Properties

Label 833.2.v.a.569.1
Level $833$
Weight $2$
Character 833.569
Analytic conductor $6.652$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [833,2,Mod(128,833)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("833.128"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(833, base_ring=CyclotomicField(24)) chi = DirichletCharacter(H, H._module([8, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.v (of order \(24\), degree \(8\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,-4,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 17)
Sato-Tate group: $\mathrm{SU}(2)[C_{24}]$

Embedding invariants

Embedding label 569.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 833.569
Dual form 833.2.v.a.508.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.624844 - 2.33195i) q^{2} +(1.07313 - 0.141281i) q^{3} +(-3.31552 + 1.91421i) q^{4} +(-0.607206 + 0.465926i) q^{5} +(-1.00000 - 2.41421i) q^{6} +(3.12132 + 3.12132i) q^{8} +(-1.76612 + 0.473232i) q^{9} +(1.46593 + 1.12484i) q^{10} +(-1.59077 + 2.07313i) q^{11} +(-3.28754 + 2.52262i) q^{12} -1.41421i q^{13} +(-0.585786 + 0.585786i) q^{15} +(1.50000 - 2.59808i) q^{16} +(-1.18386 + 3.94949i) q^{17} +(2.20711 + 3.82282i) q^{18} +(-0.214413 - 0.800199i) q^{19} +(1.12132 - 2.70711i) q^{20} +(5.82843 + 2.41421i) q^{22} +(4.73703 + 0.623642i) q^{23} +(3.79057 + 2.90861i) q^{24} +(-1.14248 + 4.26380i) q^{25} +(-3.29788 + 0.883663i) q^{26} +(-4.82843 + 2.00000i) q^{27} +(-0.292893 - 0.121320i) q^{29} +(1.73205 + 1.00000i) q^{30} +(-7.77231 + 1.02324i) q^{31} +(1.53175 + 0.410432i) q^{32} +(-1.41421 + 2.44949i) q^{33} +(9.94975 + 0.292893i) q^{34} +(4.94975 - 4.94975i) q^{36} +(5.62422 + 7.32963i) q^{37} +(-1.73205 + 1.00000i) q^{38} +(-0.199801 - 1.51764i) q^{39} +(-3.34959 - 0.440982i) q^{40} +(-1.12132 + 0.464466i) q^{41} +(-0.585786 - 0.585786i) q^{43} +(1.30581 - 9.91858i) q^{44} +(0.851911 - 1.11023i) q^{45} +(-1.50561 - 11.4362i) q^{46} +(4.47871 + 2.58579i) q^{47} +(1.24264 - 3.00000i) q^{48} +10.6569 q^{50} +(-0.712455 + 4.40558i) q^{51} +(2.70711 + 4.68885i) q^{52} +(1.36603 + 0.366025i) q^{53} +(7.68092 + 10.0100i) q^{54} -2.00000i q^{55} +(-0.343146 - 0.828427i) q^{57} +(-0.0999004 + 0.758819i) q^{58} +(-1.55291 + 5.79555i) q^{59} +(0.820863 - 3.06350i) q^{60} +(-0.499502 + 3.79410i) q^{61} +(7.24264 + 17.4853i) q^{62} -9.82843i q^{64} +(0.658919 + 0.858719i) q^{65} +(6.59575 + 1.76733i) q^{66} +(-0.585786 - 1.01461i) q^{67} +(-3.63505 - 15.3608i) q^{68} +5.17157 q^{69} +(-2.07107 + 5.00000i) q^{71} +(-6.98975 - 4.03553i) q^{72} +(-1.68827 - 12.8237i) q^{73} +(13.5781 - 17.6953i) q^{74} +(-0.623642 + 4.73703i) q^{75} +(2.24264 + 2.24264i) q^{76} +(-3.41421 + 1.41421i) q^{78} +(-4.73703 - 0.623642i) q^{79} +(0.299701 + 2.27646i) q^{80} +(-0.148586 + 0.0857864i) q^{81} +(1.78376 + 2.32465i) q^{82} +(-8.24264 + 8.24264i) q^{83} +(-1.12132 - 2.94975i) q^{85} +(-1.00000 + 1.73205i) q^{86} +(-0.331453 - 0.0888127i) q^{87} +(-11.4362 + 1.50561i) q^{88} +(-5.70346 - 3.29289i) q^{89} +(-3.12132 - 1.29289i) q^{90} +(-16.8995 + 7.00000i) q^{92} +(-8.19615 + 2.19615i) q^{93} +(3.23143 - 12.0599i) q^{94} +(0.503026 + 0.385986i) q^{95} +(1.70176 + 0.224041i) q^{96} +(-9.53553 - 3.94975i) q^{97} +(1.82843 - 4.41421i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{3} - 8 q^{6} + 8 q^{8} - 8 q^{9} + 4 q^{10} + 4 q^{11} - 4 q^{12} - 16 q^{15} + 12 q^{16} + 12 q^{18} + 8 q^{19} - 8 q^{20} + 24 q^{22} - 4 q^{23} + 12 q^{24} + 4 q^{25} - 4 q^{26}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/833\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(785\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.624844 2.33195i −0.441832 1.64894i −0.724168 0.689623i \(-0.757776\pi\)
0.282337 0.959315i \(-0.408890\pi\)
\(3\) 1.07313 0.141281i 0.619573 0.0815684i 0.185796 0.982588i \(-0.440514\pi\)
0.433777 + 0.901020i \(0.357180\pi\)
\(4\) −3.31552 + 1.91421i −1.65776 + 0.957107i
\(5\) −0.607206 + 0.465926i −0.271551 + 0.208368i −0.735556 0.677464i \(-0.763079\pi\)
0.464005 + 0.885833i \(0.346412\pi\)
\(6\) −1.00000 2.41421i −0.408248 0.985599i
\(7\) 0 0
\(8\) 3.12132 + 3.12132i 1.10355 + 1.10355i
\(9\) −1.76612 + 0.473232i −0.588708 + 0.157744i
\(10\) 1.46593 + 1.12484i 0.463566 + 0.355707i
\(11\) −1.59077 + 2.07313i −0.479635 + 0.625073i −0.969016 0.246997i \(-0.920556\pi\)
0.489381 + 0.872070i \(0.337223\pi\)
\(12\) −3.28754 + 2.52262i −0.949032 + 0.728218i
\(13\) 1.41421i 0.392232i −0.980581 0.196116i \(-0.937167\pi\)
0.980581 0.196116i \(-0.0628330\pi\)
\(14\) 0 0
\(15\) −0.585786 + 0.585786i −0.151249 + 0.151249i
\(16\) 1.50000 2.59808i 0.375000 0.649519i
\(17\) −1.18386 + 3.94949i −0.287129 + 0.957892i
\(18\) 2.20711 + 3.82282i 0.520220 + 0.901048i
\(19\) −0.214413 0.800199i −0.0491897 0.183578i 0.936960 0.349437i \(-0.113627\pi\)
−0.986150 + 0.165859i \(0.946960\pi\)
\(20\) 1.12132 2.70711i 0.250735 0.605327i
\(21\) 0 0
\(22\) 5.82843 + 2.41421i 1.24262 + 0.514712i
\(23\) 4.73703 + 0.623642i 0.987740 + 0.130038i 0.607049 0.794664i \(-0.292353\pi\)
0.380691 + 0.924702i \(0.375686\pi\)
\(24\) 3.79057 + 2.90861i 0.773747 + 0.593717i
\(25\) −1.14248 + 4.26380i −0.228497 + 0.852761i
\(26\) −3.29788 + 0.883663i −0.646767 + 0.173301i
\(27\) −4.82843 + 2.00000i −0.929231 + 0.384900i
\(28\) 0 0
\(29\) −0.292893 0.121320i −0.0543889 0.0225286i 0.355323 0.934744i \(-0.384371\pi\)
−0.409712 + 0.912215i \(0.634371\pi\)
\(30\) 1.73205 + 1.00000i 0.316228 + 0.182574i
\(31\) −7.77231 + 1.02324i −1.39595 + 0.183780i −0.790674 0.612237i \(-0.790270\pi\)
−0.605274 + 0.796017i \(0.706936\pi\)
\(32\) 1.53175 + 0.410432i 0.270778 + 0.0725548i
\(33\) −1.41421 + 2.44949i −0.246183 + 0.426401i
\(34\) 9.94975 + 0.292893i 1.70637 + 0.0502308i
\(35\) 0 0
\(36\) 4.94975 4.94975i 0.824958 0.824958i
\(37\) 5.62422 + 7.32963i 0.924616 + 1.20498i 0.978460 + 0.206434i \(0.0661860\pi\)
−0.0538440 + 0.998549i \(0.517147\pi\)
\(38\) −1.73205 + 1.00000i −0.280976 + 0.162221i
\(39\) −0.199801 1.51764i −0.0319937 0.243017i
\(40\) −3.34959 0.440982i −0.529617 0.0697253i
\(41\) −1.12132 + 0.464466i −0.175121 + 0.0725374i −0.468521 0.883452i \(-0.655213\pi\)
0.293400 + 0.955990i \(0.405213\pi\)
\(42\) 0 0
\(43\) −0.585786 0.585786i −0.0893316 0.0893316i 0.661029 0.750360i \(-0.270120\pi\)
−0.750360 + 0.661029i \(0.770120\pi\)
\(44\) 1.30581 9.91858i 0.196858 1.49528i
\(45\) 0.851911 1.11023i 0.126995 0.165504i
\(46\) −1.50561 11.4362i −0.221990 1.68618i
\(47\) 4.47871 + 2.58579i 0.653288 + 0.377176i 0.789715 0.613474i \(-0.210229\pi\)
−0.136427 + 0.990650i \(0.543562\pi\)
\(48\) 1.24264 3.00000i 0.179360 0.433013i
\(49\) 0 0
\(50\) 10.6569 1.50711
\(51\) −0.712455 + 4.40558i −0.0997637 + 0.616905i
\(52\) 2.70711 + 4.68885i 0.375408 + 0.650226i
\(53\) 1.36603 + 0.366025i 0.187638 + 0.0502775i 0.351414 0.936220i \(-0.385701\pi\)
−0.163776 + 0.986498i \(0.552368\pi\)
\(54\) 7.68092 + 10.0100i 1.04524 + 1.36218i
\(55\) 2.00000i 0.269680i
\(56\) 0 0
\(57\) −0.343146 0.828427i −0.0454508 0.109728i
\(58\) −0.0999004 + 0.758819i −0.0131176 + 0.0996378i
\(59\) −1.55291 + 5.79555i −0.202172 + 0.754517i 0.788121 + 0.615521i \(0.211054\pi\)
−0.990293 + 0.138996i \(0.955612\pi\)
\(60\) 0.820863 3.06350i 0.105973 0.395497i
\(61\) −0.499502 + 3.79410i −0.0639547 + 0.485784i 0.929254 + 0.369441i \(0.120451\pi\)
−0.993209 + 0.116344i \(0.962883\pi\)
\(62\) 7.24264 + 17.4853i 0.919816 + 2.22063i
\(63\) 0 0
\(64\) 9.82843i 1.22855i
\(65\) 0.658919 + 0.858719i 0.0817288 + 0.106511i
\(66\) 6.59575 + 1.76733i 0.811881 + 0.217543i
