29788 + 0.883663i 0.646767 + 0.173301i
\(27\) 4.82843 + 2.00000i 0.929231 + 0.384900i
\(28\) 0 0
\(29\) −0.292893 + 0.121320i −0.0543889 + 0.0225286i −0.409712 0.912215i \(-0.634371\pi\)
0.355323 + 0.934744i \(0.384371\pi\)
\(30\) 1.73205 1.00000i 0.316228 0.182574i
\(31\) 7.77231 + 1.02324i 1.39595 + 0.183780i 0.790674 0.612237i \(-0.209730\pi\)
0.605274 + 0.796017i \(0.293064\pi\)
\(32\) 1.53175 0.410432i 0.270778 0.0725548i
\(33\) 1.41421 + 2.44949i 0.246183 + 0.426401i
\(34\) −9.94975 + 0.292893i −1.70637 + 0.0502308i
\(35\) 0 0
\(36\) 4.94975 + 4.94975i 0.824958 + 0.824958i
\(37\) 5.62422 7.32963i 0.924616 1.20498i −0.0538440 0.998549i \(-0.517147\pi\)
0.978460 0.206434i \(-0.0661860\pi\)
\(38\) 1.73205 + 1.00000i 0.280976 + 0.162221i
\(39\) −0.199801 + 1.51764i −0.0319937 + 0.243017i
\(40\) 3.34959 0.440982i 0.529617 0.0697253i
\(41\) 1.12132 + 0.464466i 0.175121 + 0.0725374i 0.468521 0.883452i \(-0.344787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(42\) 0 0
\(43\) −0.585786 + 0.585786i −0.0893316 + 0.0893316i −0.750360 0.661029i \(-0.770120\pi\)
0.661029 + 0.750360i \(0.270120\pi\)
\(44\) 1.30581 + 9.91858i 0.196858 + 1.49528i
\(45\) −0.851911 1.11023i −0.126995 0.165504i
\(46\) −1.50561 + 11.4362i −0.221990 + 1.68618i
\(47\) −4.47871 + 2.58579i −0.653288 + 0.377176i −0.789715 0.613474i \(-0.789771\pi\)
0.136427 + 0.990650i \(0.456438\pi\)
\(48\) −1.24264 3.00000i −0.179360 0.433013i
\(49\) 0 0
\(50\) 10.6569 1.50711
\(51\) −0.712455 4.40558i −0.0997637 0.616905i
\(52\) −2.70711 + 4.68885i −0.375408 + 0.650226i
\(53\) 1.36603 0.366025i 0.187638 0.0502775i −0.163776 0.986498i \(-0.552368\pi\)
0.351414 + 0.936220i \(0.385701\pi\)
\(54\) −7.68092 + 10.0100i −1.04524 + 1.36218i
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) −0.343146 + 0.828427i −0.0454508 + 0.109728i
\(58\) −0.0999004 0.758819i −0.0131176 0.0996378i
\(59\) 1.55291 + 5.79555i 0.202172 + 0.754517i 0.990293 + 0.138996i \(0.0443876\pi\)
−0.788121 + 0.615521i \(0.788946\pi\)
\(60\) 0.820863 + 3.06350i 0.105973 + 0.395497i
\(61\) 0.499502 + 3.79410i 0.0639547 + 0.485784i 0.993209 + 0.116344i \(0.0371173\pi\)
−0.929254 + 0.369441i \(0.879549\pi\)
\(62\) −7.24264 + 17.4853i −0.919816 + 2.22063i
\(63\) 0 0
\(64\) 9.82843i 1.22855i
\(65\) 0.658919 0.858719i 0.0817288 0.106511i
\(66\) −6.59575 + 1.76733i −0.811881 + 0.217543i
\(67\) −0.585786 + 1.01461i −0.0715652 + 0.123955i −0.899587 0.436741i \(-0.856133\pi\)
0.828022 + 0.560695i \(0.189466\pi\)
\(68\) 3.63505 15.3608i 0.440815 1.86277i
\(69\) −5.17157 −0.622584
\(70\) 0 0
\(71\) −2.07107 5.00000i −0.245791 0.593391i 0.752048 0.659109i \(-0.229066\pi\)
−0.997838 + 0.0657178i \(0.979066\pi\)
\(72\) −6.98975 + 4.03553i −0.823750 + 0.475592i
\(73\) 1.68827 12.8237i 0.197597 1.50090i −0.549114 0.835747i \(-0.685035\pi\)
0.746711 0.665149i \(-0.231632\pi\)
\(74\) 13.5781 + 17.6953i 1.57842 + 2.05704i
\(75\) 0.623642 + 4.73703i 0.0720120 + 0.546986i
\(76\) −2.24264 + 2.24264i −0.257249 + 0.257249i
\(77\) 0 0
\(78\) −3.41421 1.41421i −0.386584 0.160128i
\(79\) −4.73703 + 0.623642i −0.532958 + 0.0701653i −0.392202 0.919879i \(-0.628287\pi\)
−0.140756 + 0.990044i \(0.544953\pi\)
\(80\) −0.299701 + 2.27646i −0.0335076 + 0.254516i
\(81\) −0.148586 0.0857864i −0.0165096 0.00953183i
\(82\) −1.78376 + 2.32465i −0.196984 + 0.256714i
\(83\) 8.24264 + 8.24264i 0.904747 + 0.904747i 0.995842 0.0910949i \(-0.0290366\pi\)
−0.0910949 + 0.995842i \(0.529037\pi\)
\(84\) 0 0
\(85\) −1.12132 + 2.94975i −0.121624 + 0.319945i
\(86\) −1.00000 1.73205i −0.107833 0.186772i
\(87\) 0.331453 0.0888127i 0.0355355 0.00952172i
\(88\) −11.4362 1.50561i −1.21910 0.160498i
\(89\) 5.70346 3.29289i 0.604565 0.349046i −0.166270 0.986080i \(-0.553172\pi\)
0.770835 + 0.637034i \(0.219839\pi\)
\(90\) 3.12132 1.29289i 0.329016 0.136283i
\(91\) 0 0
\(92\) −16.8995 7.00000i −1.76189 0.729800i
\(93\) −8.19615 2.19615i −0.849901 0.227730i
\(94\) −3.23143 12.0599i −0.333296 1.24388i
\(95\) 0.503026 0.385986i 0.0516094 0.0396013i
\(96\) −1.70176 + 0.224041i −0.173685 + 0.0228661i
\(97\) 9.53553 3.94975i 0.968187 0.401036i 0.158150 0.987415i \(-0.449447\pi\)
0.810037 + 0.586379i \(0.199447\pi\)
\(98\) 0 0
\(99\) 1.82843 + 4.41421i 0.183764 + 0.443645i
\(100\) −4.37391 + 16.3237i −0.437391 + 1.63237i
\(101\) 5.29289 9.16756i 0.526663 0.912206i −0.472855 0.881140i \(-0.656776\pi\)
0.999517 0.0310659i \(-0.00989019\pi\)
\(102\) 10.7188 + 1.09139i 1.06132 + 0.108064i
\(103\) −6.24264 10.8126i −0.615106 1.06539i −0.990366 0.138475i \(-0.955780\pi\)
0.375260 0.926919i \(-0.377553\pi\)
\(104\) −4.41421 4.41421i −0.432849 0.432849i
\(105\) 0 0
\(106\) 3.41421i 0.331618i
\(107\) −0.355693 0.272933i −0.0343862 0.0263854i 0.591425 0.806360i \(-0.298565\pi\)
−0.625812 + 0.779974i \(0.715232\pi\)
\(108\) −12.1803 15.8737i −1.17205 1.52744i
\(109\) −12.3346 + 9.46468i −1.18144 + 0.906552i −0.997084 0.0763072i \(-0.975687\pi\)
−0.184357 + 0.982859i \(0.559020\pi\)
\(110\) 4.66390 + 1.24969i 0.444686 + 0.119153i
\(111\) −7.07107 + 7.07107i −0.671156 + 0.671156i
\(112\) 0 0
\(113\) 5.05025 12.1924i 0.475088 1.14696i −0.486799 0.873514i \(-0.661835\pi\)
0.961886 0.273449i \(-0.0881645\pi\)
\(114\) −1.71744 1.31784i −0.160853 0.123427i
\(115\) 3.16693 + 1.82843i 0.295318 + 0.170502i
\(116\) 1.20332 + 0.158421i 0.111726 + 0.0147090i
\(117\) −0.669251 + 2.49768i −0.0618723 + 0.230910i
\(118\) −14.4853 −1.33348
\(119\) 0 0
\(120\) −3.65685 −0.333824
\(121\) 1.07968 4.02943i 0.0981530 0.366312i
\(122\) −9.15976 1.20590i −0.829285 0.109177i
\(123\) −1.13770 0.656854i −0.102583 0.0592266i
\(124\) −23.8105 18.2704i −2.13825 1.64073i
\(125\) 2.75736 6.65685i 0.246626 0.595407i
\(126\) 0 0
\(127\) −3.75736 + 3.75736i −0.333412 + 0.333412i −0.853881 0.520469i \(-0.825757\pi\)
0.520469 + 0.853881i \(0.325757\pi\)
\(128\) −19.8559 5.32037i −1.75503 0.470259i
\(129\) 0.711386 0.545866i 0.0626341 0.0480608i
\(130\) 1.59077 + 2.07313i 0.139520 + 0.181826i
\(131\) 12.0831 + 9.27169i 1.05571 + 0.810071i 0.982316 0.187232i \(-0.0599517\pi\)
0.0733896 + 0.997303i \(0.476618\pi\)
\(132\) 10.8284i 0.942494i
\(133\) 0 0
\(134\) −2.00000 2.00000i −0.172774 0.172774i
\(135\) 2.00000 + 3.46410i 0.172133 + 0.298142i
\(136\) 16.0228 + 8.63241i 1.37395 + 0.740223i
\(137\) 8.36396 14.4868i 0.714581 1.23769i −0.248539 0.968622i \(-0.579951\pi\)
0.963121 0.269070i \(-0.0867161\pi\)
\(138\) 3.23143 12.0599i 0.275077 1.02660i
\(139\) −8.17157 19.7279i −0.693104 1.67330i −0.738432 0.674328i \(-0.764433\pi\)
0.0453279 0.998972i \(-0.485567\pi\)
\(140\) 0 0
\(141\) 5.17157 2.14214i 0.435525 0.180400i
\(142\) 12.9539 1.70541i 1.08706 0.143115i
\(143\) −2.93185 + 2.24969i −0.245174 + 0.188128i
\(144\) −1.41970 5.29837i −0.118308 0.441531i
\(145\) −0.234373 0.0628000i −0.0194636 0.00521526i
\(146\) 28.8492 + 11.9497i 2.38758 + 0.988968i
\(147\) 0 0
