Properties

Label 833.2.a.g
Level $833$
Weight $2$
Character orbit 833.a
Self dual yes
Analytic conductor $6.652$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [833,2,Mod(1,833)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(833, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("833.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 833 = 7^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 833.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.65153848837\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.453749.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 119)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{2} + ( - \beta_{3} + \beta_1) q^{3} + ( - \beta_{3} + 2) q^{4} + ( - \beta_{4} - \beta_{3} + \beta_{2} + \cdots + 1) q^{5} + (2 \beta_{4} + \beta_{3} - 2 \beta_{2} - 1) q^{6} + (\beta_{4} - \beta_{2} - \beta_1 + 1) q^{8}+ \cdots + ( - 4 \beta_{4} - 2 \beta_{3} + \cdots - 10) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 2 q^{3} + 10 q^{4} + q^{6} + 6 q^{8} + 11 q^{9} - 4 q^{10} - 2 q^{11} + 22 q^{12} - 2 q^{13} + 8 q^{15} + 4 q^{16} - 5 q^{17} - 18 q^{18} - 6 q^{19} + 19 q^{20} + 6 q^{22} - 10 q^{23} - 2 q^{24}+ \cdots - 62 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - 2x^{4} - 5x^{3} + 10x^{2} + x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 4\nu \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{4} - \nu^{3} - 5\nu^{2} + 4\nu + 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 4\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{4} + \beta_{3} + 5\beta_{2} + 13 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.78972
−0.544198
2.32183
−2.17679
0.609440
−2.32942 3.21594 3.42621 3.16902 −7.49128 0 −3.32226 7.34225 −7.38200
1.2 −1.40868 −2.55982 −0.0156267 −1.76660 3.60597 0 2.83937 3.55270 2.48857
1.3 0.877834 −0.907578 −1.22941 −3.03818 −0.796703 0 −2.83488 −2.17630 −2.66702
1.4 2.36800 −0.569378 3.60742 4.15465 −1.34829 0 3.80636 −2.67581 9.83819
1.5 2.49227 2.82084 4.21140 −2.51889 7.03030 0 5.51141 4.95716 −6.27775
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 833.2.a.g 5
3.b odd 2 1 7497.2.a.br 5
7.b odd 2 1 119.2.a.b 5
7.c even 3 2 833.2.e.h 10
7.d odd 6 2 833.2.e.i 10
21.c even 2 1 1071.2.a.m 5
28.d even 2 1 1904.2.a.t 5
35.c odd 2 1 2975.2.a.m 5
56.e even 2 1 7616.2.a.bq 5
56.h odd 2 1 7616.2.a.bt 5
119.d odd 2 1 2023.2.a.j 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
119.2.a.b 5 7.b odd 2 1
833.2.a.g 5 1.a even 1 1 trivial
833.2.e.h 10 7.c even 3 2
833.2.e.i 10 7.d odd 6 2
1071.2.a.m 5 21.c even 2 1
1904.2.a.t 5 28.d even 2 1
2023.2.a.j 5 119.d odd 2 1
2975.2.a.m 5 35.c odd 2 1
7497.2.a.br 5 3.b odd 2 1
7616.2.a.bq 5 56.e even 2 1
7616.2.a.bt 5 56.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(833))\):

\( T_{2}^{5} - 2T_{2}^{4} - 8T_{2}^{3} + 14T_{2}^{2} + 14T_{2} - 17 \) Copy content Toggle raw display
\( T_{3}^{5} - 2T_{3}^{4} - 11T_{3}^{3} + 12T_{3}^{2} + 31T_{3} + 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} - 2 T^{4} + \cdots - 17 \) Copy content Toggle raw display
$3$ \( T^{5} - 2 T^{4} + \cdots + 12 \) Copy content Toggle raw display
$5$ \( T^{5} - 23 T^{3} + \cdots + 178 \) Copy content Toggle raw display
$7$ \( T^{5} \) Copy content Toggle raw display
$11$ \( T^{5} + 2 T^{4} + \cdots - 192 \) Copy content Toggle raw display
$13$ \( T^{5} + 2 T^{4} + \cdots + 544 \) Copy content Toggle raw display
$17$ \( (T + 1)^{5} \) Copy content Toggle raw display
$19$ \( T^{5} + 6 T^{4} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{5} + 10 T^{4} + \cdots - 128 \) Copy content Toggle raw display
$29$ \( T^{5} + 8 T^{4} + \cdots + 2592 \) Copy content Toggle raw display
$31$ \( T^{5} - 33 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( T^{5} - 8 T^{4} + \cdots + 4384 \) Copy content Toggle raw display
$41$ \( T^{5} + 18 T^{4} + \cdots - 162 \) Copy content Toggle raw display
$43$ \( T^{5} - 8 T^{4} + \cdots - 1052 \) Copy content Toggle raw display
$47$ \( T^{5} - 10 T^{4} + \cdots + 2304 \) Copy content Toggle raw display
$53$ \( T^{5} - 4 T^{4} + \cdots + 138 \) Copy content Toggle raw display
$59$ \( T^{5} + 8 T^{4} + \cdots + 3072 \) Copy content Toggle raw display
$61$ \( T^{5} + 22 T^{4} + \cdots - 5542 \) Copy content Toggle raw display
$67$ \( T^{5} - 16 T^{4} + \cdots + 1868 \) Copy content Toggle raw display
$71$ \( T^{5} + 2 T^{4} + \cdots + 13696 \) Copy content Toggle raw display
$73$ \( T^{5} + 10 T^{4} + \cdots + 11118 \) Copy content Toggle raw display
$79$ \( T^{5} - 18 T^{4} + \cdots + 3072 \) Copy content Toggle raw display
$83$ \( T^{5} - 12 T^{4} + \cdots - 1984 \) Copy content Toggle raw display
$89$ \( T^{5} + 20 T^{4} + \cdots - 7456 \) Copy content Toggle raw display
$97$ \( T^{5} + 12 T^{4} + \cdots - 218 \) Copy content Toggle raw display
show more
show less