\(67\) −0.585786 1.01461i −0.0715652 0.123955i 0.828022 0.560695i \(-0.189466\pi\)
−0.899587 + 0.436741i \(0.856133\pi\)
\(68\) −3.63505 15.3608i −0.440815 1.86277i
\(69\) 5.17157 0.622584
\(70\) 0 0
\(71\) −2.07107 + 5.00000i −0.245791 + 0.593391i −0.997838 0.0657178i \(-0.979066\pi\)
0.752048 + 0.659109i \(0.229066\pi\)
\(72\) −6.98975 4.03553i −0.823750 0.475592i
\(73\) −1.68827 12.8237i −0.197597 1.50090i −0.746711 0.665149i \(-0.768368\pi\)
0.549114 0.835747i \(-0.314965\pi\)
\(74\) 13.5781 17.6953i 1.57842 2.05704i
\(75\) −0.623642 + 4.73703i −0.0720120 + 0.546986i
\(76\) 2.24264 + 2.24264i 0.257249 + 0.257249i
\(77\) 0 0
\(78\) −3.41421 + 1.41421i −0.386584 + 0.160128i
\(79\) −4.73703 0.623642i −0.532958 0.0701653i −0.140756 0.990044i \(-0.544953\pi\)
−0.392202 + 0.919879i \(0.628287\pi\)
\(80\) 0.299701 + 2.27646i 0.0335076 + 0.254516i
\(81\) −0.148586 + 0.0857864i −0.0165096 + 0.00953183i
\(82\) 1.78376 + 2.32465i 0.196984 + 0.256714i
\(83\) −8.24264 + 8.24264i −0.904747 + 0.904747i −0.995842 0.0910949i \(-0.970963\pi\)
0.0910949 + 0.995842i \(0.470963\pi\)
\(84\) 0 0
\(85\) −1.12132 2.94975i −0.121624 0.319945i
\(86\) −1.00000 + 1.73205i −0.107833 + 0.186772i
\(87\) −0.331453 0.0888127i −0.0355355 0.00952172i
\(88\) −11.4362 + 1.50561i −1.21910 + 0.160498i
\(89\) −5.70346 3.29289i −0.604565 0.349046i 0.166270 0.986080i \(-0.446828\pi\)
−0.770835 + 0.637034i \(0.780161\pi\)
\(90\) −3.12132 1.29289i −0.329016 0.136283i
\(91\) 0 0
\(92\) −16.8995 + 7.00000i −1.76189 + 0.729800i
\(93\) −8.19615 + 2.19615i −0.849901 + 0.227730i
\(94\) 3.23143 12.0599i 0.333296 1.24388i
\(95\) 0.503026 + 0.385986i 0.0516094 + 0.0396013i
\(96\) 1.70176 + 0.224041i 0.173685 + 0.0228661i
\(97\) −9.53553 3.94975i −0.968187 0.401036i −0.158150 0.987415i \(-0.550553\pi\)
−0.810037 + 0.586379i \(0.800553\pi\)
\(98\) 0 0
\(99\) 1.82843 4.41421i 0.183764 0.443645i
\(100\) −4.37391 16.3237i −0.437391 1.63237i
\(101\) −5.29289 9.16756i −0.526663 0.912206i −0.999517 0.0310659i \(-0.990110\pi\)
0.472855 0.881140i \(-0.343224\pi\)
\(102\) 10.7188 1.09139i 1.06132 0.108064i
\(103\) 6.24264 10.8126i 0.615106 1.06539i −0.375260 0.926919i \(-0.622447\pi\)
0.990366 0.138475i \(-0.0442200\pi\)
\(104\) 4.41421 4.41421i 0.432849 0.432849i
\(105\) 0 0
\(106\) 3.41421i 0.331618i
\(107\) −0.355693 + 0.272933i −0.0343862 + 0.0263854i −0.625812 0.779974i \(-0.715232\pi\)
0.591425 + 0.806360i \(0.298565\pi\)
\(108\) 12.1803 15.8737i 1.17205 1.52744i
\(109\) −12.3346 9.46468i −1.18144 0.906552i −0.184357 0.982859i \(-0.559020\pi\)
−0.997084 + 0.0763072i \(0.975687\pi\)
\(110\) −4.66390 + 1.24969i −0.444686 + 0.119153i
\(111\) 7.07107 + 7.07107i 0.671156 + 0.671156i
\(112\) 0 0
\(113\) 5.05025 + 12.1924i 0.475088 + 1.14696i 0.961886 + 0.273449i \(0.0881645\pi\)
−0.486799 + 0.873514i \(0.661835\pi\)
\(114\) −1.71744 + 1.31784i −0.160853 + 0.123427i
\(115\) −3.16693 + 1.82843i −0.295318 + 0.170502i
\(116\) 1.20332 0.158421i 0.111726 0.0147090i
\(117\) 0.669251 + 2.49768i 0.0618723 + 0.230910i
\(118\) 14.4853 1.33348
\(119\) 0 0
\(120\) −3.65685 −0.333824
\(121\) 1.07968 + 4.02943i 0.0981530 + 0.366312i
\(122\) 9.15976 1.20590i 0.829285 0.109177i
\(123\) −1.13770 + 0.656854i −0.102583 + 0.0592266i
\(124\) 23.8105 18.2704i 2.13825 1.64073i
\(125\) −2.75736 6.65685i −0.246626 0.595407i
\(126\) 0 0
\(127\) −3.75736 3.75736i −0.333412 0.333412i 0.520469 0.853881i \(-0.325757\pi\)
−0.853881 + 0.520469i \(0.825757\pi\)
\(128\) −19.8559 + 5.32037i −1.75503 + 0.470259i
\(129\) −0.711386 0.545866i −0.0626341 0.0480608i
\(130\) 1.59077 2.07313i 0.139520 0.181826i
\(131\) −12.0831 + 9.27169i −1.05571 + 0.810071i −0.982316 0.187232i \(-0.940048\pi\)
−0.0733896 + 0.997303i \(0.523382\pi\)
\(132\) 10.8284i 0.942494i
\(133\) 0 0
\(134\) −2.00000 + 2.00000i −0.172774 + 0.172774i
\(135\) 2.00000 3.46410i 0.172133 0.298142i
\(136\) −16.0228 + 8.63241i −1.37395 + 0.740223i
\(137\) 8.36396 + 14.4868i 0.714581 + 1.23769i 0.963121 + 0.269070i \(0.0867161\pi\)
−0.248539 + 0.968622i \(0.579951\pi\)
\(138\) −3.23143 12.0599i −0.275077 1.02660i
\(139\) 8.17157 19.7279i 0.693104 1.67330i −0.0453279 0.998972i \(-0.514433\pi\)
0.738432 0.674328i \(-0.235567\pi\)
\(140\) 0 0
\(141\) 5.17157 + 2.14214i 0.435525 + 0.180400i
\(142\) 12.9539 + 1.70541i 1.08706 + 0.143115i
\(143\) 2.93185 + 2.24969i 0.245174 + 0.188128i
\(144\) −1.41970 + 5.29837i −0.118308 + 0.441531i
\(145\) 0.234373 0.0628000i 0.0194636 0.00521526i
\(146\) −28.8492 + 11.9497i −2.38758 + 0.988968i
\(147\) 0 0
\(148\) −32.6777 13.5355i −2.68609 1.11261i
\(149\) 14.6969 + 8.48528i 1.20402 + 0.695141i 0.961447 0.274992i \(-0.0886751\pi\)
0.242574 + 0.970133i \(0.422008\pi\)
\(150\) 11.4362 1.50561i 0.933763 0.122932i
\(151\) −6.92721 1.85614i −0.563728 0.151051i −0.0343096 0.999411i \(-0.510923\pi\)
−0.529419 + 0.848361i \(0.677590\pi\)
\(152\) 1.82843 3.16693i 0.148305 0.256872i
\(153\) 0.221825 7.53553i 0.0179335 0.609212i
\(154\) 0 0
\(155\) 4.24264 4.24264i 0.340777 0.340777i
\(156\) 3.56753 + 4.64929i 0.285631 + 0.372241i
\(157\) −8.36308 + 4.82843i −0.667447 + 0.385350i −0.795108 0.606467i \(-0.792586\pi\)
0.127662 + 0.991818i \(0.459253\pi\)
\(158\) 1.50561 + 11.4362i 0.119780 + 0.909816i
\(159\) 1.51764 + 0.199801i 0.120357 + 0.0158452i
\(160\) −1.12132 + 0.464466i −0.0886482 + 0.0367193i
\(161\) 0 0
\(162\) 0.292893 + 0.292893i 0.0230119 + 0.0230119i
\(163\) 1.10600 8.40094i 0.0866289 0.658012i −0.891949 0.452136i \(-0.850662\pi\)
0.978578 0.205876i \(-0.0660045\pi\)
\(164\) 2.82867 3.68639i 0.220882 0.287859i
\(165\) −0.282561 2.14626i −0.0219973 0.167086i
\(166\) 24.3718 + 14.0711i 1.89162 + 1.09213i
\(167\) −0.757359 + 1.82843i −0.0586062 + 0.141488i −0.950470 0.310816i \(-0.899398\pi\)
0.891864 + 0.452304i \(0.149398\pi\)
\(168\) 0 0
\(169\) 11.0000 0.846154
\(170\) −6.17802 + 4.45800i −0.473832 + 0.341913i
\(171\) 0.757359 + 1.31178i 0.0579167 + 0.100315i
\(172\) 3.06350 + 0.820863i 0.233590 + 0.0625903i
\(173\) −1.78376 2.32465i −0.135617 0.176740i 0.720608 0.693343i \(-0.243863\pi\)
−0.856225 + 0.516603i \(0.827196\pi\)
\(174\) 0.828427i 0.0628029i
\(175\) 0 0
\(176\) 3.00000 + 7.24264i 0.226134 + 0.545935i
\(177\) −0.847683 + 6.43879i −0.0637158 + 0.483969i
\(178\) −4.11509 + 15.3577i −0.308439 + 1.15111i
\(179\) −1.55291 + 5.79555i −0.116070 + 0.433180i −0.999365 0.0356385i \(-0.988654\pi\)
0.883294 + 0.468819i \(0.155320\pi\)
\(180\) −0.699303 + 5.31173i −0.0521230 + 0.395913i
\(181\) 4.46447 + 10.7782i 0.331841 + 0.801135i 0.998446 + 0.0557243i \(0.0177468\pi\)
−0.666605 + 0.745411i \(0.732253\pi\)
\(182\) 0 0
\(183\) 4.14214i 0.306195i
\(184\) 12.8392 + 16.7324i 0.946519 + 1.23353i
\(185\) −6.83013 1.83013i −0.502161 0.134554i
\(186\) 10.2426 + 17.7408i 0.751027 + 1.30082i
\(187\) −6.30456 8.73703i −0.461035 0.638915i
\(188\) −19.7990 −1.44399
\(189\) 0 0
\(190\) 0.585786 1.41421i 0.0424974 0.102598i
\(191\) 17.3205 + 10.0000i 1.25327 + 0.723575i 0.971757 0.235983i \(-0.0758311\pi\)
0.281511 + 0.959558i \(0.409164\pi\)
\(192\) −1.38857 10.5472i −0.100211 0.761179i
\(193\) 1.39778 1.82162i 0.100614 0.131123i −0.740333 0.672241i \(-0.765332\pi\)
0.840947 + 0.541118i \(0.181999\pi\)
\(194\) −3.25239 + 24.7044i −0.233508 + 1.77367i
\(195\) 0.828427 + 0.828427i 0.0593249 + 0.0593249i
\(196\) 0 0
\(197\) −4.29289 + 1.77817i −0.305856 + 0.126690i −0.530332 0.847790i \(-0.677933\pi\)
0.224476 + 0.974480i \(0.427933\pi\)
\(198\) −11.4362 1.50561i −0.812736 0.106999i