\(148\) −32.6777 + 13.5355i −2.68609 + 1.11261i
\(149\) 14.6969 8.48528i 1.20402 0.695141i 0.242574 0.970133i \(-0.422008\pi\)
0.961447 + 0.274992i \(0.0886751\pi\)
\(150\) −11.4362 1.50561i −0.933763 0.122932i
\(151\) −6.92721 + 1.85614i −0.563728 + 0.151051i −0.529419 0.848361i \(-0.677590\pi\)
−0.0343096 + 0.999411i \(0.510923\pi\)
\(152\) −1.82843 3.16693i −0.148305 0.256872i
\(153\) −0.221825 7.53553i −0.0179335 0.609212i
\(154\) 0 0
\(155\) 4.24264 + 4.24264i 0.340777 + 0.340777i
\(156\) 3.56753 4.64929i 0.285631 0.372241i
\(157\) 8.36308 + 4.82843i 0.667447 + 0.385350i 0.795108 0.606467i \(-0.207414\pi\)
−0.127662 + 0.991818i \(0.540747\pi\)
\(158\) 1.50561 11.4362i 0.119780 0.909816i
\(159\) −1.51764 + 0.199801i −0.120357 + 0.0158452i
\(160\) 1.12132 + 0.464466i 0.0886482 + 0.0367193i
\(161\) 0 0
\(162\) 0.292893 0.292893i 0.0230119 0.0230119i
\(163\) 1.10600 + 8.40094i 0.0866289 + 0.658012i 0.978578 + 0.205876i \(0.0660045\pi\)
−0.891949 + 0.452136i \(0.850662\pi\)
\(164\) −2.82867 3.68639i −0.220882 0.287859i
\(165\) −0.282561 + 2.14626i −0.0219973 + 0.167086i
\(166\) −24.3718 + 14.0711i −1.89162 + 1.09213i
\(167\) 0.757359 + 1.82843i 0.0586062 + 0.141488i 0.950470 0.310816i \(-0.100602\pi\)
−0.891864 + 0.452304i \(0.850602\pi\)
\(168\) 0 0
\(169\) 11.0000 0.846154
\(170\) −6.17802 4.45800i −0.473832 0.341913i
\(171\) −0.757359 + 1.31178i −0.0579167 + 0.100315i
\(172\) 3.06350 0.820863i 0.233590 0.0625903i
\(173\) 1.78376 2.32465i 0.135617 0.176740i −0.720608 0.693343i \(-0.756137\pi\)
0.856225 + 0.516603i \(0.172804\pi\)
\(174\) 0.828427i 0.0628029i
\(175\) 0 0
\(176\) 3.00000 7.24264i 0.226134 0.545935i
\(177\) −0.847683 6.43879i −0.0637158 0.483969i
\(178\) 4.11509 + 15.3577i 0.308439 + 1.15111i
\(179\) −1.55291 5.79555i −0.116070 0.433180i 0.883294 0.468819i \(-0.155320\pi\)
−0.999365 + 0.0356385i \(0.988654\pi\)
\(180\) 0.699303 + 5.31173i 0.0521230 + 0.395913i
\(181\) −4.46447 + 10.7782i −0.331841 + 0.801135i 0.666605 + 0.745411i \(0.267747\pi\)
−0.998446 + 0.0557243i \(0.982253\pi\)
\(182\) 0 0
\(183\) 4.14214i 0.306195i
\(184\) 12.8392 16.7324i 0.946519 1.23353i
\(185\) 6.83013 1.83013i 0.502161 0.134554i
\(186\) 10.2426 17.7408i 0.751027 1.30082i
\(187\) 6.30456 8.73703i 0.461035 0.638915i
\(188\) 19.7990 1.44399
\(189\) 0 0
\(190\) 0.585786 + 1.41421i 0.0424974 + 0.102598i
\(191\) 17.3205 10.0000i 1.25327 0.723575i 0.281511 0.959558i \(-0.409164\pi\)
0.971757 + 0.235983i \(0.0758311\pi\)
\(192\) 1.38857 10.5472i 0.100211 0.761179i
\(193\) 1.39778 + 1.82162i 0.100614 + 0.131123i 0.840947 0.541118i \(-0.181999\pi\)
−0.740333 + 0.672241i \(0.765332\pi\)
\(194\) 3.25239 + 24.7044i 0.233508 + 1.77367i
\(195\) −0.828427 + 0.828427i −0.0593249 + 0.0593249i
\(196\) 0 0
\(197\) −4.29289 1.77817i −0.305856 0.126690i 0.224476 0.974480i \(-0.427933\pi\)
−0.530332 + 0.847790i \(0.677933\pi\)
\(198\) −11.4362 + 1.50561i −0.812736 + 0.106999i
\(199\) −1.50561 + 11.4362i −0.106730 + 0.810692i 0.851432 + 0.524465i \(0.175734\pi\)
−0.958162 + 0.286227i \(0.907599\pi\)
\(200\) −16.8747 9.74264i −1.19322 0.688909i
\(201\) 0.771971 1.00605i 0.0544506 0.0709615i
\(202\) 18.0711 + 18.0711i 1.27148 + 1.27148i
\(203\) 0 0
\(204\) −6.07107 + 15.9706i −0.425060 + 1.11816i
\(205\) 0.464466 + 0.804479i 0.0324397 + 0.0561872i
\(206\) 29.1151 7.80136i 2.02854 0.543546i
\(207\) −8.66132 1.14028i −0.602004 0.0792553i
\(208\) 3.67423 2.12132i 0.254762 0.147087i
\(209\) −2.00000 + 0.828427i −0.138343 + 0.0573035i
\(210\) 0 0
\(211\) −19.7279 8.17157i −1.35813 0.562554i −0.419583 0.907717i \(-0.637824\pi\)
−0.938543 + 0.345163i \(0.887824\pi\)
\(212\) −5.22973 1.40130i −0.359179 0.0962418i
\(213\) 1.51613 + 5.65826i 0.103883 + 0.387698i
\(214\) 0.858719 0.658919i 0.0587009 0.0450427i
\(215\) −0.628626 + 0.0827602i −0.0428720 + 0.00564420i
\(216\) 21.3137 8.82843i 1.45021 0.600698i
\(217\) 0 0
\(218\) −14.3640 34.6777i −0.972850 2.34867i
\(219\) −3.62347 + 13.5230i −0.244851 + 0.913797i
\(220\) −3.82843 + 6.63103i −0.258113 + 0.447064i
\(221\) 5.58542 1.67423i 0.375716 0.112621i
\(222\) −12.0711 20.9077i −0.810157 1.40323i
\(223\) 3.41421 + 3.41421i 0.228633 + 0.228633i 0.812121 0.583489i \(-0.198313\pi\)
−0.583489 + 0.812121i \(0.698313\pi\)
\(224\) 0 0
\(225\) 8.07107i 0.538071i
\(226\) 25.2764 + 19.3953i 1.68136 + 1.29016i
\(227\) 10.5895 + 13.8005i 0.702852 + 0.915974i 0.999236 0.0390949i \(-0.0124475\pi\)
−0.296384 + 0.955069i \(0.595781\pi\)
\(228\) 2.72349 2.08981i 0.180368 0.138401i
\(229\) 16.5865 + 4.44433i 1.09606 + 0.293690i 0.761161 0.648563i \(-0.224630\pi\)
0.334903 + 0.942252i \(0.391296\pi\)
\(230\) −6.24264 + 6.24264i −0.411628 + 0.411628i
\(231\) 0 0
\(232\) −0.535534 + 1.29289i −0.0351595 + 0.0848826i
\(233\) −6.97394 5.35129i −0.456878 0.350575i 0.354540 0.935041i \(-0.384637\pi\)
−0.811418 + 0.584466i \(0.801304\pi\)
\(234\) −5.40629 3.12132i −0.353420 0.204047i
\(235\) −3.92429 0.516642i −0.255992 0.0337020i
\(236\) 5.94522 22.1879i 0.387001 1.44431i
\(237\) 5.17157 0.335930
\(238\) 0 0
\(239\) 14.8284 0.959171 0.479586 0.877495i \(-0.340787\pi\)
0.479586 + 0.877495i \(0.340787\pi\)
\(240\) 0.643238 2.40060i 0.0415208 0.154958i
\(241\) 3.53371 + 0.465222i 0.227626 + 0.0299676i 0.243476 0.969907i \(-0.421712\pi\)
−0.0158502 + 0.999874i \(0.505045\pi\)
\(242\) 8.72180 + 5.03553i 0.560659 + 0.323696i
\(243\) −12.2915 9.43157i −0.788498 0.605035i
\(244\) 5.60660 13.5355i 0.358926 0.866524i
\(245\) 0 0
\(246\) 2.24264 2.24264i 0.142986 0.142986i
\(247\) −1.13165 0.303225i −0.0720053 0.0192938i
\(248\) 27.4537 21.0660i 1.74331 1.33769i
\(249\) −7.68092 10.0100i −0.486758 0.634356i
\(250\) 13.8005 + 10.5895i 0.872823 + 0.669740i
\(251\) 20.4853i 1.29302i −0.762906 0.646510i \(-0.776228\pi\)
0.762906 0.646510i \(-0.223772\pi\)
\(252\) 0 0
\(253\) −8.82843 8.82843i −0.555038 0.555038i
\(254\) −6.41421 11.1097i −0.402464 0.697087i
\(255\) 1.62007 3.00705i 0.101453 0.188309i
\(256\) 14.9853 25.9553i 0.936580 1.62220i
\(257\) −1.58970 + 5.93285i −0.0991629 + 0.370081i −0.997618 0.0689851i \(-0.978024\pi\)
0.898455 + 0.439066i \(0.144691\pi\)
\(258\) 0.828427 + 2.00000i 0.0515756 + 0.124515i
\(259\) 0 0
\(260\) −3.82843 + 1.58579i −0.237429 + 0.0983463i
\(261\) 0.574699 0.0756605i 0.0355730 0.00468327i
\(262\) −29.1712 + 22.3838i −1.80220 + 1.38288i
\(263\) −2.71379 10.1280i −0.167339 0.624519i −0.997730 0.0673380i \(-0.978549\pi\)
0.830391 0.557182i \(-0.188117\pi\)
\(264\) 12.0599 + 3.23143i 0.742233 + 0.198881i
\(265\) 1.00000 + 0.414214i 0.0614295 + 0.0254449i
\(266\) 0 0
\(267\) −6.58579 + 2.72792i −0.403044 + 0.166946i
\(268\) 3.88437 2.24264i 0.237276 0.136991i
\(269\) −26.2220 3.45219i −1.59878 0.210484i −0.722183 0.691702i \(-0.756861\pi\)
−0.876601 + 0.481218i \(0.840195\pi\)
\(270\) −9.32780 + 2.49938i −0.567672 + 0.152107i
