Properties

Label 833.2.t
Level $833$
Weight $2$
Character orbit 833.t
Rep. character $\chi_{833}(48,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $448$
Newform subspaces $5$
Sturm bound $168$
Trace bound $12$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.t (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 119 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 5 \)
Sturm bound: \(168\)
Trace bound: \(12\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(833, [\chi])\).

Total New Old
Modular forms 736 512 224
Cusp forms 608 448 160
Eisenstein series 128 64 64

Trace form

\( 448 q + 16 q^{2} + 16 q^{4} - 32 q^{8} + 16 q^{9} + 16 q^{15} - 32 q^{18} + 16 q^{23} - 32 q^{29} - 112 q^{30} + 80 q^{32} - 48 q^{37} - 16 q^{39} - 32 q^{43} + 80 q^{44} - 48 q^{46} + 80 q^{51} - 48 q^{53}+ \cdots + 160 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(833, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
833.2.t.a 833.t 119.p $72$ $6.652$ None 833.2.t.a \(0\) \(-8\) \(-8\) \(0\) $\mathrm{SU}(2)[C_{16}]$
833.2.t.b 833.t 119.p $72$ $6.652$ None 833.2.t.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
833.2.t.c 833.t 119.p $72$ $6.652$ None 833.2.t.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$
833.2.t.d 833.t 119.p $72$ $6.652$ None 833.2.t.a \(0\) \(8\) \(8\) \(0\) $\mathrm{SU}(2)[C_{16}]$
833.2.t.e 833.t 119.p $160$ $6.652$ None 119.2.s.a \(16\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(833, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(833, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(119, [\chi])\)\(^{\oplus 2}\)