\(199\) 1.50561 + 11.4362i 0.106730 + 0.810692i 0.958162 + 0.286227i \(0.0924012\pi\)
−0.851432 + 0.524465i \(0.824266\pi\)
\(200\) −16.8747 + 9.74264i −1.19322 + 0.688909i
\(201\) −0.771971 1.00605i −0.0544506 0.0709615i
\(202\) −18.0711 + 18.0711i −1.27148 + 1.27148i
\(203\) 0 0
\(204\) −6.07107 15.9706i −0.425060 1.11816i
\(205\) 0.464466 0.804479i 0.0324397 0.0561872i
\(206\) −29.1151 7.80136i −2.02854 0.543546i
\(207\) −8.66132 + 1.14028i −0.602004 + 0.0792553i
\(208\) −3.67423 2.12132i −0.254762 0.147087i
\(209\) 2.00000 + 0.828427i 0.138343 + 0.0573035i
\(210\) 0 0
\(211\) −19.7279 + 8.17157i −1.35813 + 0.562554i −0.938543 0.345163i \(-0.887824\pi\)
−0.419583 + 0.907717i \(0.637824\pi\)
\(212\) −5.22973 + 1.40130i −0.359179 + 0.0962418i
\(213\) −1.51613 + 5.65826i −0.103883 + 0.387698i
\(214\) 0.858719 + 0.658919i 0.0587009 + 0.0450427i
\(215\) 0.628626 + 0.0827602i 0.0428720 + 0.00564420i
\(216\) −21.3137 8.82843i −1.45021 0.600698i
\(217\) 0 0
\(218\) −14.3640 + 34.6777i −0.972850 + 2.34867i
\(219\) −3.62347 13.5230i −0.244851 0.913797i
\(220\) 3.82843 + 6.63103i 0.258113 + 0.447064i
\(221\) 5.58542 + 1.67423i 0.375716 + 0.112621i
\(222\) 12.0711 20.9077i 0.810157 1.40323i
\(223\) −3.41421 + 3.41421i −0.228633 + 0.228633i −0.812121 0.583489i \(-0.801687\pi\)
0.583489 + 0.812121i \(0.301687\pi\)
\(224\) 0 0
\(225\) 8.07107i 0.538071i
\(226\) 25.2764 19.3953i 1.68136 1.29016i
\(227\) −10.5895 + 13.8005i −0.702852 + 0.915974i −0.999236 0.0390949i \(-0.987553\pi\)
0.296384 + 0.955069i \(0.404219\pi\)
\(228\) 2.72349 + 2.08981i 0.180368 + 0.138401i
\(229\) −16.5865 + 4.44433i −1.09606 + 0.293690i −0.761161 0.648563i \(-0.775370\pi\)
−0.334903 + 0.942252i \(0.608704\pi\)
\(230\) 6.24264 + 6.24264i 0.411628 + 0.411628i
\(231\) 0 0
\(232\) −0.535534 1.29289i −0.0351595 0.0848826i
\(233\) −6.97394 + 5.35129i −0.456878 + 0.350575i −0.811418 0.584466i \(-0.801304\pi\)
0.354540 + 0.935041i \(0.384637\pi\)
\(234\) 5.40629 3.12132i 0.353420 0.204047i
\(235\) −3.92429 + 0.516642i −0.255992 + 0.0337020i
\(236\) −5.94522 22.1879i −0.387001 1.44431i
\(237\) −5.17157 −0.335930
\(238\) 0 0
\(239\) 14.8284 0.959171 0.479586 0.877495i \(-0.340787\pi\)
0.479586 + 0.877495i \(0.340787\pi\)
\(240\) 0.643238 + 2.40060i 0.0415208 + 0.154958i
\(241\) −3.53371 + 0.465222i −0.227626 + 0.0299676i −0.243476 0.969907i \(-0.578288\pi\)
0.0158502 + 0.999874i \(0.494955\pi\)
\(242\) 8.72180 5.03553i 0.560659 0.323696i
\(243\) 12.2915 9.43157i 0.788498 0.605035i
\(244\) −5.60660 13.5355i −0.358926 0.866524i
\(245\) 0 0
\(246\) 2.24264 + 2.24264i 0.142986 + 0.142986i
\(247\) −1.13165 + 0.303225i −0.0720053 + 0.0192938i
\(248\) −27.4537 21.0660i −1.74331 1.33769i
\(249\) −7.68092 + 10.0100i −0.486758 + 0.634356i
\(250\) −13.8005 + 10.5895i −0.872823 + 0.669740i
\(251\) 20.4853i 1.29302i −0.762906 0.646510i \(-0.776228\pi\)
0.762906 0.646510i \(-0.223772\pi\)
\(252\) 0 0
\(253\) −8.82843 + 8.82843i −0.555038 + 0.555038i
\(254\) −6.41421 + 11.1097i −0.402464 + 0.697087i
\(255\) −1.62007 3.00705i −0.101453 0.188309i
\(256\) 14.9853 + 25.9553i 0.936580 + 1.62220i
\(257\) 1.58970 + 5.93285i 0.0991629 + 0.370081i 0.997618 0.0689851i \(-0.0219761\pi\)
−0.898455 + 0.439066i \(0.855309\pi\)
\(258\) −0.828427 + 2.00000i −0.0515756 + 0.124515i
\(259\) 0 0
\(260\) −3.82843 1.58579i −0.237429 0.0983463i
\(261\) 0.574699 + 0.0756605i 0.0355730 + 0.00468327i
\(262\) 29.1712 + 22.3838i 1.80220 + 1.38288i
\(263\) −2.71379 + 10.1280i −0.167339 + 0.624519i 0.830391 + 0.557182i \(0.188117\pi\)
−0.997730 + 0.0673380i \(0.978549\pi\)
\(264\) −12.0599 + 3.23143i −0.742233 + 0.198881i
\(265\) −1.00000 + 0.414214i −0.0614295 + 0.0254449i
\(266\) 0 0
\(267\) −6.58579 2.72792i −0.403044 0.166946i
\(268\) 3.88437 + 2.24264i 0.237276 + 0.136991i
\(269\) 26.2220 3.45219i 1.59878 0.210484i 0.722183 0.691702i \(-0.243139\pi\)
0.876601 + 0.481218i \(0.159805\pi\)
\(270\) −9.32780 2.49938i −0.567672 0.152107i
\(271\) 11.0711 19.1757i 0.672519 1.16484i −0.304668 0.952459i \(-0.598545\pi\)
0.977187 0.212379i \(-0.0681212\pi\)
\(272\) 8.48528 + 9.00000i 0.514496 + 0.545705i
\(273\) 0 0
\(274\) 28.5563 28.5563i 1.72515 1.72515i
\(275\) −7.02200 9.15125i −0.423443 0.551841i
\(276\) −17.1464 + 9.89949i −1.03209 + 0.595880i
\(277\) 2.60451 + 19.7832i 0.156490 + 1.18866i 0.871804 + 0.489855i \(0.162950\pi\)
−0.715314 + 0.698803i \(0.753716\pi\)
\(278\) −51.1105 6.72883i −3.06540 0.403568i
\(279\) 13.2426 5.48528i 0.792816 0.328395i
\(280\) 0 0
\(281\) −1.34315 1.34315i −0.0801254 0.0801254i 0.665908 0.746034i \(-0.268044\pi\)
−0.746034 + 0.665908i \(0.768044\pi\)
\(282\) 1.76393 13.3984i 0.105040 0.797861i
\(283\) 11.3615 14.8066i 0.675371 0.880160i −0.322420 0.946597i \(-0.604496\pi\)
0.997791 + 0.0664363i \(0.0211629\pi\)
\(284\) −2.70441 20.5420i −0.160477 1.21895i
\(285\) 0.594346 + 0.343146i 0.0352060 + 0.0203262i
\(286\) 3.41421 8.24264i 0.201887 0.487398i
\(287\) 0 0
\(288\) −2.89949 −0.170854
\(289\) −14.1969 9.35131i −0.835114 0.550077i
\(290\) −0.292893 0.507306i −0.0171993 0.0297900i
\(291\) −10.7909 2.89142i −0.632574 0.169498i
\(292\) 30.1447 + 39.2853i 1.76408 + 2.29900i
\(293\) 12.3431i 0.721094i −0.932741 0.360547i \(-0.882590\pi\)
0.932741 0.360547i \(-0.117410\pi\)
\(294\) 0 0
\(295\) −1.75736 4.24264i −0.102317 0.247016i
\(296\) −5.32312 + 40.4331i −0.309400 + 2.35013i
\(297\) 3.53465 13.1915i 0.205101 0.765449i
\(298\) 10.6040 39.5745i 0.614271 2.29249i
\(299\) 0.881964 6.69918i 0.0510053 0.387424i
\(300\) −7.00000 16.8995i −0.404145 0.975693i
\(301\) 0 0
\(302\) 17.3137i 0.996292i
\(303\) −6.97517 9.09022i −0.400713 0.522220i
\(304\) −2.40060 0.643238i −0.137684 0.0368922i
\(305\) −1.46447 2.53653i −0.0838551 0.145241i
\(306\) −17.7111 + 4.19125i −1.01248 + 0.239598i
\(307\) 26.1421 1.49201 0.746005 0.665940i \(-0.231969\pi\)
0.746005 + 0.665940i \(0.231969\pi\)
\(308\) 0 0
\(309\) 5.17157 12.4853i 0.294201 0.710263i
\(310\) −12.5446 7.24264i −0.712487 0.411354i
\(311\) 3.35229 + 25.4632i 0.190091 + 1.44389i 0.774576 + 0.632481i \(0.217963\pi\)
−0.584485 + 0.811405i \(0.698703\pi\)
\(312\) 4.11339 5.36068i 0.232875 0.303489i
\(313\) −1.28866 + 9.78838i −0.0728397 + 0.553272i 0.915649 + 0.401978i \(0.131677\pi\)
−0.988489 + 0.151294i \(0.951656\pi\)
\(314\) 16.4853 + 16.4853i 0.930318 + 0.930318i
\(315\) 0 0
\(316\) 16.8995 7.00000i 0.950671 0.393781i
\(317\) −19.0783 2.51171i −1.07155 0.141072i −0.425947 0.904748i \(-0.640059\pi\)
−0.645599 + 0.763677i \(0.723392\pi\)
\(318\) −0.482362 3.66390i −0.0270495 0.205461i
\(319\) 0.717439 0.414214i 0.0401689 0.0231915i
\(320\) 4.57932 + 5.96788i 0.255992 + 0.333615i
\(321\) −0.343146 + 0.343146i −0.0191525 + 0.0191525i
\(322\) 0 0
\(323\) 3.41421 + 0.100505i 0.189972 + 0.00559225i
\(324\) 0.328427 0.568852i 0.0182460 0.0316029i
\(325\) 6.02993 + 1.61571i 0.334480 + 0.0896237i
\(326\) −20.2817 + 2.67013i −1.12330 + 0.147885i
\(327\) −14.5738 8.41421i −0.805935 0.465307i
\(328\) −4.94975 2.05025i −0.273304 0.113206i
\(329\) 0 0
\(330\) −4.82843 + 2.00000i −0.265796 + 0.110096i
\(331\) 21.0562 5.64199i 1.15735 0.310112i 0.371445 0.928455i \(-0.378862\pi\)
0.785909 + 0.618343i \(0.212196\pi\)
\(332\) 11.5504 43.1068i 0.633912 2.36579i
\(333\) −13.4017 10.2835i −0.734408 0.563531i
\(334\) 4.73703 + 0.623642i 0.259199 + 0.0341242i
\(335\) 0.828427 + 0.343146i 0.0452618 + 0.0187481i
\(336\) 0 0
\(337\) −2.15076 + 5.19239i −0.117159 + 0.282847i −0.971571 0.236750i \(-0.923918\pi\)
0.854411 + 0.519597i \(0.173918\pi\)
\(338\) −6.87329 25.6515i −0.373858 1.39526i