\(271\) −11.0711 19.1757i −0.672519 1.16484i −0.977187 0.212379i \(-0.931879\pi\)
0.304668 0.952459i \(-0.401455\pi\)
\(272\) −8.48528 + 9.00000i −0.514496 + 0.545705i
\(273\) 0 0
\(274\) 28.5563 + 28.5563i 1.72515 + 1.72515i
\(275\) −7.02200 + 9.15125i −0.423443 + 0.551841i
\(276\) 17.1464 + 9.89949i 1.03209 + 0.595880i
\(277\) 2.60451 19.7832i 0.156490 1.18866i −0.715314 0.698803i \(-0.753716\pi\)
0.871804 0.489855i \(-0.162950\pi\)
\(278\) 51.1105 6.72883i 3.06540 0.403568i
\(279\) −13.2426 5.48528i −0.792816 0.328395i
\(280\) 0 0
\(281\) −1.34315 + 1.34315i −0.0801254 + 0.0801254i −0.746034 0.665908i \(-0.768044\pi\)
0.665908 + 0.746034i \(0.268044\pi\)
\(282\) 1.76393 + 13.3984i 0.105040 + 0.797861i
\(283\) −11.3615 14.8066i −0.675371 0.880160i 0.322420 0.946597i \(-0.395504\pi\)
−0.997791 + 0.0664363i \(0.978837\pi\)
\(284\) −2.70441 + 20.5420i −0.160477 + 1.21895i
\(285\) −0.594346 + 0.343146i −0.0352060 + 0.0203262i
\(286\) −3.41421 8.24264i −0.201887 0.487398i
\(287\) 0 0
\(288\) −2.89949 −0.170854
\(289\) −14.1969 + 9.35131i −0.835114 + 0.550077i
\(290\) 0.292893 0.507306i 0.0171993 0.0297900i
\(291\) −10.7909 + 2.89142i −0.632574 + 0.169498i
\(292\) −30.1447 + 39.2853i −1.76408 + 2.29900i
\(293\) 12.3431i 0.721094i −0.932741 0.360547i \(-0.882590\pi\)
0.932741 0.360547i \(-0.117410\pi\)
\(294\) 0 0
\(295\) −1.75736 + 4.24264i −0.102317 + 0.247016i
\(296\) −5.32312 40.4331i −0.309400 2.35013i
\(297\) −3.53465 13.1915i −0.205101 0.765449i
\(298\) 10.6040 + 39.5745i 0.614271 + 2.29249i
\(299\) −0.881964 6.69918i −0.0510053 0.387424i
\(300\) 7.00000 16.8995i 0.404145 0.975693i
\(301\) 0 0
\(302\) 17.3137i 0.996292i
\(303\) −6.97517 + 9.09022i −0.400713 + 0.522220i
\(304\) 2.40060 0.643238i 0.137684 0.0368922i
\(305\) −1.46447 + 2.53653i −0.0838551 + 0.145241i
\(306\) 17.7111 + 4.19125i 1.01248 + 0.239598i
\(307\) −26.1421 −1.49201 −0.746005 0.665940i \(-0.768031\pi\)
−0.746005 + 0.665940i \(0.768031\pi\)
\(308\) 0 0
\(309\) 5.17157 + 12.4853i 0.294201 + 0.710263i
\(310\) −12.5446 + 7.24264i −0.712487 + 0.411354i
\(311\) −3.35229 + 25.4632i −0.190091 + 1.44389i 0.584485 + 0.811405i \(0.301297\pi\)
−0.774576 + 0.632481i \(0.782037\pi\)
\(312\) 4.11339 + 5.36068i 0.232875 + 0.303489i
\(313\) 1.28866 + 9.78838i 0.0728397 + 0.553272i 0.988489 + 0.151294i \(0.0483439\pi\)
−0.915649 + 0.401978i \(0.868323\pi\)
\(314\) −16.4853 + 16.4853i −0.930318 + 0.930318i
\(315\) 0 0
\(316\) 16.8995 + 7.00000i 0.950671 + 0.393781i
\(317\) −19.0783 + 2.51171i −1.07155 + 0.141072i −0.645599 0.763677i \(-0.723392\pi\)
−0.425947 + 0.904748i \(0.640059\pi\)
\(318\) 0.482362 3.66390i 0.0270495 0.205461i
\(319\) 0.717439 + 0.414214i 0.0401689 + 0.0231915i
\(320\) −4.57932 + 5.96788i −0.255992 + 0.333615i
\(321\) 0.343146 + 0.343146i 0.0191525 + 0.0191525i
\(322\) 0 0
\(323\) 3.41421 0.100505i 0.189972 0.00559225i
\(324\) 0.328427 + 0.568852i 0.0182460 + 0.0316029i
\(325\) −6.02993 + 1.61571i −0.334480 + 0.0896237i
\(326\) −20.2817 2.67013i −1.12330 0.147885i
\(327\) 14.5738 8.41421i 0.805935 0.465307i
\(328\) 4.94975 2.05025i 0.273304 0.113206i
\(329\) 0 0
\(330\) −4.82843 2.00000i −0.265796 0.110096i
\(331\) 21.0562 + 5.64199i 1.15735 + 0.310112i 0.785909 0.618343i \(-0.212196\pi\)
0.371445 + 0.928455i \(0.378862\pi\)
\(332\) −11.5504 43.1068i −0.633912 2.36579i
\(333\) −13.4017 + 10.2835i −0.734408 + 0.563531i
\(334\) −4.73703 + 0.623642i −0.259199 + 0.0341242i
\(335\) −0.828427 + 0.343146i −0.0452618 + 0.0187481i
\(336\) 0 0
\(337\) −2.15076 5.19239i −0.117159 0.282847i 0.854411 0.519597i \(-0.173918\pi\)
−0.971571 + 0.236750i \(0.923918\pi\)
\(338\) −6.87329 + 25.6515i −0.373858 + 1.39526i
\(339\) −7.14214 + 12.3705i −0.387908 + 0.671876i
\(340\) 9.36420 7.63349i 0.507845 0.413984i
\(341\) −10.2426 17.7408i −0.554670 0.960717i
\(342\) −2.58579 2.58579i −0.139823 0.139823i
\(343\) 0 0
\(344\) 3.65685i 0.197164i
\(345\) −3.14021 2.40957i −0.169063 0.129727i
\(346\) 4.30638 + 5.61219i 0.231513 + 0.301713i
\(347\) −13.2975 + 10.2035i −0.713848 + 0.547755i −0.900598 0.434653i \(-0.856871\pi\)
0.186750 + 0.982407i \(0.440204\pi\)
\(348\) −1.26894 0.340013i −0.0680226 0.0182266i
\(349\) 3.00000 3.00000i 0.160586 0.160586i −0.622240 0.782826i \(-0.713777\pi\)
0.782826 + 0.622240i \(0.213777\pi\)
\(350\) 0 0
\(351\) 2.82843 6.82843i 0.150970 0.364474i
\(352\) −3.28754 2.52262i −0.175227 0.134456i
\(353\) −12.1244 7.00000i −0.645314 0.372572i 0.141344 0.989960i \(-0.454858\pi\)
−0.786659 + 0.617388i \(0.788191\pi\)
\(354\) 15.5446 + 2.04649i 0.826187 + 0.108770i
\(355\) 1.07206 4.00100i 0.0568992 0.212351i
\(356\) −25.2132 −1.33630
\(357\) 0 0
\(358\) 14.4853 0.765571
\(359\) −7.46135 + 27.8461i −0.393795 + 1.46966i 0.430028 + 0.902815i \(0.358504\pi\)
−0.823823 + 0.566847i \(0.808163\pi\)
\(360\) −6.12448 0.806303i −0.322788 0.0424959i
\(361\) 15.8601 + 9.15685i 0.834744 + 0.481940i
\(362\) −22.3446 17.1456i −1.17441 0.901153i
\(363\) −1.72792 + 4.17157i −0.0906924 + 0.218951i
\(364\) 0 0
\(365\) 7.00000 7.00000i 0.366397 0.366397i
\(366\) 9.65926 + 2.58819i 0.504898 + 0.135287i
\(367\) 3.49591 2.68250i 0.182485 0.140025i −0.513480 0.858102i \(-0.671644\pi\)
0.695964 + 0.718076i \(0.254977\pi\)
\(368\) 8.72582 + 11.3717i 0.454865 + 0.592792i
\(369\) −1.76059 1.35095i −0.0916527 0.0703276i
\(370\) 17.0711i 0.887483i
\(371\) 0 0
\(372\) 22.9706 + 22.9706i 1.19097 + 1.19097i
\(373\) −5.77817 10.0081i −0.299183 0.518199i 0.676767 0.736198i \(-0.263381\pi\)
−0.975949 + 0.217998i \(0.930047\pi\)
\(374\) 16.4350 + 20.1612i 0.849832 + 1.04251i
\(375\) −3.89949 + 6.75412i −0.201369 + 0.348781i
\(376\) −5.90843 + 22.0506i −0.304704 + 1.13717i
\(377\) 0.171573 + 0.414214i 0.00883645 + 0.0213331i
\(378\) 0 0
\(379\) −2.41421 + 1.00000i −0.124010 + 0.0513665i −0.443826 0.896113i \(-0.646379\pi\)
0.319816 + 0.947480i \(0.396379\pi\)
\(380\) −2.40665 + 0.316841i −0.123459 + 0.0162536i
\(381\) 4.56298 3.50130i 0.233769 0.179377i
\(382\) 12.4969 + 46.6390i 0.639396 + 2.38626i
\(383\) 21.7191 + 5.81962i 1.10979 + 0.297369i 0.766747 0.641949i \(-0.221874\pi\)
0.343048 + 0.939318i \(0.388541\pi\)
\(384\) 20.5563 + 8.51472i 1.04901 + 0.434515i
\(385\) 0 0
\(386\) −5.12132 + 2.12132i −0.260668 + 0.107972i
\(387\) 1.31178 0.757359i 0.0666818 0.0384987i
\(388\) −39.1759 5.15760i −1.98885 0.261838i
\(389\) 11.7284 3.14262i 0.594654 0.159337i 0.0510744 0.998695i \(-0.483735\pi\)
0.543579 + 0.839358i \(0.317069\pi\)
\(390\) −1.41421 2.44949i −0.0716115 0.124035i
\(391\) 8.07107 + 17.9706i 0.408171 + 0.908810i
\(392\) 0 0
\(393\) −11.6569 11.6569i −0.588011 0.588011i
\(394\) 6.82901 8.89974i 0.344040 0.448362i
\(395\) −3.16693 1.82843i −0.159345 0.0919982i
\(396\) 2.38757 18.1354i 0.119980 0.911338i
\(397\) −17.6370 + 2.32195i −0.885174 + 0.116535i −0.559386 0.828908i \(-0.688963\pi\)
−0.325788 + 0.945443i \(0.605630\pi\)
\(398\) −25.7279 10.6569i −1.28962 0.534180i