\(339\) 7.14214 + 12.3705i 0.387908 + 0.671876i
\(340\) 9.36420 + 7.63349i 0.507845 + 0.413984i
\(341\) 10.2426 17.7408i 0.554670 0.960717i
\(342\) 2.58579 2.58579i 0.139823 0.139823i
\(343\) 0 0
\(344\) 3.65685i 0.197164i
\(345\) −3.14021 + 2.40957i −0.169063 + 0.129727i
\(346\) −4.30638 + 5.61219i −0.231513 + 0.301713i
\(347\) −13.2975 10.2035i −0.713848 0.547755i 0.186750 0.982407i \(-0.440204\pi\)
−0.900598 + 0.434653i \(0.856871\pi\)
\(348\) 1.26894 0.340013i 0.0680226 0.0182266i
\(349\) −3.00000 3.00000i −0.160586 0.160586i 0.622240 0.782826i \(-0.286223\pi\)
−0.782826 + 0.622240i \(0.786223\pi\)
\(350\) 0 0
\(351\) 2.82843 + 6.82843i 0.150970 + 0.364474i
\(352\) −3.28754 + 2.52262i −0.175227 + 0.134456i
\(353\) 12.1244 7.00000i 0.645314 0.372572i −0.141344 0.989960i \(-0.545142\pi\)
0.786659 + 0.617388i \(0.211809\pi\)
\(354\) 15.5446 2.04649i 0.826187 0.108770i
\(355\) −1.07206 4.00100i −0.0568992 0.212351i
\(356\) 25.2132 1.33630
\(357\) 0 0
\(358\) 14.4853 0.765571
\(359\) −7.46135 27.8461i −0.393795 1.46966i −0.823823 0.566847i \(-0.808163\pi\)
0.430028 0.902815i \(-0.358504\pi\)
\(360\) 6.12448 0.806303i 0.322788 0.0424959i
\(361\) 15.8601 9.15685i 0.834744 0.481940i
\(362\) 22.3446 17.1456i 1.17441 0.901153i
\(363\) 1.72792 + 4.17157i 0.0906924 + 0.218951i
\(364\) 0 0
\(365\) 7.00000 + 7.00000i 0.366397 + 0.366397i
\(366\) 9.65926 2.58819i 0.504898 0.135287i
\(367\) −3.49591 2.68250i −0.182485 0.140025i 0.513480 0.858102i \(-0.328356\pi\)
−0.695964 + 0.718076i \(0.745023\pi\)
\(368\) 8.72582 11.3717i 0.454865 0.592792i
\(369\) 1.76059 1.35095i 0.0916527 0.0703276i
\(370\) 17.0711i 0.887483i
\(371\) 0 0
\(372\) 22.9706 22.9706i 1.19097 1.19097i
\(373\) −5.77817 + 10.0081i −0.299183 + 0.518199i −0.975949 0.217998i \(-0.930047\pi\)
0.676767 + 0.736198i \(0.263381\pi\)
\(374\) −16.4350 + 20.1612i −0.849832 + 1.04251i
\(375\) −3.89949 6.75412i −0.201369 0.348781i
\(376\) 5.90843 + 22.0506i 0.304704 + 1.13717i
\(377\) −0.171573 + 0.414214i −0.00883645 + 0.0213331i
\(378\) 0 0
\(379\) −2.41421 1.00000i −0.124010 0.0513665i 0.319816 0.947480i \(-0.396379\pi\)
−0.443826 + 0.896113i \(0.646379\pi\)
\(380\) −2.40665 0.316841i −0.123459 0.0162536i
\(381\) −4.56298 3.50130i −0.233769 0.179377i
\(382\) 12.4969 46.6390i 0.639396 2.38626i
\(383\) −21.7191 + 5.81962i −1.10979 + 0.297369i −0.766747 0.641949i \(-0.778126\pi\)
−0.343048 + 0.939318i \(0.611459\pi\)
\(384\) −20.5563 + 8.51472i −1.04901 + 0.434515i
\(385\) 0 0
\(386\) −5.12132 2.12132i −0.260668 0.107972i
\(387\) 1.31178 + 0.757359i 0.0666818 + 0.0384987i
\(388\) 39.1759 5.15760i 1.98885 0.261838i
\(389\) 11.7284 + 3.14262i 0.594654 + 0.159337i 0.543579 0.839358i \(-0.317069\pi\)
0.0510744 + 0.998695i \(0.483735\pi\)
\(390\) 1.41421 2.44949i 0.0716115 0.124035i
\(391\) −8.07107 + 17.9706i −0.408171 + 0.908810i
\(392\) 0 0
\(393\) −11.6569 + 11.6569i −0.588011 + 0.588011i
\(394\) 6.82901 + 8.89974i 0.344040 + 0.448362i
\(395\) 3.16693 1.82843i 0.159345 0.0919982i
\(396\) 2.38757 + 18.1354i 0.119980 + 0.911338i
\(397\) 17.6370 + 2.32195i 0.885174 + 0.116535i 0.559386 0.828908i \(-0.311037\pi\)
0.325788 + 0.945443i \(0.394370\pi\)
\(398\) 25.7279 10.6569i 1.28962 0.534180i
\(399\) 0 0
\(400\) 9.36396 + 9.36396i 0.468198 + 0.468198i
\(401\) 0.0756605 0.574699i 0.00377831 0.0286991i −0.989452 0.144862i \(-0.953726\pi\)
0.993230 + 0.116163i \(0.0370595\pi\)
\(402\) −1.86370 + 2.42883i −0.0929531 + 0.121139i
\(403\) 1.44709 + 10.9917i 0.0720845 + 0.547536i
\(404\) 35.0973 + 20.2635i 1.74616 + 1.00814i
\(405\) 0.0502525 0.121320i 0.00249707 0.00602846i
\(406\) 0 0
\(407\) −24.1421 −1.19668
\(408\) −15.9750 + 11.5274i −0.790882 + 0.570693i
\(409\) −1.65685 2.86976i −0.0819262 0.141900i 0.822151 0.569269i \(-0.192774\pi\)
−0.904077 + 0.427369i \(0.859441\pi\)
\(410\) −2.16622 0.580438i −0.106982 0.0286658i
\(411\) 11.0223 + 14.3646i 0.543692 + 0.708553i
\(412\) 47.7990i 2.35489i
\(413\) 0 0
\(414\) 8.07107 + 19.4853i 0.396671 + 0.957649i
\(415\) 1.16452 8.84544i 0.0571643 0.434206i
\(416\) 0.580438 2.16622i 0.0284583 0.106208i
\(417\) 5.98201 22.3252i 0.292940 1.09327i
\(418\) 0.682163 5.18154i 0.0333657 0.253437i
\(419\) 5.10051 + 12.3137i 0.249176 + 0.601564i 0.998135 0.0610528i \(-0.0194458\pi\)
−0.748959 + 0.662617i \(0.769446\pi\)
\(420\) 0 0
\(421\) 14.5858i 0.710868i 0.934701 + 0.355434i \(0.115667\pi\)
−0.934701 + 0.355434i \(0.884333\pi\)
\(422\) 31.3826 + 40.8986i 1.52768 + 1.99091i
\(423\) −9.13364 2.44735i −0.444093 0.118994i
\(424\) 3.12132 + 5.40629i 0.151585 + 0.262552i
\(425\) −15.4873 9.55998i −0.751245 0.463727i
\(426\) 14.1421 0.685189
\(427\) 0 0
\(428\) 0.656854 1.58579i 0.0317502 0.0766519i
\(429\) 3.46410 + 2.00000i 0.167248 + 0.0965609i
\(430\) −0.199801 1.51764i −0.00963525 0.0731870i
\(431\) 4.45255 5.80268i 0.214472 0.279505i −0.673711 0.738995i \(-0.735301\pi\)
0.888183 + 0.459489i \(0.151968\pi\)
\(432\) −2.04649 + 15.5446i −0.0984617 + 0.747891i
\(433\) −14.7279 14.7279i −0.707779 0.707779i 0.258289 0.966068i \(-0.416841\pi\)
−0.966068 + 0.258289i \(0.916841\pi\)
\(434\) 0 0
\(435\) 0.242641 0.100505i 0.0116337 0.00481885i
\(436\) 59.0130 + 7.76921i 2.82621 + 0.372078i
\(437\) −0.516642 3.92429i −0.0247144 0.187724i
\(438\) −29.2708 + 16.8995i −1.39861 + 0.807489i
\(439\) 6.47613 + 8.43986i 0.309089 + 0.402813i 0.921907 0.387412i \(-0.126631\pi\)
−0.612818 + 0.790224i \(0.709964\pi\)
\(440\) 6.24264 6.24264i 0.297606 0.297606i
\(441\) 0 0
\(442\) 0.414214 14.0711i 0.0197021 0.669292i
\(443\) 11.8995 20.6105i 0.565362 0.979236i −0.431654 0.902039i \(-0.642070\pi\)
0.997016 0.0771965i \(-0.0245969\pi\)
\(444\) −36.9798 9.90870i −1.75498 0.470246i
\(445\) 4.99742 0.657923i 0.236900 0.0311885i
\(446\) 10.0951 + 5.82843i 0.478018 + 0.275984i
\(447\) 16.9706 + 7.02944i 0.802680 + 0.332481i
\(448\) 0 0
\(449\) 11.1924 4.63604i 0.528201 0.218788i −0.102614 0.994721i \(-0.532721\pi\)
0.630815 + 0.775933i \(0.282721\pi\)
\(450\) −18.8213 + 5.04316i −0.887246 + 0.237737i
\(451\) 0.820863 3.06350i 0.0386530 0.144255i
\(452\) −40.0830 30.7568i −1.88535 1.44668i
\(453\) −7.69605 1.01320i −0.361592 0.0476045i
\(454\) 38.7990 + 16.0711i 1.82093 + 0.754253i
\(455\) 0 0
\(456\) 1.51472 3.65685i 0.0709332 0.171248i
\(457\) 3.40905 + 12.7228i 0.159469 + 0.595146i 0.998681 + 0.0513418i \(0.0163498\pi\)
−0.839212 + 0.543804i \(0.816984\pi\)
\(458\) 20.7279 + 35.9018i 0.968552 + 1.67758i
\(459\) −2.18278 21.4375i −0.101884 1.00062i
\(460\) 7.00000 12.1244i 0.326377 0.565301i
\(461\) −17.0000 + 17.0000i −0.791769 + 0.791769i −0.981782 0.190013i \(-0.939147\pi\)
0.190013 + 0.981782i \(0.439147\pi\)
\(462\) 0 0
\(463\) 14.6274i 0.679794i −0.940463 0.339897i \(-0.889608\pi\)
0.940463 0.339897i \(-0.110392\pi\)
\(464\) −0.754539 + 0.578978i −0.0350286 + 0.0268784i
\(465\) 3.95351 5.15232i 0.183340 0.238933i
\(466\) 16.8366 + 12.9192i 0.779939 + 0.598468i
\(467\) 31.5157 8.44460i 1.45837 0.390769i 0.559444 0.828868i \(-0.311015\pi\)
0.898927 + 0.438099i \(0.144348\pi\)
\(468\) −7.00000 7.00000i −0.323575 0.323575i
\(469\) 0 0
\(470\) 3.65685 + 8.82843i 0.168678 + 0.407225i
\(471\) −8.29253 + 6.36308i −0.382100 + 0.293195i
\(472\) −22.9369 + 13.2426i −1.05576 + 0.609542i
\(473\) 2.14626 0.282561i 0.0986853 0.0129922i
\(474\) 3.23143 + 12.0599i 0.148424 + 0.553928i
\(475\) 3.65685 0.167788
\(476\) 0 0
\(477\) −2.58579 −0.118395
\(478\) −9.26546 34.5792i −0.423792 1.58161i
\(479\) 5.10528 0.672122i 0.233266 0.0307100i −0.0129869 0.999916i \(-0.504134\pi\)
0.246253 + 0.969206i \(0.420801\pi\)
\(480\) −1.13770 + 0.656854i −0.0519289 + 0.0299812i
\(481\) 10.3657 7.95385i 0.472633 0.362664i
\(482\) 3.29289 + 7.94975i 0.149987 + 0.362101i
\(483\) 0 0
\(484\) −11.2929 11.2929i −0.513313 0.513313i
\(485\) 7.63033 2.04454i 0.346475 0.0928378i
\(486\) −29.6742 22.7698i −1.34605 1.03286i
\(487\) 16.0208 20.8787i 0.725970 0.946102i −0.273908 0.961756i \(-0.588316\pi\)
0.999877 + 0.0156538i \(0.00498297\pi\)
\(488\) −13.4017 + 10.2835i −0.606666 + 0.465511i
\(489\) 9.17157i 0.414753i
\(490\) 0 0
\(491\) 26.2426 26.2426i 1.18431 1.18431i 0.205698 0.978615i \(-0.434053\pi\)
0.978615 0.205698i \(-0.0659466\pi\)
\(492\) 2.51472 4.35562i 0.113372 0.196367i
\(493\) 0.825899 1.01315i 0.0371966 0.0456301i
\(494\) 1.41421 + 2.44949i 0.0636285 + 0.110208i
\(495\) 0.946464 + 3.53225i 0.0425404 + 0.158763i
\(496\) −9.00000 + 21.7279i −0.404112 + 0.975613i
\(497\) 0 0
\(498\) 28.1421 + 11.6569i 1.26108 + 0.522356i
\(499\) 21.2785 + 2.80137i 0.952558 + 0.125407i 0.590758 0.806849i \(-0.298829\pi\)
0.361800 + 0.932256i \(0.382162\pi\)
\(500\) 21.8847 + 16.7927i 0.978714 + 0.750994i
\(501\) −0.554425 + 2.06914i −0.0247699 + 0.0924425i
\(502\) −47.7707 + 12.8001i −2.13211 + 0.571297i
\(503\) 19.7279 8.17157i 0.879625 0.364352i 0.103273 0.994653i \(-0.467068\pi\)
0.776351 + 0.630301i \(0.217068\pi\)
\(504\) 0 0
\(505\) 7.48528 + 3.10051i 0.333091 + 0.137971i
\(506\) 26.1039 + 15.0711i 1.16046 + 0.669991i
\(507\) 11.8045 1.55409i 0.524254 0.0690194i
\(508\) 19.6500 + 5.26519i 0.871826 + 0.233605i
\(509\) −18.4853 + 32.0174i −0.819346 + 1.41915i 0.0868193 + 0.996224i \(0.472330\pi\)
−0.906165 + 0.422924i \(0.861004\pi\)
\(510\) −6.00000 + 5.65685i −0.265684 + 0.250490i
\(511\) 0 0
\(512\) 22.0919 22.0919i 0.976333 0.976333i
\(513\) 2.63567 + 3.43488i 0.116368 + 0.151654i
\(514\) 12.8418 7.41421i 0.566427 0.327027i
\(515\) 1.24728 + 9.47407i 0.0549619 + 0.417477i
\(516\) 3.40352 + 0.448082i 0.149831 + 0.0197257i
\(517\) −12.4853 + 5.17157i −0.549102 + 0.227446i
\(518\) 0 0
\(519\) −2.24264 2.24264i −0.0984410 0.0984410i
\(520\) −0.623642 + 4.73703i −0.0273485 + 0.207733i
\(521\) −11.3284 + 14.7634i −0.496306 + 0.646798i −0.972599 0.232488i \(-0.925313\pi\)
0.476294 + 0.879286i \(0.341980\pi\)
\(522\) −0.182661 1.38745i −0.00799484 0.0607268i
\(523\) 1.01461 + 0.585786i 0.0443659 + 0.0256147i 0.522019 0.852934i \(-0.325179\pi\)
−0.477653 + 0.878549i \(0.658512\pi\)
\(524\) 22.3137 53.8701i 0.974779 2.35332i
\(525\) 0 0
\(526\) 25.3137 1.10373
\(527\) 5.16006 31.9080i 0.224776 1.38994i
\(528\) 4.24264 + 7.34847i 0.184637 + 0.319801i
\(529\) −0.165727 0.0444063i −0.00720551 0.00193071i
\(530\) 1.59077 + 2.07313i 0.0690986 + 0.0900511i
\(531\) 10.9706i 0.476082i
\(532\) 0 0
\(533\) 0.656854 + 1.58579i 0.0284515 + 0.0686880i
\(534\) −2.24629 + 17.0623i −0.0972064 + 0.738356i
\(535\) 0.0888127 0.331453i 0.00383971 0.0143300i
\(536\) 1.33850 4.99536i 0.0578145 0.215767i
\(537\) −0.847683 + 6.43879i −0.0365802 + 0.277854i
\(538\) −24.4350 58.9914i −1.05347 2.54330i
\(539\) 0 0
\(540\) 15.3137i 0.658997i
\(541\) −11.2153 14.6161i −0.482185 0.628395i 0.487392 0.873183i \(-0.337948\pi\)
−0.969577 + 0.244788i \(0.921282\pi\)
\(542\) −51.6344 13.8354i −2.21789 0.594281i
\(543\) 6.31371 + 10.9357i 0.270947 + 0.469294i
\(544\) −3.43438 + 5.56374i −0.147248 + 0.238544i
\(545\) 11.8995 0.509718
\(546\) 0 0
\(547\) 3.10051 7.48528i 0.132568 0.320048i −0.843631 0.536923i \(-0.819587\pi\)
0.976199 + 0.216875i \(0.0695866\pi\)
\(548\) −55.4617 32.0208i −2.36921 1.36786i
\(549\) −0.913303 6.93723i −0.0389788 0.296074i
\(550\) −16.9526 + 22.0931i −0.722862 + 0.942052i
\(551\) −0.0342804 + 0.260386i −0.00146039 + 0.0110928i
\(552\) 16.1421 + 16.1421i 0.687055 + 0.687055i
\(553\) 0 0
\(554\) 44.5061 18.4350i 1.89088 0.783229i
\(555\) −7.58819 0.999004i −0.322101 0.0424054i
\(556\) 10.6705 + 81.0504i 0.452529 + 3.43730i
\(557\) −17.1104 + 9.87868i −0.724990 + 0.418573i −0.816586 0.577223i \(-0.804136\pi\)
0.0915966 + 0.995796i \(0.470803\pi\)
\(558\) −21.0660 27.4537i −0.891795 1.16221i
\(559\) −0.828427 + 0.828427i −0.0350387 + 0.0350387i
\(560\) 0 0
\(561\) −8.00000 8.48528i −0.337760 0.358249i
\(562\) −2.29289 + 3.97141i −0.0967199 + 0.167524i
\(563\) 33.5848 + 8.99902i 1.41543 + 0.379264i 0.883861 0.467751i \(-0.154935\pi\)
0.531570 + 0.847014i \(0.321602\pi\)
\(564\) −21.2469 + 2.79721i −0.894657 + 0.117784i
\(565\) −8.74729 5.05025i −0.368001 0.212466i
\(566\) −41.6274 17.2426i −1.74973 0.724762i
\(567\) 0 0
\(568\) −22.0711 + 9.14214i −0.926081 + 0.383595i
\(569\) −11.6313 + 3.11660i −0.487610 + 0.130655i −0.494244 0.869323i \(-0.664555\pi\)
0.00663368 + 0.999978i \(0.497888\pi\)
\(570\) 0.428825 1.60040i 0.0179615 0.0670333i
\(571\) 3.37385 + 2.58885i 0.141191 + 0.108340i 0.676942 0.736036i \(-0.263305\pi\)
−0.535751 + 0.844376i \(0.679971\pi\)
\(572\) −14.0270 1.84669i −0.586498 0.0772139i
\(573\) 20.0000 + 8.28427i 0.835512 + 0.346080i
\(574\) 0 0
\(575\) −8.07107 + 19.4853i −0.336587 + 0.812592i
\(576\) 4.65112 + 17.3582i 0.193797 + 0.723260i
\(577\) −13.5355 23.4442i −0.563492 0.975996i −0.997188 0.0749372i \(-0.976124\pi\)
0.433697 0.901059i \(-0.357209\pi\)
\(578\) −12.9359 + 38.9497i −0.538063 + 1.62009i
\(579\) 1.24264 2.15232i 0.0516424 0.0894472i
\(580\) −0.656854 + 0.656854i −0.0272744 + 0.0272744i
\(581\) 0 0
\(582\) 26.9706i 1.11797i
\(583\) −2.93185 + 2.24969i −0.121425 + 0.0931726i
\(584\) 34.7571 45.2964i 1.43826 1.87438i
\(585\) −1.57011 1.20478i −0.0649159 0.0498117i
\(586\) −28.7836 + 7.71255i −1.18904 + 0.318602i
\(587\) −32.0416 32.0416i −1.32250 1.32250i −0.911747 0.410753i \(-0.865266\pi\)
−0.410753 0.911747i \(-0.634734\pi\)
\(588\) 0 0
\(589\) 2.48528 + 6.00000i 0.102404 + 0.247226i
\(590\) −8.79555 + 6.74907i −0.362107 + 0.277855i
\(591\) −4.35562 + 2.51472i −0.179166 + 0.103442i
\(592\) 27.4793 3.61771i 1.12939 0.148687i
\(593\) −3.34625 12.4884i −0.137414 0.512837i −0.999976 0.00688551i \(-0.997808\pi\)
0.862562 0.505951i \(-0.168858\pi\)
\(594\) −32.9706 −1.35280
\(595\) 0 0
\(596\) −64.9706 −2.66130
\(597\) 3.23143 + 12.0599i 0.132254 + 0.493577i
\(598\) −16.1732 + 2.12925i −0.661373 + 0.0870714i
\(599\) 9.20361 5.31371i 0.376049 0.217112i −0.300049 0.953924i \(-0.597003\pi\)
0.676098 + 0.736812i \(0.263670\pi\)
\(600\) −16.7324 + 12.8392i −0.683097 + 0.524159i
\(601\) 3.22183 + 7.77817i 0.131421 + 0.317278i 0.975868 0.218360i \(-0.0700709\pi\)
−0.844447 + 0.535639i \(0.820071\pi\)
\(602\) 0 0
\(603\) 1.51472 + 1.51472i 0.0616841 + 0.0616841i
\(604\) 26.5203 7.10610i 1.07910 0.289143i
\(605\) −2.53301 1.94364i −0.102981 0.0790203i
\(606\) −16.8396 + 21.9457i −0.684060 + 0.891485i
\(607\) 13.0028 9.97744i 0.527769 0.404972i −0.310215 0.950667i \(-0.600401\pi\)
0.837984 + 0.545695i \(0.183734\pi\)
\(608\) 1.31371i 0.0532779i
\(609\) 0 0
\(610\) −5.00000 + 5.00000i −0.202444 + 0.202444i
\(611\) 3.65685 6.33386i 0.147940 0.256240i
\(612\) 13.6892 + 25.4088i 0.553351 + 1.02709i
\(613\) −2.65685 4.60181i −0.107309 0.185865i 0.807370 0.590045i \(-0.200890\pi\)
−0.914679 + 0.404180i \(0.867557\pi\)
\(614\) −16.3348 60.9622i −0.659218 2.46023i
\(615\) 0.384776 0.928932i 0.0155157 0.0374582i
\(616\) 0 0
\(617\) −2.70711 1.12132i −0.108984 0.0451427i 0.327525 0.944842i \(-0.393785\pi\)
−0.436509 + 0.899700i \(0.643785\pi\)
\(618\) −32.3465 4.25850i −1.30117 0.171302i
\(619\) 22.5961 + 17.3386i 0.908214 + 0.696897i 0.953280 0.302087i \(-0.0976833\pi\)
−0.0450666 + 0.998984i \(0.514350\pi\)