\(399\) 0 0
\(400\) 9.36396 9.36396i 0.468198 0.468198i
\(401\) 0.0756605 + 0.574699i 0.00377831 + 0.0286991i 0.993230 0.116163i \(-0.0370595\pi\)
−0.989452 + 0.144862i \(0.953726\pi\)
\(402\) 1.86370 + 2.42883i 0.0929531 + 0.121139i
\(403\) 1.44709 10.9917i 0.0720845 0.547536i
\(404\) −35.0973 + 20.2635i −1.74616 + 1.00814i
\(405\) −0.0502525 0.121320i −0.00249707 0.00602846i
\(406\) 0 0
\(407\) −24.1421 −1.19668
\(408\) −15.9750 11.5274i −0.790882 0.570693i
\(409\) 1.65685 2.86976i 0.0819262 0.141900i −0.822151 0.569269i \(-0.807226\pi\)
0.904077 + 0.427369i \(0.140559\pi\)
\(410\) −2.16622 + 0.580438i −0.106982 + 0.0286658i
\(411\) −11.0223 + 14.3646i −0.543692 + 0.708553i
\(412\) 47.7990i 2.35489i
\(413\) 0 0
\(414\) 8.07107 19.4853i 0.396671 0.957649i
\(415\) 1.16452 + 8.84544i 0.0571643 + 0.434206i
\(416\) −0.580438 2.16622i −0.0284583 0.106208i
\(417\) 5.98201 + 22.3252i 0.292940 + 1.09327i
\(418\) −0.682163 5.18154i −0.0333657 0.253437i
\(419\) −5.10051 + 12.3137i −0.249176 + 0.601564i −0.998135 0.0610528i \(-0.980554\pi\)
0.748959 + 0.662617i \(0.230554\pi\)
\(420\) 0 0
\(421\) 14.5858i 0.710868i −0.934701 0.355434i \(-0.884333\pi\)
0.934701 0.355434i \(-0.115667\pi\)
\(422\) 31.3826 40.8986i 1.52768 1.99091i
\(423\) 9.13364 2.44735i 0.444093 0.118994i
\(424\) 3.12132 5.40629i 0.151585 0.262552i
\(425\) 15.4873 9.55998i 0.751245 0.463727i
\(426\) −14.1421 −0.685189
\(427\) 0 0
\(428\) 0.656854 + 1.58579i 0.0317502 + 0.0766519i
\(429\) 3.46410 2.00000i 0.167248 0.0965609i
\(430\) 0.199801 1.51764i 0.00963525 0.0731870i
\(431\) 4.45255 + 5.80268i 0.214472 + 0.279505i 0.888183 0.459489i \(-0.151968\pi\)
−0.673711 + 0.738995i \(0.735301\pi\)
\(432\) 2.04649 + 15.5446i 0.0984617 + 0.747891i
\(433\) 14.7279 14.7279i 0.707779 0.707779i −0.258289 0.966068i \(-0.583159\pi\)
0.966068 + 0.258289i \(0.0831587\pi\)
\(434\) 0 0
\(435\) 0.242641 + 0.100505i 0.0116337 + 0.00481885i
\(436\) 59.0130 7.76921i 2.82621 0.372078i
\(437\) 0.516642 3.92429i 0.0247144 0.187724i
\(438\) −29.2708 16.8995i −1.39861 0.807489i
\(439\) −6.47613 + 8.43986i −0.309089 + 0.402813i −0.921907 0.387412i \(-0.873369\pi\)
0.612818 + 0.790224i \(0.290036\pi\)
\(440\) −6.24264 6.24264i −0.297606 0.297606i
\(441\) 0 0
\(442\) 0.414214 + 14.0711i 0.0197021 + 0.669292i
\(443\) 11.8995 + 20.6105i 0.565362 + 0.979236i 0.997016 + 0.0771965i \(0.0245969\pi\)
−0.431654 + 0.902039i \(0.642070\pi\)
\(444\) 36.9798 9.90870i 1.75498 0.470246i
\(445\) 4.99742 + 0.657923i 0.236900 + 0.0311885i
\(446\) −10.0951 + 5.82843i −0.478018 + 0.275984i
\(447\) −16.9706 + 7.02944i −0.802680 + 0.332481i
\(448\) 0 0
\(449\) 11.1924 + 4.63604i 0.528201 + 0.218788i 0.630815 0.775933i \(-0.282721\pi\)
−0.102614 + 0.994721i \(0.532721\pi\)
\(450\) −18.8213 5.04316i −0.887246 0.237737i
\(451\) −0.820863 3.06350i −0.0386530 0.144255i
\(452\) −40.0830 + 30.7568i −1.88535 + 1.44668i
\(453\) 7.69605 1.01320i 0.361592 0.0476045i
\(454\) −38.7990 + 16.0711i −1.82093 + 0.754253i
\(455\) 0 0
\(456\) 1.51472 + 3.65685i 0.0709332 + 0.171248i
\(457\) 3.40905 12.7228i 0.159469 0.595146i −0.839212 0.543804i \(-0.816984\pi\)
0.998681 0.0513418i \(-0.0163498\pi\)
\(458\) −20.7279 + 35.9018i −0.968552 + 1.67758i
\(459\) −2.18278 + 21.4375i −0.101884 + 1.00062i
\(460\) −7.00000 12.1244i −0.326377 0.565301i
\(461\) 17.0000 + 17.0000i 0.791769 + 0.791769i 0.981782 0.190013i \(-0.0608529\pi\)
−0.190013 + 0.981782i \(0.560853\pi\)
\(462\) 0 0
\(463\) 14.6274i 0.679794i 0.940463 + 0.339897i \(0.110392\pi\)
−0.940463 + 0.339897i \(0.889608\pi\)
\(464\) −0.754539 0.578978i −0.0350286 0.0268784i
\(465\) −3.95351 5.15232i −0.183340 0.238933i
\(466\) 16.8366 12.9192i 0.779939 0.598468i
\(467\) −31.5157 8.44460i −1.45837 0.390769i −0.559444 0.828868i \(-0.688985\pi\)
−0.898927 + 0.438099i \(0.855652\pi\)
\(468\) 7.00000 7.00000i 0.323575 0.323575i
\(469\) 0 0
\(470\) 3.65685 8.82843i 0.168678 0.407225i
\(471\) −8.29253 6.36308i −0.382100 0.293195i
\(472\) 22.9369 + 13.2426i 1.05576 + 0.609542i
\(473\) 2.14626 + 0.282561i 0.0986853 + 0.0129922i
\(474\) −3.23143 + 12.0599i −0.148424 + 0.553928i
\(475\) −3.65685 −0.167788
\(476\) 0 0
\(477\) −2.58579 −0.118395
\(478\) −9.26546 + 34.5792i −0.423792 + 1.58161i
\(479\) −5.10528 0.672122i −0.233266 0.0307100i 0.0129869 0.999916i \(-0.495866\pi\)
−0.246253 + 0.969206i \(0.579199\pi\)
\(480\) −1.13770 0.656854i −0.0519289 0.0299812i
\(481\) −10.3657 7.95385i −0.472633 0.362664i
\(482\) −3.29289 + 7.94975i −0.149987 + 0.362101i
\(483\) 0 0
\(484\) −11.2929 + 11.2929i −0.513313 + 0.513313i
\(485\) 7.63033 + 2.04454i 0.346475 + 0.0928378i
\(486\) 29.6742 22.7698i 1.34605 1.03286i
\(487\) 16.0208 + 20.8787i 0.725970 + 0.946102i 0.999877 0.0156538i \(-0.00498297\pi\)
−0.273908 + 0.961756i \(0.588316\pi\)
\(488\) 13.4017 + 10.2835i 0.606666 + 0.465511i
\(489\) 9.17157i 0.414753i
\(490\) 0 0
\(491\) 26.2426 + 26.2426i 1.18431 + 1.18431i 0.978615 + 0.205698i \(0.0659466\pi\)
0.205698 + 0.978615i \(0.434053\pi\)
\(492\) 2.51472 + 4.35562i 0.113372 + 0.196367i
\(493\) −0.825899 1.01315i −0.0371966 0.0456301i
\(494\) 1.41421 2.44949i 0.0636285 0.110208i
\(495\) −0.946464 + 3.53225i −0.0425404 + 0.158763i
\(496\) 9.00000 + 21.7279i 0.404112 + 0.975613i
\(497\) 0 0
\(498\) 28.1421 11.6569i 1.26108 0.522356i
\(499\) 21.2785 2.80137i 0.952558 0.125407i 0.361800 0.932256i \(-0.382162\pi\)
0.590758 + 0.806849i \(0.298829\pi\)
\(500\) −21.8847 + 16.7927i −0.978714 + 0.750994i
\(501\) −0.554425 2.06914i −0.0247699 0.0924425i
\(502\) 47.7707 + 12.8001i 2.13211 + 0.571297i
\(503\) −19.7279 8.17157i −0.879625 0.364352i −0.103273 0.994653i \(-0.532932\pi\)
−0.776351 + 0.630301i \(0.782932\pi\)
\(504\) 0 0
\(505\) 7.48528 3.10051i 0.333091 0.137971i
\(506\) 26.1039 15.0711i 1.16046 0.669991i
\(507\) −11.8045 1.55409i −0.524254 0.0690194i
\(508\) 19.6500 5.26519i 0.871826 0.233605i
\(509\) 18.4853 + 32.0174i 0.819346 + 1.41915i 0.906165 + 0.422924i \(0.138996\pi\)
−0.0868193 + 0.996224i \(0.527670\pi\)
\(510\) 6.00000 + 5.65685i 0.265684 + 0.250490i
\(511\) 0 0
\(512\) 22.0919 + 22.0919i 0.976333 + 0.976333i
\(513\) 2.63567 3.43488i 0.116368 0.151654i
\(514\) −12.8418 7.41421i −0.566427 0.327027i
\(515\) 1.24728 9.47407i 0.0549619 0.417477i
\(516\) −3.40352 + 0.448082i −0.149831 + 0.0197257i
\(517\) 12.4853 + 5.17157i 0.549102 + 0.227446i
\(518\) 0 0
\(519\) −2.24264 + 2.24264i −0.0984410 + 0.0984410i
\(520\) −0.623642 4.73703i −0.0273485 0.207733i
\(521\) 11.3284 + 14.7634i 0.496306 + 0.646798i 0.972599 0.232488i \(-0.0746867\pi\)
−0.476294 + 0.879286i \(0.658020\pi\)
\(522\) −0.182661 + 1.38745i −0.00799484 + 0.0607268i
\(523\) −1.01461 + 0.585786i −0.0443659 + 0.0256147i −0.522019 0.852934i \(-0.674821\pi\)
0.477653 + 0.878549i \(0.341488\pi\)
\(524\) −22.3137 53.8701i −0.974779 2.35332i
\(525\) 0 0
\(526\) 25.3137 1.10373
\(527\) 5.16006 + 31.9080i 0.224776 + 1.38994i
\(528\) −4.24264 + 7.34847i −0.184637 + 0.319801i
\(529\) −0.165727 + 0.0444063i −0.00720551 + 0.00193071i
\(530\) −1.59077 + 2.07313i −0.0690986 + 0.0900511i
\(531\) 10.9706i 0.476082i
\(532\) 0 0
\(533\) 0.656854 1.58579i 0.0284515 0.0686880i
\(534\) −2.24629 17.0623i −0.0972064 0.738356i
\(535\) −0.0888127 0.331453i −0.00383971 0.0143300i
\(536\) 1.33850 + 4.99536i 0.0578145 + 0.215767i
\(537\) 0.847683 + 6.43879i 0.0365802 + 0.277854i
\(538\) 24.4350 58.9914i 1.05347 2.54330i
\(539\) 0 0
\(540\) 15.3137i 0.658997i
\(541\) −11.2153 + 14.6161i −0.482185 + 0.628395i −0.969577 0.244788i \(-0.921282\pi\)
0.487392 + 0.873183i \(0.337948\pi\)
\(542\) 51.6344 13.8354i 2.21789 0.594281i
\(543\) 6.31371 10.9357i 0.270947 0.469294i
\(544\) 3.43438 + 5.56374i 0.147248 + 0.238544i
\(545\) −11.8995 −0.509718
\(546\) 0 0
\(547\) 3.10051 + 7.48528i 0.132568 + 0.320048i 0.976199 0.216875i \(-0.0695866\pi\)
−0.843631 + 0.536923i \(0.819587\pi\)
\(548\) −55.4617 + 32.0208i −2.36921 + 1.36786i
\(549\) 0.913303 6.93723i 0.0389788 0.296074i
\(550\) −16.9526 22.0931i −0.722862 0.942052i
\(551\) 0.0342804 + 0.260386i 0.00146039 + 0.0110928i
\(552\) −16.1421 + 16.1421i −0.687055 + 0.687055i
\(553\) 0 0
\(554\) 44.5061 + 18.4350i 1.89088 + 0.783229i
\(555\) −7.58819 + 0.999004i −0.322101 + 0.0424054i
\(556\) −10.6705 + 81.0504i −0.452529 + 3.43730i
\(557\) −17.1104 9.87868i −0.724990 0.418573i 0.0915966 0.995796i \(-0.470803\pi\)
−0.816586 + 0.577223i \(0.804136\pi\)
\(558\) 21.0660 27.4537i 0.891795 1.16221i
\(559\) 0.828427 + 0.828427i 0.0350387 + 0.0350387i
\(560\) 0 0
\(561\) −8.00000 + 8.48528i −0.337760 + 0.358249i
\(562\) −2.29289 3.97141i −0.0967199 0.167524i
\(563\) −33.5848 + 8.99902i −1.41543 + 0.379264i −0.883861 0.467751i \(-0.845065\pi\)
−0.531570 + 0.847014i \(0.678398\pi\)
\(564\) −21.2469 2.79721i −0.894657 0.117784i
\(565\) 8.74729 5.05025i 0.368001 0.212466i
\(566\) 41.6274 17.2426i 1.74973 0.724762i
\(567\) 0 0
\(568\) −22.0711 9.14214i −0.926081 0.383595i
\(569\) −11.6313 3.11660i −0.487610 0.130655i 0.00663368 0.999978i \(-0.497888\pi\)
−0.494244 + 0.869323i \(0.664555\pi\)
\(570\) −0.428825 1.60040i −0.0179615 0.0670333i
\(571\) 3.37385 2.58885i 0.141191 0.108340i −0.535751 0.844376i \(-0.679971\pi\)
0.676942 + 0.736036i \(0.263305\pi\)
\(572\) 14.0270 1.84669i 0.586498 0.0772139i
\(573\) −20.0000 + 8.28427i −0.835512 + 0.346080i
\(574\) 0 0
\(575\) −8.07107 19.4853i −0.336587 0.812592i
\(576\) 4.65112 17.3582i 0.193797 0.723260i
\(577\) 13.5355 23.4442i 0.563492 0.975996i −0.433697 0.901059i \(-0.642791\pi\)
0.997188 0.0749372i \(-0.0238756\pi\)
\(578\) −12.9359 38.9497i −0.538063 1.62009i
\(579\) −1.24264 2.15232i −0.0516424 0.0894472i
\(580\) 0.656854 + 0.656854i 0.0272744 + 0.0272744i
\(581\) 0 0
\(582\) 26.9706i 1.11797i
\(583\) −2.93185 2.24969i −0.121425 0.0931726i
\(584\) −34.7571 45.2964i −1.43826 1.87438i
\(585\) −1.57011 + 1.20478i −0.0649159 + 0.0498117i
\(586\) 28.7836 + 7.71255i 1.18904 + 0.318602i
\(587\) 32.0416 32.0416i 1.32250 1.32250i 0.410753 0.911747i \(-0.365266\pi\)
0.911747 0.410753i \(-0.134734\pi\)
\(588\) 0 0
\(589\) 2.48528 6.00000i 0.102404 0.247226i
\(590\) −8.79555 6.74907i −0.362107 0.277855i
\(591\) 4.35562 + 2.51472i 0.179166 + 0.103442i
\(592\) 27.4793 + 3.61771i 1.12939 + 0.148687i
\(593\) 3.34625 12.4884i 0.137414 0.512837i −0.862562 0.505951i \(-0.831142\pi\)
0.999976 0.00688551i \(-0.00219174\pi\)
\(594\) 32.9706 1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) 3.23143 12.0599i 0.132254 0.493577i
\(598\) 16.1732 + 2.12925i 0.661373 + 0.0870714i
\(599\) 9.20361 + 5.31371i 0.376049 + 0.217112i 0.676098 0.736812i \(-0.263670\pi\)
−0.300049 + 0.953924i \(0.597003\pi\)
\(600\) 16.7324 + 12.8392i 0.683097 + 0.524159i
\(601\) −3.22183 + 7.77817i −0.131421 + 0.317278i −0.975868 0.218360i \(-0.929929\pi\)
0.844447 + 0.535639i \(0.179929\pi\)
\(602\) 0 0
\(603\) 1.51472 1.51472i 0.0616841 0.0616841i
\(604\) 26.5203 + 7.10610i 1.07910 + 0.289143i
\(605\) 2.53301 1.94364i 0.102981 0.0790203i
\(606\) −16.8396 21.9457i −0.684060 0.891485i
\(607\) −13.0028 9.97744i −0.527769 0.404972i 0.310215 0.950667i \(-0.399599\pi\)
−0.837984 + 0.545695i \(0.816266\pi\)
\(608\) 1.31371i 0.0532779i
\(609\) 0 0
\(610\) −5.00000 5.00000i −0.202444 0.202444i
\(611\) 3.65685 + 6.33386i 0.147940 + 0.256240i
\(612\) −13.6892 + 25.4088i −0.553351 + 1.02709i
\(613\) −2.65685 + 4.60181i −0.107309 + 0.185865i −0.914679 0.404180i \(-0.867557\pi\)
0.807370 + 0.590045i \(0.200890\pi\)
\(614\) 16.3348 60.9622i 0.659218 2.46023i
\(615\) −0.384776 0.928932i −0.0155157 0.0374582i
\(616\) 0 0
\(617\) −2.70711 + 1.12132i −0.108984 + 0.0451427i −0.436509 0.899700i \(-0.643785\pi\)
0.327525 + 0.944842i \(0.393785\pi\)
\(618\) −32.3465 + 4.25850i −1.30117 + 0.171302i
\(619\) −22.5961 + 17.3386i −0.908214 + 0.696897i −0.953280 0.302087i \(-0.902317\pi\)
0.0450666 + 0.998984i \(0.485650\pi\)
\(620\) −5.94522 22.1879i −0.238766 0.891086i
\(621\) 24.1197 + 6.46286i 0.967891 + 0.259346i
\(622\) −57.2843 23.7279i −2.29689 0.951403i
\(623\) 0 0
\(624\) −4.24264 + 1.75736i −0.169842 + 0.0703507i
\(625\) −14.3382 + 8.27817i −0.573529 + 0.331127i
\(626\) −23.6312 3.11111i −0.944495 0.124345i
\(627\) 2.26330 0.606451i 0.0903877 0.0242193i
\(628\) −18.4853 32.0174i −0.737643 1.27764i
\(629\) 35.6066 + 13.5355i 1.41973 + 0.539697i
\(630\) 0 0
\(631\) −20.7279 20.7279i −0.825166 0.825166i 0.161678 0.986844i \(-0.448309\pi\)
−0.986844 + 0.161678i \(0.948309\pi\)
\(632\) −12.8392 + 16.7324i −0.510717 + 0.665579i
\(633\) 20.0162 + 11.5563i 0.795572 + 0.459324i
\(634\) 6.06380 46.0592i 0.240824 1.82924i
\(635\) −4.03214 + 0.530842i −0.160011 + 0.0210658i
\(636\) 5.41421 + 2.24264i 0.214688 + 0.0889265i
\(637\) 0 0
\(638\) −1.41421 + 1.41421i −0.0559893 + 0.0559893i
\(639\) 1.29161 + 9.81072i 0.0510951 + 0.388106i
\(640\) −9.57773 12.4819i −0.378593 0.493392i
\(641\) 5.40588 41.0617i 0.213519 1.62184i −0.463653 0.886017i \(-0.653461\pi\)
0.677172 0.735824i \(-0.263205\pi\)
\(642\) −1.01461 + 0.585786i −0.0400435 + 0.0231191i
\(643\) 11.0416 + 26.6569i 0.435439 + 1.05124i 0.977506 + 0.210908i \(0.0676421\pi\)
−0.542066 + 0.840336i \(0.682358\pi\)
\(644\) 0 0
\(645\) 0.686292 0.0270227
\(646\) −1.89898 + 8.02458i −0.0747143 + 0.315723i
\(647\) 1.41421 2.44949i 0.0555985 0.0962994i −0.836887 0.547376i \(-0.815627\pi\)
0.892485 + 0.451077i \(0.148960\pi\)
\(648\) −0.731553 + 0.196019i −0.0287381 + 0.00770035i
\(649\) 9.54462 12.4388i 0.374659 0.488265i
\(650\) 15.0711i 0.591136i
\(651\) 0 0
\(652\) 12.4142 29.9706i 0.486178 1.17374i
\(653\) −1.24019 9.42014i −0.0485322 0.368639i −0.998427 0.0560686i \(-0.982143\pi\)
0.949895 0.312570i \(-0.101190\pi\)
\(654\) 10.5151 + 39.2431i 0.411175 + 1.53453i
\(655\) 3.01702 + 11.2597i 0.117885 + 0.439951i