\(620\) −5.94522 + 22.1879i −0.238766 + 0.891086i
\(621\) −24.1197 + 6.46286i −0.967891 + 0.259346i
\(622\) 57.2843 23.7279i 2.29689 0.951403i
\(623\) 0 0
\(624\) −4.24264 1.75736i −0.169842 0.0703507i
\(625\) −14.3382 8.27817i −0.573529 0.331127i
\(626\) 23.6312 3.11111i 0.944495 0.124345i
\(627\) 2.26330 + 0.606451i 0.0903877 + 0.0242193i
\(628\) 18.4853 32.0174i 0.737643 1.27764i
\(629\) −35.6066 + 13.5355i −1.41973 + 0.539697i
\(630\) 0 0
\(631\) −20.7279 + 20.7279i −0.825166 + 0.825166i −0.986844 0.161678i \(-0.948309\pi\)
0.161678 + 0.986844i \(0.448309\pi\)
\(632\) −12.8392 16.7324i −0.510717 0.665579i
\(633\) −20.0162 + 11.5563i −0.795572 + 0.459324i
\(634\) 6.06380 + 46.0592i 0.240824 + 1.82924i
\(635\) 4.03214 + 0.530842i 0.160011 + 0.0210658i
\(636\) −5.41421 + 2.24264i −0.214688 + 0.0889265i
\(637\) 0 0
\(638\) −1.41421 1.41421i −0.0559893 0.0559893i
\(639\) 1.29161 9.81072i 0.0510951 0.388106i
\(640\) 9.57773 12.4819i 0.378593 0.493392i
\(641\) 5.40588 + 41.0617i 0.213519 + 1.62184i 0.677172 + 0.735824i \(0.263205\pi\)
−0.463653 + 0.886017i \(0.653461\pi\)
\(642\) 1.01461 + 0.585786i 0.0400435 + 0.0231191i
\(643\) −11.0416 + 26.6569i −0.435439 + 1.05124i 0.542066 + 0.840336i \(0.317642\pi\)
−0.977506 + 0.210908i \(0.932358\pi\)
\(644\) 0 0
\(645\) 0.686292 0.0270227
\(646\) −1.89898 8.02458i −0.0747143 0.315723i
\(647\) −1.41421 2.44949i −0.0555985 0.0962994i 0.836887 0.547376i \(-0.184373\pi\)
−0.892485 + 0.451077i \(0.851040\pi\)
\(648\) −0.731553 0.196019i −0.0287381 0.00770035i
\(649\) −9.54462 12.4388i −0.374659 0.488265i
\(650\) 15.0711i 0.591136i
\(651\) 0 0
\(652\) 12.4142 + 29.9706i 0.486178 + 1.17374i
\(653\) −1.24019 + 9.42014i −0.0485322 + 0.368639i 0.949895 + 0.312570i \(0.101190\pi\)
−0.998427 + 0.0560686i \(0.982143\pi\)
\(654\) −10.5151 + 39.2431i −0.411175 + 1.53453i
\(655\) 3.01702 11.2597i 0.117885 0.439951i
\(656\) −0.475262 + 3.60997i −0.0185559 + 0.140946i
\(657\) 9.05025 + 21.8492i 0.353084 + 0.852420i
\(658\) 0 0
\(659\) 8.48528i 0.330540i −0.986248 0.165270i \(-0.947151\pi\)
0.986248 0.165270i \(-0.0528495\pi\)
\(660\) 5.04524 + 6.57509i 0.196386 + 0.255935i
\(661\) 1.17186 + 0.314000i 0.0455802 + 0.0122132i 0.281537 0.959550i \(-0.409156\pi\)
−0.235957 + 0.971764i \(0.575822\pi\)
\(662\) −26.3137 45.5767i −1.02271 1.77139i
\(663\) 6.23043 + 1.00756i 0.241970 + 0.0391305i
\(664\) −51.4558 −1.99687
\(665\) 0 0
\(666\) −15.6066 + 37.6777i −0.604744 + 1.45998i
\(667\) −1.31178 0.757359i −0.0507925 0.0293251i
\(668\) −0.988964 7.51193i −0.0382642 0.290645i
\(669\) −3.18154 + 4.14626i −0.123005 + 0.160304i
\(670\) 0.282561 2.14626i 0.0109163 0.0829174i
\(671\) −7.07107 7.07107i −0.272976 0.272976i
\(672\) 0 0
\(673\) 4.12132 1.70711i 0.158865 0.0658041i −0.301834 0.953361i \(-0.597599\pi\)
0.460699 + 0.887556i \(0.347599\pi\)
\(674\) 13.4523 + 1.77103i 0.518163 + 0.0682174i
\(675\) −3.01121 22.8724i −0.115902 0.880360i
\(676\) −36.4707 + 21.0563i −1.40272 + 0.809860i
\(677\) 23.1889 + 30.2204i 0.891223 + 1.16146i 0.986129 + 0.165978i \(0.0530780\pi\)
−0.0949069 + 0.995486i \(0.530255\pi\)
\(678\) 24.3848 24.3848i 0.936492 0.936492i
\(679\) 0 0
\(680\) 5.70711 12.7071i 0.218858 0.487295i
\(681\) −9.41421 + 16.3059i −0.360753 + 0.624843i
\(682\) −47.7707 12.8001i −1.82923 0.490142i
\(683\) 23.5773 3.10401i 0.902161 0.118772i 0.334846 0.942273i \(-0.391316\pi\)
0.567315 + 0.823501i \(0.307982\pi\)
\(684\) −5.02207 2.89949i −0.192024 0.110865i
\(685\) −11.8284 4.89949i −0.451941 0.187200i
\(686\) 0 0
\(687\) −17.1716 + 7.11270i −0.655136 + 0.271366i
\(688\) −2.40060 + 0.643238i −0.0915219 + 0.0245232i
\(689\) 0.517638 1.93185i 0.0197204 0.0735977i
\(690\) 7.58114 + 5.81722i 0.288609 + 0.221458i
\(691\) −19.7609 2.60157i −0.751740 0.0989684i −0.255087 0.966918i \(-0.582104\pi\)
−0.496652 + 0.867950i \(0.665438\pi\)
\(692\) 10.3640 + 4.29289i 0.393979 + 0.163191i
\(693\) 0 0
\(694\) −15.4853 + 37.3848i −0.587813 + 1.41911i
\(695\) 4.22992 + 15.7863i 0.160450 + 0.598807i
\(696\) −0.757359 1.31178i −0.0287076 0.0497231i
\(697\) −0.506915 4.97851i −0.0192008 0.188574i
\(698\) −5.12132 + 8.87039i −0.193845 + 0.335749i
\(699\) −6.72792 + 6.72792i −0.254473 + 0.254473i
\(700\) 0 0
\(701\) 37.6985i 1.42385i −0.702254 0.711926i \(-0.747823\pi\)
0.702254 0.711926i \(-0.252177\pi\)
\(702\) 14.1562 10.8625i 0.534293 0.409977i
\(703\) 4.65926 6.07206i 0.175727 0.229012i
\(704\) 20.3756 + 15.6348i 0.767935 + 0.589258i
\(705\) −4.13829 + 1.10885i −0.155857 + 0.0417617i
\(706\) −23.8995 23.8995i −0.899469 0.899469i
\(707\) 0 0
\(708\) −9.51472 22.9706i −0.357585 0.863287i
\(709\) −19.2654 + 14.7829i −0.723527 + 0.555182i −0.903551 0.428480i \(-0.859049\pi\)
0.180024 + 0.983662i \(0.442382\pi\)
\(710\) −8.66025 + 5.00000i −0.325014 + 0.187647i
\(711\) 8.66132 1.14028i 0.324825 0.0427640i
\(712\) −7.52415 28.0805i −0.281979 1.05236i
\(713\) −37.4558 −1.40273
\(714\) 0 0
\(715\) −2.82843 −0.105777
\(716\) −5.94522 22.1879i −0.222183 0.829199i
\(717\) 15.9129 2.09497i 0.594277 0.0782380i
\(718\) −60.2736 + 34.7990i −2.24939 + 1.29869i
\(719\) −26.9507 + 20.6800i −1.00509 + 0.771234i −0.973598 0.228270i \(-0.926693\pi\)
−0.0314942 + 0.999504i \(0.510027\pi\)
\(720\) −1.60660 3.87868i −0.0598745 0.144550i
\(721\) 0 0
\(722\) −31.2635 31.2635i −1.16351 1.16351i
\(723\) −3.72641 + 0.998489i −0.138587 + 0.0371342i
\(724\) −35.4337 27.1893i −1.31688 1.01048i
\(725\) 0.851911 1.11023i 0.0316392 0.0412330i
\(726\) 8.64822 6.63601i 0.320966 0.246286i
\(727\) 43.1127i 1.59896i 0.600692 + 0.799481i \(0.294892\pi\)
−0.600692 + 0.799481i \(0.705108\pi\)
\(728\) 0 0
\(729\) 12.2218 12.2218i 0.452660 0.452660i
\(730\) 11.9497 20.6976i 0.442280 0.766051i
\(731\) 3.00705 1.62007i 0.111220 0.0599203i
\(732\) −7.92893 13.7333i −0.293062 0.507598i
\(733\) 9.32826 + 34.8135i 0.344547 + 1.28587i 0.893140 + 0.449778i \(0.148497\pi\)
−0.548593 + 0.836089i \(0.684836\pi\)
\(734\) −4.07107 + 9.82843i −0.150266 + 0.362774i
\(735\) 0 0
\(736\) 7.00000 + 2.89949i 0.258023 + 0.106877i
\(737\) 3.03528 + 0.399602i 0.111806 + 0.0147195i
\(738\) −4.25044 3.26148i −0.156461 0.120057i
\(739\) 5.76759 21.5250i 0.212164 0.791808i −0.774981 0.631984i \(-0.782241\pi\)
0.987146 0.159824i \(-0.0510926\pi\)
\(740\) 26.1486 7.00651i 0.961243 0.257564i
\(741\) −1.17157 + 0.485281i −0.0430388 + 0.0178273i
\(742\) 0 0
\(743\) 47.1421 + 19.5269i 1.72948 + 0.716373i 0.999457 + 0.0329473i \(0.0104893\pi\)
0.730020 + 0.683426i \(0.239511\pi\)
\(744\) −32.4377 18.7279i −1.18922 0.686599i
\(745\) −12.8776 + 1.69537i −0.471798 + 0.0621134i
\(746\) 26.9488 + 7.22092i 0.986667 + 0.264377i
\(747\) 10.6569 18.4582i 0.389914 0.675351i
\(748\) 37.6274 + 16.8995i 1.37579 + 0.617907i
\(749\) 0 0
\(750\) −13.3137 + 13.3137i −0.486148 + 0.486148i
\(751\) 28.9730 + 37.7584i 1.05724 + 1.37782i 0.922080 + 0.386999i \(0.126488\pi\)
0.135161 + 0.990824i \(0.456845\pi\)
\(752\) 13.4361 7.75736i 0.489966 0.282882i
\(753\) −2.89417 21.9834i −0.105469 0.801120i
\(754\) 1.07313 + 0.141281i 0.0390812 + 0.00514513i
\(755\) 5.07107 2.10051i 0.184555 0.0764452i
\(756\) 0 0
\(757\) −1.79899 1.79899i −0.0653854 0.0653854i 0.673658 0.739043i \(-0.264722\pi\)
−0.739043 + 0.673658i \(0.764722\pi\)
\(758\) −0.823443 + 6.25467i −0.0299088 + 0.227180i
\(759\) −8.22678 + 10.7214i −0.298613 + 0.389161i
\(760\) 0.365321 + 2.77489i 0.0132516 + 0.100656i
\(761\) 32.6478 + 18.8492i 1.18348 + 0.683285i 0.956818 0.290688i \(-0.0938842\pi\)
0.226666 + 0.973973i \(0.427218\pi\)
\(762\) −5.31371 + 12.8284i −0.192495 + 0.464725i