\(656\) 0.475262 + 3.60997i 0.0185559 + 0.140946i
\(657\) −9.05025 + 21.8492i −0.353084 + 0.852420i
\(658\) 0 0
\(659\) 8.48528i 0.330540i 0.986248 + 0.165270i \(0.0528495\pi\)
−0.986248 + 0.165270i \(0.947151\pi\)
\(660\) 5.04524 6.57509i 0.196386 0.255935i
\(661\) −1.17186 + 0.314000i −0.0455802 + 0.0122132i −0.281537 0.959550i \(-0.590844\pi\)
0.235957 + 0.971764i \(0.424178\pi\)
\(662\) −26.3137 + 45.5767i −1.02271 + 1.77139i
\(663\) −6.23043 + 1.00756i −0.241970 + 0.0391305i
\(664\) 51.4558 1.99687
\(665\) 0 0
\(666\) −15.6066 37.6777i −0.604744 1.45998i
\(667\) −1.31178 + 0.757359i −0.0507925 + 0.0293251i
\(668\) 0.988964 7.51193i 0.0382642 0.290645i
\(669\) −3.18154 4.14626i −0.123005 0.160304i
\(670\) −0.282561 2.14626i −0.0109163 0.0829174i
\(671\) 7.07107 7.07107i 0.272976 0.272976i
\(672\) 0 0
\(673\) 4.12132 + 1.70711i 0.158865 + 0.0658041i 0.460699 0.887556i \(-0.347599\pi\)
−0.301834 + 0.953361i \(0.597599\pi\)
\(674\) 13.4523 1.77103i 0.518163 0.0682174i
\(675\) 3.01121 22.8724i 0.115902 0.880360i
\(676\) −36.4707 21.0563i −1.40272 0.809860i
\(677\) −23.1889 + 30.2204i −0.891223 + 1.16146i 0.0949069 + 0.995486i \(0.469745\pi\)
−0.986129 + 0.165978i \(0.946922\pi\)
\(678\) −24.3848 24.3848i −0.936492 0.936492i
\(679\) 0 0
\(680\) 5.70711 + 12.7071i 0.218858 + 0.487295i
\(681\) −9.41421 16.3059i −0.360753 0.624843i
\(682\) 47.7707 12.8001i 1.82923 0.490142i
\(683\) 23.5773 + 3.10401i 0.902161 + 0.118772i 0.567315 0.823501i \(-0.307982\pi\)
0.334846 + 0.942273i \(0.391316\pi\)
\(684\) 5.02207 2.89949i 0.192024 0.110865i
\(685\) 11.8284 4.89949i 0.451941 0.187200i
\(686\) 0 0
\(687\) −17.1716 7.11270i −0.655136 0.271366i
\(688\) −2.40060 0.643238i −0.0915219 0.0245232i
\(689\) −0.517638 1.93185i −0.0197204 0.0735977i
\(690\) 7.58114 5.81722i 0.288609 0.221458i
\(691\) 19.7609 2.60157i 0.751740 0.0989684i 0.255087 0.966918i \(-0.417896\pi\)
0.496652 + 0.867950i \(0.334562\pi\)
\(692\) −10.3640 + 4.29289i −0.393979 + 0.163191i
\(693\) 0 0
\(694\) −15.4853 37.3848i −0.587813 1.41911i
\(695\) 4.22992 15.7863i 0.160450 0.598807i
\(696\) 0.757359 1.31178i 0.0287076 0.0497231i
\(697\) −0.506915 + 4.97851i −0.0192008 + 0.188574i
\(698\) 5.12132 + 8.87039i 0.193845 + 0.335749i
\(699\) 6.72792 + 6.72792i 0.254473 + 0.254473i
\(700\) 0 0
\(701\) 37.6985i 1.42385i 0.702254 + 0.711926i \(0.252177\pi\)
−0.702254 + 0.711926i \(0.747823\pi\)
\(702\) 14.1562 + 10.8625i 0.534293 + 0.409977i
\(703\) −4.65926 6.07206i −0.175727 0.229012i
\(704\) 20.3756 15.6348i 0.767935 0.589258i
\(705\) 4.13829 + 1.10885i 0.155857 + 0.0417617i
\(706\) 23.8995 23.8995i 0.899469 0.899469i
\(707\) 0 0
\(708\) −9.51472 + 22.9706i −0.357585 + 0.863287i
\(709\) −19.2654 14.7829i −0.723527 0.555182i 0.180024 0.983662i \(-0.442382\pi\)
−0.903551 + 0.428480i \(0.859049\pi\)
\(710\) 8.66025 + 5.00000i 0.325014 + 0.187647i
\(711\) 8.66132 + 1.14028i 0.324825 + 0.0427640i
\(712\) 7.52415 28.0805i 0.281979 1.05236i
\(713\) 37.4558 1.40273
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) −5.94522 + 22.1879i −0.222183 + 0.829199i
\(717\) −15.9129 2.09497i −0.594277 0.0782380i
\(718\) −60.2736 34.7990i −2.24939 1.29869i
\(719\) 26.9507 + 20.6800i 1.00509 + 0.771234i 0.973598 0.228270i \(-0.0733068\pi\)
0.0314942 + 0.999504i \(0.489973\pi\)
\(720\) 1.60660 3.87868i 0.0598745 0.144550i
\(721\) 0 0
\(722\) −31.2635 + 31.2635i −1.16351 + 1.16351i
\(723\) −3.72641 0.998489i −0.138587 0.0371342i
\(724\) 35.4337 27.1893i 1.31688 1.01048i
\(725\) 0.851911 + 1.11023i 0.0316392 + 0.0412330i
\(726\) −8.64822 6.63601i −0.320966 0.246286i
\(727\) 43.1127i 1.59896i 0.600692 + 0.799481i \(0.294892\pi\)
−0.600692 + 0.799481i \(0.705108\pi\)
\(728\) 0 0
\(729\) 12.2218 + 12.2218i 0.452660 + 0.452660i
\(730\) 11.9497 + 20.6976i 0.442280 + 0.766051i
\(731\) −3.00705 1.62007i −0.111220 0.0599203i
\(732\) −7.92893 + 13.7333i −0.293062 + 0.507598i
\(733\) −9.32826 + 34.8135i −0.344547 + 1.28587i 0.548593 + 0.836089i \(0.315164\pi\)
−0.893140 + 0.449778i \(0.851503\pi\)
\(734\) 4.07107 + 9.82843i 0.150266 + 0.362774i
\(735\) 0 0
\(736\) 7.00000 2.89949i 0.258023 0.106877i
\(737\) 3.03528 0.399602i 0.111806 0.0147195i
\(738\) 4.25044 3.26148i 0.156461 0.120057i
\(739\) 5.76759 + 21.5250i 0.212164 + 0.791808i 0.987146 + 0.159824i \(0.0510926\pi\)
−0.774981 + 0.631984i \(0.782241\pi\)
\(740\) −26.1486 7.00651i −0.961243 0.257564i
\(741\) 1.17157 + 0.485281i 0.0430388 + 0.0178273i
\(742\) 0 0
\(743\) 47.1421 19.5269i 1.72948 0.716373i 0.730020 0.683426i \(-0.239511\pi\)
0.999457 0.0329473i \(-0.0104893\pi\)
\(744\) −32.4377 + 18.7279i −1.18922 + 0.686599i
\(745\) 12.8776 + 1.69537i 0.471798 + 0.0621134i
\(746\) 26.9488 7.22092i 0.986667 0.264377i
\(747\) −10.6569 18.4582i −0.389914 0.675351i
\(748\) −37.6274 + 16.8995i −1.37579 + 0.617907i
\(749\) 0 0
\(750\) −13.3137 13.3137i −0.486148 0.486148i
\(751\) 28.9730 37.7584i 1.05724 1.37782i 0.135161 0.990824i \(-0.456845\pi\)
0.922080 0.386999i \(-0.126488\pi\)
\(752\) −13.4361 7.75736i −0.489966 0.282882i
\(753\) −2.89417 + 21.9834i −0.105469 + 0.801120i
\(754\) −1.07313 + 0.141281i −0.0390812 + 0.00514513i
\(755\) −5.07107 2.10051i −0.184555 0.0764452i
\(756\) 0 0
\(757\) −1.79899 + 1.79899i −0.0653854 + 0.0653854i −0.739043 0.673658i \(-0.764722\pi\)
0.673658 + 0.739043i \(0.264722\pi\)
\(758\) −0.823443 6.25467i −0.0299088 0.227180i
\(759\) 8.22678 + 10.7214i 0.298613 + 0.389161i
\(760\) 0.365321 2.77489i 0.0132516 0.100656i
\(761\) −32.6478 + 18.8492i −1.18348 + 0.683285i −0.956818 0.290688i \(-0.906116\pi\)
−0.226666 + 0.973973i \(0.572782\pi\)
\(762\) 5.31371 + 12.8284i 0.192495 + 0.464725i
\(763\) 0 0
\(764\) −76.5685 −2.77015
\(765\) 3.37631 4.67898i 0.122071 0.169169i
\(766\) −27.1421 + 47.0116i −0.980685 + 1.69860i
\(767\) 8.19615 2.19615i 0.295946 0.0792985i
\(768\) −19.7482 + 25.7363i −0.712600 + 0.928679i
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 0 0
\(771\) 2.54416 6.14214i 0.0916255 0.221204i
\(772\) −1.14738 8.71525i −0.0412953 0.313669i
\(773\) −0.214413 0.800199i −0.00771189 0.0287812i 0.961963 0.273181i \(-0.0880758\pi\)
−0.969675 + 0.244400i \(0.921409\pi\)
\(774\) 0.946464 + 3.53225i 0.0340199 + 0.126964i
\(775\) −4.51682 34.3086i −0.162249 1.23240i
\(776\) 17.4350 42.0919i 0.625881 1.51101i
\(777\) 0 0
\(778\) 29.3137i 1.05095i
\(779\) 0.612091 0.797692i 0.0219304 0.0285803i
\(780\) 4.33245 1.16088i 0.155127 0.0415660i
\(781\) −7.07107 + 12.2474i −0.253023 + 0.438248i
\(782\) −46.9496 + 7.59253i −1.67892 + 0.271508i
\(783\) −1.65685 −0.0592111
\(784\) 0 0
\(785\) 2.82843 + 6.82843i 0.100951 + 0.243717i
\(786\) 34.4669 19.8995i 1.22939 0.709791i
\(787\) 2.68433 20.3895i 0.0956860 0.726808i −0.874600 0.484846i \(-0.838876\pi\)
0.970286 0.241962i \(-0.0777909\pi\)
\(788\) 10.8293 + 14.1131i 0.385779 + 0.502758i
\(789\) 1.48137 + 11.2521i 0.0527380 + 0.400585i
\(790\) 6.24264 6.24264i 0.222103 0.222103i
\(791\) 0 0
\(792\) 19.4853 + 8.07107i 0.692379 + 0.286793i
\(793\) 5.36566 0.706403i 0.190540 0.0250851i
\(794\) 5.60568 42.5794i 0.198938 1.51109i
\(795\) −1.01461 0.585786i −0.0359846 0.0207757i
\(796\) 26.8832 35.0349i 0.952850 1.24178i
\(797\) −17.8284 17.8284i −0.631515 0.631515i 0.316933 0.948448i \(-0.397347\pi\)
−0.948448 + 0.316933i \(0.897347\pi\)
\(798\) 0 0
\(799\) −15.5147 14.6274i −0.548871 0.517481i
\(800\) −3.50000 6.06218i −0.123744 0.214330i
\(801\) −11.6313 + 3.11660i −0.410973 + 0.110120i
\(802\) −1.38745 0.182661i −0.0489924 0.00644997i
\(803\) −29.2708 + 16.8995i −1.03294 + 0.596370i
\(804\) −4.48528 + 1.85786i −0.158184 + 0.0655218i
\(805\) 0 0
\(806\) 24.7279 + 10.2426i 0.871004 + 0.360782i
\(807\) 27.6520 + 7.40932i 0.973395 + 0.260820i
\(808\) −12.0941 45.1357i −0.425468 1.58787i
\(809\) 27.9999 21.4851i 0.984425 0.755376i 0.0147794 0.999891i \(-0.495295\pi\)
0.969646 + 0.244515i \(0.0786287\pi\)
\(810\) 0.314313 0.0413801i 0.0110438 0.00145395i
\(811\) −50.9411 + 21.1005i −1.78878 + 0.740939i −0.798481 + 0.602020i \(0.794363\pi\)
−0.990304 + 0.138919i \(0.955637\pi\)
\(812\) 0 0
\(813\) 9.17157 + 22.1421i 0.321661 + 0.776559i
\(814\) 15.0851 56.2983i 0.528732 1.97325i
\(815\) −3.24264 + 5.61642i −0.113585 + 0.196735i
\(816\) 10.3774 8.45938i 0.363280 0.296138i
\(817\) 0.343146 + 0.594346i 0.0120052 + 0.0207935i
\(818\) 5.65685 + 5.65685i 0.197787 + 0.197787i
\(819\) 0 0
\(820\) 3.55635i 0.124193i
\(821\) −30.4898 23.3956i −1.06410 0.816513i −0.0804785 0.996756i \(-0.525645\pi\)
−0.983622 + 0.180243i \(0.942311\pi\)
\(822\) −26.6103 34.6792i −0.928140 1.20958i
\(823\) −7.72848 + 5.93027i −0.269398 + 0.206716i −0.734622 0.678477i \(-0.762640\pi\)
0.465224 + 0.885193i \(0.345974\pi\)
\(824\) −53.2348 14.2642i −1.85452 0.496918i
\(825\) 8.82843 8.82843i 0.307366 0.307366i
\(826\) 0 0
\(827\) −17.9289 + 43.2843i −0.623450 + 1.50514i 0.224177 + 0.974549i \(0.428031\pi\)
−0.847627 + 0.530593i \(0.821969\pi\)
\(828\) 26.5340 + 20.3603i 0.922120 + 0.707568i
\(829\) 46.7144 + 26.9706i 1.62246 + 0.936726i 0.986260 + 0.165200i \(0.0528270\pi\)
0.636198 + 0.771526i \(0.280506\pi\)
\(830\) −21.3548 2.81141i −0.741236 0.0975855i
\(831\) −5.58997 + 20.8620i −0.193914 + 0.723696i
\(832\) 13.8995 0.481878
\(833\) 0 0
\(834\) −55.7990 −1.93216
\(835\) −0.392038 + 1.46311i −0.0135670 + 0.0506329i
\(836\) 8.21682 + 1.08176i 0.284185 + 0.0374136i
\(837\) 35.4815 + 20.4853i 1.22642 + 0.708075i
\(838\) −25.5279 19.5883i −0.881848 0.676666i
\(839\) −6.41421 + 15.4853i −0.221443 + 0.534611i −0.995086 0.0990102i \(-0.968432\pi\)
0.773643 + 0.633622i \(0.218432\pi\)
\(840\) 0 0
\(841\) −20.4350 + 20.4350i −0.704656 + 0.704656i
\(842\) 34.0133 + 9.11385i 1.17218 + 0.314084i
\(843\) 1.63113 1.25161i 0.0561792 0.0431078i
\(844\) 49.7661 + 64.8564i 1.71302 + 2.23245i
\(845\) 6.67927 + 5.12518i 0.229774 + 0.176312i
\(846\) 22.8284i 0.784857i
\(847\) 0 0
\(848\) 3.00000 + 3.00000i 0.103020 + 0.103020i
\(849\) 10.1005 + 17.4946i 0.346648 + 0.600413i
\(850\) 12.6163 + 42.0891i 0.432734 + 1.44365i
\(851\) 22.0711 38.2282i 0.756586 1.31045i
\(852\) 5.80438 21.6622i 0.198855 0.742136i
\(853\) −7.33452 17.7071i −0.251129 0.606280i 0.747166 0.664637i \(-0.231414\pi\)
−0.998296 + 0.0583572i \(0.981414\pi\)
\(854\) 0 0
\(855\) −1.07107 + 0.443651i −0.0366297 + 0.0151725i
\(856\) −1.96214 + 0.258321i −0.0670647 + 0.00882924i
\(857\) 7.32963 5.62422i 0.250375 0.192120i −0.475947 0.879474i \(-0.657895\pi\)
0.726322 + 0.687354i \(0.241228\pi\)
\(858\) 2.49938 + 9.32780i 0.0853274 + 0.318446i
\(859\) −33.7790 9.05105i −1.15252 0.308818i −0.368548 0.929609i \(-0.620145\pi\)
−0.783976 + 0.620791i \(0.786812\pi\)
\(860\) 2.24264 + 0.928932i 0.0764734 + 0.0316763i
\(861\) 0 0
\(862\) −16.3137 + 6.75736i −0.555647 + 0.230157i
\(863\) 9.20361 5.31371i 0.313295 0.180881i −0.335105 0.942181i \(-0.608772\pi\)
0.648400 + 0.761300i \(0.275439\pi\)
\(864\) 8.21682 + 1.08176i 0.279542 + 0.0368024i
\(865\) 2.16622 0.580438i 0.0736538 0.0197355i
\(866\) 25.1421 + 43.5475i 0.854365 + 1.47980i
\(867\) 16.5563 8.02944i 0.562283 0.272694i
\(868\) 0 0
\(869\) 8.82843 + 8.82843i 0.299484 + 0.299484i
\(870\) −0.385986 + 0.503026i −0.0130861 + 0.0170542i
\(871\) 1.43488 + 0.828427i 0.0486190 + 0.0280702i
\(872\) −8.95798 + 68.0426i −0.303355 + 2.30421i
\(873\) −18.7101 + 2.46323i −0.633241 + 0.0833677i
\(874\) 8.82843 + 3.65685i 0.298626 + 0.123695i
\(875\) 0 0
\(876\) 37.8995 37.8995i 1.28051 1.28051i
\(877\) −6.55621 49.7993i −0.221387 1.68160i −0.636065 0.771636i \(-0.719439\pi\)
0.414678 0.909968i \(-0.363894\pi\)
\(878\) −15.6348 20.3756i −0.527648 0.687644i
\(879\) −1.74385 + 13.2458i −0.0588185 + 0.446771i
\(880\) 5.19615 3.00000i 0.175162 0.101130i
\(881\) 12.8787 + 31.0919i 0.433894 + 1.04751i 0.978020 + 0.208509i \(0.0668611\pi\)
−0.544127 + 0.839003i \(0.683139\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −21.7234 5.14074i −0.730637 0.172902i
\(885\) 2.48528 4.30463i 0.0835418 0.144699i
\(886\) −55.4981 + 14.8707i −1.86449 + 0.499590i
\(887\) 26.8170 34.9486i 0.900426 1.17346i −0.0837890 0.996484i \(-0.526702\pi\)
0.984215 0.176975i \(-0.0566312\pi\)
\(888\) 44.1421i 1.48131i
\(889\) 0 0
\(890\) −4.65685 + 11.2426i −0.156098 + 0.376854i
\(891\) 0.0585203 + 0.444506i 0.00196050 + 0.0148915i
\(892\) −4.78434 17.8554i −0.160192 0.597843i
\(893\) 1.10885 + 4.13829i 0.0371063 + 0.138483i
\(894\) −5.78834 43.9668i −0.193591 1.47047i
\(895\) 1.75736 4.24264i 0.0587420 0.141816i
\(896\) 0 0
\(897\) 7.31371i 0.244198i
\(898\) −17.8045 + 23.2033i −0.594144 + 0.774304i
\(899\) −2.40060 + 0.643238i −0.0800644 + 0.0214532i
\(900\) 15.4497 26.7597i 0.514992 0.891992i
\(901\) 3.06280 + 4.96178i 0.102037 + 0.165301i
\(902\) 7.65685 0.254945
\(903\) 0 0
\(904\) −22.2929 53.8198i −0.741451 1.79002i
\(905\) −7.73268 + 4.46447i −0.257043 + 0.148404i
\(906\) −2.44609 + 18.5799i −0.0812659 + 0.617276i
\(907\) 8.17996 + 10.6603i 0.271611 + 0.353970i 0.909166 0.416435i \(-0.136721\pi\)
−0.637555 + 0.770405i \(0.720054\pi\)
\(908\) −8.69255 66.0265i −0.288473 2.19117i
\(909\) −13.6863 + 13.6863i −0.453946 + 0.453946i
\(910\) 0 0
\(911\) 5.24264 + 2.17157i 0.173696 + 0.0719474i 0.467837 0.883815i \(-0.345033\pi\)
−0.294141 + 0.955762i \(0.595033\pi\)
\(912\) −2.66704 + 0.351122i −0.0883144 + 0.0116268i
\(913\) 3.97594 30.2002i 0.131584 0.999482i
\(914\) 27.5387 + 15.8995i 0.910900 + 0.525909i
\(915\) 1.92993 2.51513i 0.0638015 0.0831477i
\(916\) −46.4853 46.4853i −1.53592 1.53592i
\(917\) 0 0
\(918\) −48.6274 18.4853i −1.60494 0.610105i
\(919\) −9.65685 16.7262i −0.318550 0.551745i 0.661636 0.749826i \(-0.269863\pi\)
−0.980186 + 0.198080i \(0.936529\pi\)
\(920\) 15.5921 4.17789i 0.514057 0.137741i
\(921\) 28.0540 + 3.69337i 0.924410 + 0.121701i