\(763\) 0 0
\(764\) −76.5685 −2.77015
\(765\) 3.37631 + 4.67898i 0.122071 + 0.169169i
\(766\) 27.1421 + 47.0116i 0.980685 + 1.69860i
\(767\) 8.19615 + 2.19615i 0.295946 + 0.0792985i
\(768\) 19.7482 + 25.7363i 0.712600 + 0.928679i
\(769\) 12.7279i 0.458981i 0.973311 + 0.229490i \(0.0737059\pi\)
−0.973311 + 0.229490i \(0.926294\pi\)
\(770\) 0 0
\(771\) 2.54416 + 6.14214i 0.0916255 + 0.221204i
\(772\) −1.14738 + 8.71525i −0.0412953 + 0.313669i
\(773\) 0.214413 0.800199i 0.00771189 0.0287812i −0.961963 0.273181i \(-0.911924\pi\)
0.969675 + 0.244400i \(0.0785909\pi\)
\(774\) 0.946464 3.53225i 0.0340199 0.126964i
\(775\) 4.51682 34.3086i 0.162249 1.23240i
\(776\) −17.4350 42.0919i −0.625881 1.51101i
\(777\) 0 0
\(778\) 29.3137i 1.05095i
\(779\) 0.612091 + 0.797692i 0.0219304 + 0.0285803i
\(780\) −4.33245 1.16088i −0.155127 0.0415660i
\(781\) −7.07107 12.2474i −0.253023 0.438248i
\(782\) 46.9496 + 7.59253i 1.67892 + 0.271508i
\(783\) 1.65685 0.0592111
\(784\) 0 0
\(785\) 2.82843 6.82843i 0.100951 0.243717i
\(786\) 34.4669 + 19.8995i 1.22939 + 0.709791i
\(787\) −2.68433 20.3895i −0.0956860 0.726808i −0.970286 0.241962i \(-0.922209\pi\)
0.874600 0.484846i \(-0.161124\pi\)
\(788\) 10.8293 14.1131i 0.385779 0.502758i
\(789\) −1.48137 + 11.2521i −0.0527380 + 0.400585i
\(790\) −6.24264 6.24264i −0.222103 0.222103i
\(791\) 0 0
\(792\) 19.4853 8.07107i 0.692379 0.286793i
\(793\) 5.36566 + 0.706403i 0.190540 + 0.0250851i
\(794\) −5.60568 42.5794i −0.198938 1.51109i
\(795\) −1.01461 + 0.585786i −0.0359846 + 0.0207757i
\(796\) −26.8832 35.0349i −0.952850 1.24178i
\(797\) 17.8284 17.8284i 0.631515 0.631515i −0.316933 0.948448i \(-0.602653\pi\)
0.948448 + 0.316933i \(0.102653\pi\)
\(798\) 0 0
\(799\) −15.5147 + 14.6274i −0.548871 + 0.517481i
\(800\) −3.50000 + 6.06218i −0.123744 + 0.214330i
\(801\) 11.6313 + 3.11660i 0.410973 + 0.110120i
\(802\) −1.38745 + 0.182661i −0.0489924 + 0.00644997i
\(803\) 29.2708 + 16.8995i 1.03294 + 0.596370i
\(804\) 4.48528 + 1.85786i 0.158184 + 0.0655218i
\(805\) 0 0
\(806\) 24.7279 10.2426i 0.871004 0.360782i
\(807\) 27.6520 7.40932i 0.973395 0.260820i
\(808\) 12.0941 45.1357i 0.425468 1.58787i
\(809\) 27.9999 + 21.4851i 0.984425 + 0.755376i 0.969646 0.244515i \(-0.0786287\pi\)
0.0147794 + 0.999891i \(0.495295\pi\)
\(810\) −0.314313 0.0413801i −0.0110438 0.00145395i
\(811\) 50.9411 + 21.1005i 1.78878 + 0.740939i 0.990304 + 0.138919i \(0.0443628\pi\)
0.798481 + 0.602020i \(0.205637\pi\)
\(812\) 0 0
\(813\) 9.17157 22.1421i 0.321661 0.776559i
\(814\) 15.0851 + 56.2983i 0.528732 + 1.97325i
\(815\) 3.24264 + 5.61642i 0.113585 + 0.196735i
\(816\) 10.3774 + 8.45938i 0.363280 + 0.296138i
\(817\) −0.343146 + 0.594346i −0.0120052 + 0.0207935i
\(818\) −5.65685 + 5.65685i −0.197787 + 0.197787i
\(819\) 0 0
\(820\) 3.55635i 0.124193i
\(821\) −30.4898 + 23.3956i −1.06410 + 0.816513i −0.983622 0.180243i \(-0.942311\pi\)
−0.0804785 + 0.996756i \(0.525645\pi\)
\(822\) 26.6103 34.6792i 0.928140 1.20958i
\(823\) −7.72848 5.93027i −0.269398 0.206716i 0.465224 0.885193i \(-0.345974\pi\)
−0.734622 + 0.678477i \(0.762640\pi\)
\(824\) 53.2348 14.2642i 1.85452 0.496918i
\(825\) −8.82843 8.82843i −0.307366 0.307366i
\(826\) 0 0
\(827\) −17.9289 43.2843i −0.623450 1.50514i −0.847627 0.530593i \(-0.821969\pi\)
0.224177 0.974549i \(-0.428031\pi\)
\(828\) 26.5340 20.3603i 0.922120 0.707568i
\(829\) −46.7144 + 26.9706i −1.62246 + 0.936726i −0.636198 + 0.771526i \(0.719494\pi\)
−0.986260 + 0.165200i \(0.947173\pi\)
\(830\) −21.3548 + 2.81141i −0.741236 + 0.0975855i
\(831\) 5.58997 + 20.8620i 0.193914 + 0.723696i
\(832\) −13.8995 −0.481878
\(833\) 0 0
\(834\) −55.7990 −1.93216
\(835\) −0.392038 1.46311i −0.0135670 0.0506329i
\(836\) −8.21682 + 1.08176i −0.284185 + 0.0374136i
\(837\) 35.4815 20.4853i 1.22642 0.708075i
\(838\) 25.5279 19.5883i 0.881848 0.676666i
\(839\) 6.41421 + 15.4853i 0.221443 + 0.534611i 0.995086 0.0990102i \(-0.0315677\pi\)
−0.773643 + 0.633622i \(0.781568\pi\)
\(840\) 0 0
\(841\) −20.4350 20.4350i −0.704656 0.704656i
\(842\) 34.0133 9.11385i 1.17218 0.314084i
\(843\) −1.63113 1.25161i −0.0561792 0.0431078i
\(844\) 49.7661 64.8564i 1.71302 2.23245i
\(845\) −6.67927 + 5.12518i −0.229774 + 0.176312i
\(846\) 22.8284i 0.784857i
\(847\) 0 0
\(848\) 3.00000 3.00000i 0.103020 0.103020i
\(849\) 10.1005 17.4946i 0.346648 0.600413i
\(850\) −12.6163 + 42.0891i −0.432734 + 1.44365i
\(851\) 22.0711 + 38.2282i 0.756586 + 1.31045i
\(852\) −5.80438 21.6622i −0.198855 0.742136i
\(853\) 7.33452 17.7071i 0.251129 0.606280i −0.747166 0.664637i \(-0.768586\pi\)
0.998296 + 0.0583572i \(0.0185862\pi\)
\(854\) 0 0
\(855\) −1.07107 0.443651i −0.0366297 0.0151725i
\(856\) −1.96214 0.258321i −0.0670647 0.00882924i
\(857\) −7.32963 5.62422i −0.250375 0.192120i 0.475947 0.879474i \(-0.342105\pi\)
−0.726322 + 0.687354i \(0.758772\pi\)
\(858\) 2.49938 9.32780i 0.0853274 0.318446i
\(859\) 33.7790 9.05105i 1.15252 0.308818i 0.368548 0.929609i \(-0.379855\pi\)
0.783976 + 0.620791i \(0.213188\pi\)
\(860\) −2.24264 + 0.928932i −0.0764734 + 0.0316763i
\(861\) 0 0
\(862\) −16.3137 6.75736i −0.555647 0.230157i
\(863\) 9.20361 + 5.31371i 0.313295 + 0.180881i 0.648400 0.761300i \(-0.275439\pi\)
−0.335105 + 0.942181i \(0.608772\pi\)
\(864\) −8.21682 + 1.08176i −0.279542 + 0.0368024i
\(865\) 2.16622 + 0.580438i 0.0736538 + 0.0197355i
\(866\) −25.1421 + 43.5475i −0.854365 + 1.47980i
\(867\) −16.5563 8.02944i −0.562283 0.272694i
\(868\) 0 0
\(869\) 8.82843 8.82843i 0.299484 0.299484i
\(870\) −0.385986 0.503026i −0.0130861 0.0170542i
\(871\) −1.43488 + 0.828427i −0.0486190 + 0.0280702i
\(872\) −8.95798 68.0426i −0.303355 2.30421i
\(873\) 18.7101 + 2.46323i 0.633241 + 0.0833677i
\(874\) −8.82843 + 3.65685i −0.298626 + 0.123695i
\(875\) 0 0
\(876\) 37.8995 + 37.8995i 1.28051 + 1.28051i
\(877\) −6.55621 + 49.7993i −0.221387 + 1.68160i 0.414678 + 0.909968i \(0.363894\pi\)
−0.636065 + 0.771636i \(0.719439\pi\)
\(878\) 15.6348 20.3756i 0.527648 0.687644i
\(879\) −1.74385 13.2458i −0.0588185 0.446771i
\(880\) −5.19615 3.00000i −0.175162 0.101130i
\(881\) −12.8787 + 31.0919i −0.433894 + 1.04751i 0.544127 + 0.839003i \(0.316861\pi\)
−0.978020 + 0.208509i \(0.933139\pi\)
\(882\) 0 0
\(883\) 8.00000 0.269221 0.134611 0.990899i \(-0.457022\pi\)
0.134611 + 0.990899i \(0.457022\pi\)
\(884\) −21.7234 + 5.14074i −0.730637 + 0.172902i
\(885\) −2.48528 4.30463i −0.0835418 0.144699i
\(886\) −55.4981 14.8707i −1.86449 0.499590i
\(887\) −26.8170 34.9486i −0.900426 1.17346i −0.984215 0.176975i \(-0.943369\pi\)
0.0837890 0.996484i \(-0.473298\pi\)
\(888\) 44.1421i 1.48131i
\(889\) 0 0
\(890\) −4.65685 11.2426i −0.156098 0.376854i
\(891\) 0.0585203 0.444506i 0.00196050 0.0148915i
\(892\) 4.78434 17.8554i 0.160192 0.597843i
\(893\) 1.10885 4.13829i 0.0371063 0.138483i
\(894\) 5.78834 43.9668i 0.193591 1.47047i
\(895\) −1.75736 4.24264i −0.0587420 0.141816i
\(896\) 0 0
\(897\) 7.31371i 0.244198i
\(898\) −17.8045 23.2033i −0.594144 0.774304i
\(899\) 2.40060 + 0.643238i 0.0800644 + 0.0214532i
\(900\) 15.4497 + 26.7597i 0.514992 + 0.891992i
\(901\) −3.06280 + 4.96178i −0.102037 + 0.165301i
\(902\) −7.65685 −0.254945
\(903\) 0 0
\(904\) −22.2929 + 53.8198i −0.741451 + 1.79002i
\(905\) −7.73268 4.46447i −0.257043 0.148404i
\(906\) 2.44609 + 18.5799i 0.0812659 + 0.617276i
\(907\) 8.17996 10.6603i 0.271611 0.353970i −0.637555 0.770405i \(-0.720054\pi\)
0.909166 + 0.416435i \(0.136721\pi\)
\(908\) 8.69255 66.0265i 0.288473 2.19117i
\(909\) 13.6863 + 13.6863i 0.453946 + 0.453946i