\(922\) −50.2655 + 29.0208i −1.65541 + 0.955750i
\(923\) −7.07107 + 2.92893i −0.232747 + 0.0964070i
\(924\) 0 0
\(925\) −37.6777 15.6066i −1.23883 0.513142i
\(926\) −34.1104 9.13986i −1.12094 0.300354i
\(927\) 5.90843 + 22.0506i 0.194058 + 0.724236i
\(928\) −0.398846 + 0.306045i −0.0130928 + 0.0100464i
\(929\) −17.1925 + 2.26343i −0.564066 + 0.0742607i −0.407167 0.913354i \(-0.633483\pi\)
−0.156899 + 0.987615i \(0.550150\pi\)
\(930\) 14.4853 6.00000i 0.474991 0.196748i
\(931\) 0 0
\(932\) 12.8787 + 31.0919i 0.421855 + 1.01845i
\(933\) 7.19491 26.8518i 0.235551 0.879087i
\(934\) 39.3848 68.2164i 1.28871 2.23211i
\(935\) 7.89898 2.36773i 0.258324 0.0774329i
\(936\) 5.70711 + 9.88500i 0.186543 + 0.323101i
\(937\) 19.4853 + 19.4853i 0.636556 + 0.636556i 0.949704 0.313148i \(-0.101384\pi\)
−0.313148 + 0.949704i \(0.601384\pi\)
\(938\) 0 0
\(939\) 10.6863i 0.348734i
\(940\) 12.0221 + 9.22486i 0.392117 + 0.300882i
\(941\) −24.2807 31.6432i −0.791527 1.03154i −0.998583 0.0532087i \(-0.983055\pi\)
0.207057 0.978329i \(-0.433612\pi\)
\(942\) 20.0199 15.3618i 0.652285 0.500516i
\(943\) 5.60139 + 1.50089i 0.182406 + 0.0488757i
\(944\) −12.7279 + 12.7279i −0.414259 + 0.414259i
\(945\) 0 0
\(946\) −2.00000 + 4.82843i −0.0650256 + 0.156986i
\(947\) −24.3135 18.6564i −0.790084 0.606253i 0.132883 0.991132i \(-0.457576\pi\)
−0.922967 + 0.384879i \(0.874243\pi\)
\(948\) −17.1464 9.89949i −0.556890 0.321521i
\(949\) −18.1354 2.38757i −0.588700 0.0775038i
\(950\) 2.28497 8.52761i 0.0741341 0.276672i
\(951\) 20.8284 0.675408
\(952\) 0 0
\(953\) 49.6985 1.60989 0.804946 0.593348i \(-0.202194\pi\)
0.804946 + 0.593348i \(0.202194\pi\)
\(954\) 1.61571 6.02993i 0.0523107 0.195226i
\(955\) 15.1764 + 1.99801i 0.491096 + 0.0646540i
\(956\) −49.1639 28.3848i −1.59007 0.918029i
\(957\) −0.711386 0.545866i −0.0229959 0.0176453i
\(958\) 4.75736 11.4853i 0.153703 0.371073i
\(959\) 0 0
\(960\) 5.75736 5.75736i 0.185818 0.185818i
\(961\) 29.4181 + 7.88255i 0.948971 + 0.254276i
\(962\) 25.0249 19.2023i 0.806836 0.619107i
\(963\) 0.499038 + 0.650359i 0.0160813 + 0.0209575i
\(964\) −10.8255 8.30672i −0.348667 0.267542i
\(965\) 1.75736i 0.0565714i
\(966\) 0 0
\(967\) −30.8701 30.8701i −0.992714 0.992714i 0.00725952 0.999974i \(-0.497689\pi\)
−0.999974 + 0.00725952i \(0.997689\pi\)
\(968\) −9.20711 15.9472i −0.295928 0.512562i
\(969\) −3.67810 0.374507i −0.118158 0.0120309i
\(970\) −9.53553 + 16.5160i −0.306168 + 0.530298i
\(971\) −13.3913 + 49.9771i −0.429748 + 1.60384i 0.323583 + 0.946200i \(0.395113\pi\)
−0.753331 + 0.657642i \(0.771554\pi\)
\(972\) 22.6985 + 54.7990i 0.728054 + 1.75768i
\(973\) 0 0
\(974\) −58.6985 + 24.3137i −1.88082 + 0.779061i
\(975\) 6.69918 0.881964i 0.214545 0.0282454i
\(976\) −9.10810 + 6.98889i −0.291543 + 0.223709i
\(977\) −9.93471 37.0768i −0.317840 1.18619i −0.921317 0.388813i \(-0.872885\pi\)
0.603477 0.797380i \(-0.293781\pi\)
\(978\) 21.3877 + 5.73081i 0.683902 + 0.183251i
\(979\) −15.8995 6.58579i −0.508150 0.210483i
\(980\) 0 0
\(981\) 26.2635 10.8787i 0.838528 0.347330i
\(982\) −77.5941 + 44.7990i −2.47613 + 1.42959i
\(983\) −9.65819 1.27152i −0.308048 0.0405553i −0.0250827 0.999685i \(-0.507985\pi\)
−0.282966 + 0.959130i \(0.591318\pi\)
\(984\) −5.60139 + 1.50089i −0.178566 + 0.0478466i
\(985\) −1.77817 3.07989i −0.0566574 0.0981334i
\(986\) 2.87868 1.29289i 0.0916758 0.0411741i
\(987\) 0 0
\(988\) 3.17157 + 3.17157i 0.100901 + 0.100901i
\(989\) −2.40957 + 3.14021i −0.0766198 + 0.0998529i
\(990\) −7.64564 4.41421i −0.242994 0.140293i
\(991\) −5.33022 + 40.4870i −0.169320 + 1.28611i 0.669953 + 0.742403i \(0.266314\pi\)
−0.839273 + 0.543710i \(0.817019\pi\)
\(992\) 12.3252 1.62265i 0.391326 0.0515191i
\(993\) −21.7990 9.02944i −0.691770 0.286541i
\(994\) 0 0
\(995\) −6.24264 + 6.24264i −0.197905 + 0.197905i
\(996\) 6.30499 + 47.8911i 0.199781 + 1.51749i
\(997\) −4.57932 5.96788i −0.145028 0.189005i 0.715191 0.698930i \(-0.246340\pi\)
−0.860219 + 0.509925i \(0.829673\pi\)
\(998\) −6.76311 + 51.3709i −0.214082 + 1.62612i
\(999\) 41.8154 24.1421i 1.32298 0.763823i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.v.b.508.1 8
7.2 even 3 inner 833.2.v.b.814.1 8
7.3 odd 6 833.2.l.a.491.1 4
7.4 even 3 17.2.d.a.15.1 yes 4
7.5 odd 6 833.2.v.a.814.1 8
7.6 odd 2 833.2.v.a.508.1 8
17.8 even 8 inner 833.2.v.b.263.1 8
21.11 odd 6 153.2.l.c.100.1 4
28.11 odd 6 272.2.v.d.49.1 4
35.4 even 6 425.2.m.a.151.1 4
35.18 odd 12 425.2.n.a.49.1 4
35.32 odd 12 425.2.n.b.49.1 4
119.4 even 12 289.2.d.c.155.1 4
119.11 odd 48 289.2.c.c.251.1 8
119.25 even 24 17.2.d.a.8.1 4
119.32 even 24 289.2.d.b.179.1 4
119.39 odd 48 289.2.a.f.1.3 4
119.46 odd 48 289.2.a.f.1.4 4
119.53 even 24 289.2.d.c.179.1 4
119.59 odd 24 833.2.l.a.246.1 4
119.60 even 24 289.2.d.a.110.1 4
119.67 even 6 289.2.d.a.134.1 4
119.74 odd 48 289.2.c.c.251.2 8
119.76 odd 8 833.2.v.a.263.1 8
119.81 even 12 289.2.d.b.155.1 4
119.88 odd 48 289.2.b.b.288.2 4
119.93 even 24 inner 833.2.v.b.569.1 8
119.95 odd 48 289.2.c.c.38.3 8
119.109 odd 48 289.2.c.c.38.4 8
119.110 odd 24 833.2.v.a.569.1 8
119.116 odd 48 289.2.b.b.288.1 4
357.158 even 48 2601.2.a.bb.1.1 4
357.263 odd 24 153.2.l.c.127.1 4
357.284 even 48 2601.2.a.bb.1.2 4
476.39 even 48 4624.2.a.bp.1.3 4
476.263 odd 24 272.2.v.d.161.1 4
476.403 even 48 4624.2.a.bp.1.2 4
595.39 odd 48 7225.2.a.u.1.2 4
595.144 even 24 425.2.m.a.76.1 4
595.263 odd 24 425.2.n.b.399.1 4
595.284 odd 48 7225.2.a.u.1.1 4
595.382 odd 24 425.2.n.a.399.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 119.25 even 24
17.2.d.a.15.1 yes 4 7.4 even 3
153.2.l.c.100.1 4 21.11 odd 6
153.2.l.c.127.1 4 357.263 odd 24
272.2.v.d.49.1 4 28.11 odd 6
272.2.v.d.161.1 4 476.263 odd 24
289.2.a.f.1.3 4 119.39 odd 48
289.2.a.f.1.4 4 119.46 odd 48
289.2.b.b.288.1 4 119.116 odd 48
289.2.b.b.288.2 4 119.88 odd 48
289.2.c.c.38.3 8 119.95 odd 48
289.2.c.c.38.4 8 119.109 odd 48
289.2.c.c.251.1 8 119.11 odd 48
289.2.c.c.251.2 8 119.74 odd 48
289.2.d.a.110.1 4 119.60 even 24
289.2.d.a.134.1 4 119.67 even 6
289.2.d.b.155.1 4 119.81 even 12
289.2.d.b.179.1 4 119.32 even 24
289.2.d.c.155.1 4 119.4 even 12
289.2.d.c.179.1 4 119.53 even 24
425.2.m.a.76.1 4 595.144 even 24
425.2.m.a.151.1 4 35.4 even 6
425.2.n.a.49.1 4 35.18 odd 12
425.2.n.a.399.1 4 595.382 odd 24
425.2.n.b.49.1 4 35.32 odd 12
425.2.n.b.399.1 4 595.263 odd 24
833.2.l.a.246.1 4 119.59 odd 24
833.2.l.a.491.1 4 7.3 odd 6
833.2.v.a.263.1 8 119.76 odd 8
833.2.v.a.508.1 8 7.6 odd 2
833.2.v.a.569.1 8 119.110 odd 24
833.2.v.a.814.1 8 7.5 odd 6
833.2.v.b.263.1 8 17.8 even 8 inner
833.2.v.b.508.1 8 1.1 even 1 trivial
833.2.v.b.569.1 8 119.93 even 24 inner
833.2.v.b.814.1 8 7.2 even 3 inner
2601.2.a.bb.1.1 4 357.158 even 48
2601.2.a.bb.1.2 4 357.284 even 48
4624.2.a.bp.1.2 4 476.403 even 48
4624.2.a.bp.1.3 4 476.39 even 48
7225.2.a.u.1.1 4 595.284 odd 48
7225.2.a.u.1.2 4 595.39 odd 48