\(910\) 0 0
\(911\) 5.24264 2.17157i 0.173696 0.0719474i −0.294141 0.955762i \(-0.595033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(912\) −2.66704 0.351122i −0.0883144 0.0116268i
\(913\) −3.97594 30.2002i −0.131584 0.999482i
\(914\) 27.5387 15.8995i 0.910900 0.525909i
\(915\) −1.92993 2.51513i −0.0638015 0.0831477i
\(916\) 46.4853 46.4853i 1.53592 1.53592i
\(917\) 0 0
\(918\) −48.6274 + 18.4853i −1.60494 + 0.610105i
\(919\) −9.65685 + 16.7262i −0.318550 + 0.551745i −0.980186 0.198080i \(-0.936529\pi\)
0.661636 + 0.749826i \(0.269863\pi\)
\(920\) −15.5921 4.17789i −0.514057 0.137741i
\(921\) 28.0540 3.69337i 0.924410 0.121701i
\(922\) 50.2655 + 29.0208i 1.65541 + 0.955750i
\(923\) 7.07107 + 2.92893i 0.232747 + 0.0964070i
\(924\) 0 0
\(925\) −37.6777 + 15.6066i −1.23883 + 0.513142i
\(926\) −34.1104 + 9.13986i −1.12094 + 0.300354i
\(927\) −5.90843 + 22.0506i −0.194058 + 0.724236i
\(928\) −0.398846 0.306045i −0.0130928 0.0100464i
\(929\) 17.1925 + 2.26343i 0.564066 + 0.0742607i 0.407167 0.913354i \(-0.366517\pi\)
0.156899 + 0.987615i \(0.449850\pi\)
\(930\) −14.4853 6.00000i −0.474991 0.196748i
\(931\) 0 0
\(932\) 12.8787 31.0919i 0.421855 1.01845i
\(933\) 7.19491 + 26.8518i 0.235551 + 0.879087i
\(934\) −39.3848 68.2164i −1.28871 2.23211i
\(935\) 7.89898 + 2.36773i 0.258324 + 0.0774329i
\(936\) −5.70711 + 9.88500i −0.186543 + 0.323101i
\(937\) −19.4853 + 19.4853i −0.636556 + 0.636556i −0.949704 0.313148i \(-0.898616\pi\)
0.313148 + 0.949704i \(0.398616\pi\)
\(938\) 0 0
\(939\) 10.6863i 0.348734i
\(940\) 12.0221 9.22486i 0.392117 0.300882i
\(941\) 24.2807 31.6432i 0.791527 1.03154i −0.207057 0.978329i \(-0.566388\pi\)
0.998583 0.0532087i \(-0.0169448\pi\)
\(942\) 20.0199 + 15.3618i 0.652285 + 0.500516i
\(943\) −5.60139 + 1.50089i −0.182406 + 0.0488757i
\(944\) 12.7279 + 12.7279i 0.414259 + 0.414259i
\(945\) 0 0
\(946\) −2.00000 4.82843i −0.0650256 0.156986i
\(947\) −24.3135 + 18.6564i −0.790084 + 0.606253i −0.922967 0.384879i \(-0.874243\pi\)
0.132883 + 0.991132i \(0.457576\pi\)
\(948\) 17.1464 9.89949i 0.556890 0.321521i
\(949\) −18.1354 + 2.38757i −0.588700 + 0.0775038i
\(950\) −2.28497 8.52761i −0.0741341 0.276672i
\(951\) −20.8284 −0.675408
\(952\) 0 0
\(953\) 49.6985 1.60989 0.804946 0.593348i \(-0.202194\pi\)
0.804946 + 0.593348i \(0.202194\pi\)
\(954\) 1.61571 + 6.02993i 0.0523107 + 0.195226i
\(955\) −15.1764 + 1.99801i −0.491096 + 0.0646540i
\(956\) −49.1639 + 28.3848i −1.59007 + 0.918029i
\(957\) 0.711386 0.545866i 0.0229959 0.0176453i
\(958\) −4.75736 11.4853i −0.153703 0.371073i
\(959\) 0 0
\(960\) 5.75736 + 5.75736i 0.185818 + 0.185818i
\(961\) 29.4181 7.88255i 0.948971 0.254276i
\(962\) −25.0249 19.2023i −0.806836 0.619107i
\(963\) 0.499038 0.650359i 0.0160813 0.0209575i
\(964\) 10.8255 8.30672i 0.348667 0.267542i
\(965\) 1.75736i 0.0565714i
\(966\) 0 0
\(967\) −30.8701 + 30.8701i −0.992714 + 0.992714i −0.999974 0.00725952i \(-0.997689\pi\)
0.00725952 + 0.999974i \(0.497689\pi\)
\(968\) −9.20711 + 15.9472i −0.295928 + 0.512562i
\(969\) 3.67810 0.374507i 0.118158 0.0120309i
\(970\) −9.53553 16.5160i −0.306168 0.530298i
\(971\) 13.3913 + 49.9771i 0.429748 + 1.60384i 0.753331 + 0.657642i \(0.228446\pi\)
−0.323583 + 0.946200i \(0.604887\pi\)
\(972\) −22.6985 + 54.7990i −0.728054 + 1.75768i
\(973\) 0 0
\(974\) −58.6985 24.3137i −1.88082 0.779061i
\(975\) 6.69918 + 0.881964i 0.214545 + 0.0282454i
\(976\) 9.10810 + 6.98889i 0.291543 + 0.223709i
\(977\) −9.93471 + 37.0768i −0.317840 + 1.18619i 0.603477 + 0.797380i \(0.293781\pi\)
−0.921317 + 0.388813i \(0.872885\pi\)
\(978\) −21.3877 + 5.73081i −0.683902 + 0.183251i
\(979\) 15.8995 6.58579i 0.508150 0.210483i
\(980\) 0 0
\(981\) 26.2635 + 10.8787i 0.838528 + 0.347330i
\(982\) −77.5941 44.7990i −2.47613 1.42959i
\(983\) 9.65819 1.27152i 0.308048 0.0405553i 0.0250827 0.999685i \(-0.492015\pi\)
0.282966 + 0.959130i \(0.408682\pi\)
\(984\) −5.60139 1.50089i −0.178566 0.0478466i
\(985\) 1.77817 3.07989i 0.0566574 0.0981334i
\(986\) −2.87868 1.29289i −0.0916758 0.0411741i
\(987\) 0 0
\(988\) 3.17157 3.17157i 0.100901 0.100901i
\(989\) −2.40957 3.14021i −0.0766198 0.0998529i
\(990\) 7.64564 4.41421i 0.242994 0.140293i
\(991\) −5.33022 40.4870i −0.169320 1.28611i −0.839273 0.543710i \(-0.817019\pi\)
0.669953 0.742403i \(-0.266314\pi\)
\(992\) −12.3252 1.62265i −0.391326 0.0515191i
\(993\) 21.7990 9.02944i 0.691770 0.286541i
\(994\) 0 0
\(995\) −6.24264 6.24264i −0.197905 0.197905i
\(996\) 6.30499 47.8911i 0.199781 1.51749i
\(997\) 4.57932 5.96788i 0.145028 0.189005i −0.715191 0.698930i \(-0.753660\pi\)
0.860219 + 0.509925i \(0.170327\pi\)
\(998\) −6.76311 51.3709i −0.214082 1.62612i
\(999\) −41.8154 24.1421i −1.32298 0.763823i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 833.2.v.a.569.1 8
7.2 even 3 833.2.l.a.246.1 4
7.3 odd 6 833.2.v.b.263.1 8
7.4 even 3 inner 833.2.v.a.263.1 8
7.5 odd 6 17.2.d.a.8.1 4
7.6 odd 2 833.2.v.b.569.1 8
17.15 even 8 inner 833.2.v.a.814.1 8
21.5 even 6 153.2.l.c.127.1 4
28.19 even 6 272.2.v.d.161.1 4
35.12 even 12 425.2.n.a.399.1 4
35.19 odd 6 425.2.m.a.76.1 4
35.33 even 12 425.2.n.b.399.1 4
119.5 even 48 289.2.c.c.251.2 8
119.12 even 48 289.2.c.c.251.1 8
119.19 odd 24 289.2.d.a.134.1 4
119.26 odd 24 289.2.d.c.155.1 4
119.32 even 24 inner 833.2.v.a.508.1 8
119.33 odd 6 289.2.d.a.110.1 4
119.40 even 48 289.2.b.b.288.1 4
119.47 odd 12 289.2.d.c.179.1 4
119.54 even 48 289.2.c.c.38.4 8
119.61 even 48 289.2.a.f.1.4 4
119.66 odd 24 833.2.v.b.508.1 8
119.75 even 48 289.2.a.f.1.3 4
119.82 even 48 289.2.c.c.38.3 8
119.83 odd 8 833.2.v.b.814.1 8
119.89 odd 12 289.2.d.b.179.1 4
119.96 even 48 289.2.b.b.288.2 4
119.100 even 24 833.2.l.a.491.1 4
119.110 odd 24 289.2.d.b.155.1 4
119.117 odd 24 17.2.d.a.15.1 yes 4
357.194 odd 48 2601.2.a.bb.1.1 4
357.236 even 24 153.2.l.c.100.1 4
357.299 odd 48 2601.2.a.bb.1.2 4
476.75 odd 48 4624.2.a.bp.1.3 4
476.299 odd 48 4624.2.a.bp.1.2 4
476.355 even 24 272.2.v.d.49.1 4
595.117 even 24 425.2.n.b.49.1 4
595.194 even 48 7225.2.a.u.1.2 4
595.299 even 48 7225.2.a.u.1.1 4
595.474 odd 24 425.2.m.a.151.1 4
595.593 even 24 425.2.n.a.49.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
17.2.d.a.8.1 4 7.5 odd 6
17.2.d.a.15.1 yes 4 119.117 odd 24
153.2.l.c.100.1 4 357.236 even 24
153.2.l.c.127.1 4 21.5 even 6
272.2.v.d.49.1 4 476.355 even 24
272.2.v.d.161.1 4 28.19 even 6
289.2.a.f.1.3 4 119.75 even 48
289.2.a.f.1.4 4 119.61 even 48
289.2.b.b.288.1 4 119.40 even 48
289.2.b.b.288.2 4 119.96 even 48
289.2.c.c.38.3 8 119.82 even 48
289.2.c.c.38.4 8 119.54 even 48
289.2.c.c.251.1 8 119.12 even 48
289.2.c.c.251.2 8 119.5 even 48
289.2.d.a.110.1 4 119.33 odd 6
289.2.d.a.134.1 4 119.19 odd 24
289.2.d.b.155.1 4 119.110 odd 24
289.2.d.b.179.1 4 119.89 odd 12
289.2.d.c.155.1 4 119.26 odd 24
289.2.d.c.179.1 4 119.47 odd 12
425.2.m.a.76.1 4 35.19 odd 6
425.2.m.a.151.1 4 595.474 odd 24
425.2.n.a.49.1 4 595.593 even 24
425.2.n.a.399.1 4 35.12 even 12
425.2.n.b.49.1 4 595.117 even 24
425.2.n.b.399.1 4 35.33 even 12
833.2.l.a.246.1 4 7.2 even 3
833.2.l.a.491.1 4 119.100 even 24
833.2.v.a.263.1 8 7.4 even 3 inner
833.2.v.a.508.1 8 119.32 even 24 inner
833.2.v.a.569.1 8 1.1 even 1 trivial
833.2.v.a.814.1 8 17.15 even 8 inner
833.2.v.b.263.1 8 7.3 odd 6
833.2.v.b.508.1 8 119.66 odd 24
833.2.v.b.569.1 8 7.6 odd 2
833.2.v.b.814.1 8 119.83 odd 8
2601.2.a.bb.1.1 4 357.194 odd 48
2601.2.a.bb.1.2 4 357.299 odd 48
4624.2.a.bp.1.2 4 476.299 odd 48
4624.2.a.bp.1.3 4 476.75 odd 48
7225.2.a.u.1.1 4 595.299 even 48
7225.2.a.u.1.2 4 595.194 even 48