Properties

Label 832.6.a.k
Level $832$
Weight $6$
Character orbit 832.a
Self dual yes
Analytic conductor $133.439$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,6,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-9,0,-73,0,155] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(133.439338084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{849}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 212 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{849})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 4) q^{3} + (3 \beta - 38) q^{5} + ( - 9 \beta + 82) q^{7} + (9 \beta - 15) q^{9} + ( - 24 \beta + 122) q^{11} + 169 q^{13} + (23 \beta - 484) q^{15} + ( - 129 \beta - 30) q^{17} + ( - 60 \beta + 1278) q^{19}+ \cdots + (1242 \beta - 47622) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{3} - 73 q^{5} + 155 q^{7} - 21 q^{9} + 220 q^{11} + 338 q^{13} - 945 q^{15} - 189 q^{17} + 2496 q^{19} + 3123 q^{21} - 3044 q^{23} + 235 q^{25} - 1539 q^{27} - 1900 q^{29} + 2798 q^{31} + 9198 q^{33}+ \cdots - 94002 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
15.0688
−14.0688
0 −19.0688 0 7.20641 0 −53.6192 0 120.619 0
1.2 0 10.0688 0 −80.2064 0 208.619 0 −141.619 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.6.a.k 2
4.b odd 2 1 832.6.a.m 2
8.b even 2 1 26.6.a.c 2
8.d odd 2 1 208.6.a.g 2
24.h odd 2 1 234.6.a.h 2
40.f even 2 1 650.6.a.b 2
40.i odd 4 2 650.6.b.h 4
104.e even 2 1 338.6.a.f 2
104.j odd 4 2 338.6.b.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.6.a.c 2 8.b even 2 1
208.6.a.g 2 8.d odd 2 1
234.6.a.h 2 24.h odd 2 1
338.6.a.f 2 104.e even 2 1
338.6.b.b 4 104.j odd 4 2
650.6.a.b 2 40.f even 2 1
650.6.b.h 4 40.i odd 4 2
832.6.a.k 2 1.a even 1 1 trivial
832.6.a.m 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(832))\):

\( T_{3}^{2} + 9T_{3} - 192 \) Copy content Toggle raw display
\( T_{7}^{2} - 155T_{7} - 11186 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 9T - 192 \) Copy content Toggle raw display
$5$ \( T^{2} + 73T - 578 \) Copy content Toggle raw display
$7$ \( T^{2} - 155T - 11186 \) Copy content Toggle raw display
$11$ \( T^{2} - 220T - 110156 \) Copy content Toggle raw display
$13$ \( (T - 169)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 189 T - 3523122 \) Copy content Toggle raw display
$19$ \( T^{2} - 2496 T + 793404 \) Copy content Toggle raw display
$23$ \( T^{2} + 3044 T - 159200 \) Copy content Toggle raw display
$29$ \( T^{2} + 1900 T - 13890476 \) Copy content Toggle raw display
$31$ \( T^{2} - 2798 T - 28369928 \) Copy content Toggle raw display
$37$ \( T^{2} + 17805 T + 72604926 \) Copy content Toggle raw display
$41$ \( T^{2} - 11634 T - 11466000 \) Copy content Toggle raw display
$43$ \( T^{2} - 4069 T - 6040532 \) Copy content Toggle raw display
$47$ \( T^{2} + 25489 T + 127607974 \) Copy content Toggle raw display
$53$ \( T^{2} - 4614 T - 129839400 \) Copy content Toggle raw display
$59$ \( T^{2} - 23420 T + 92989684 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 2309711776 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 1295720044 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots - 1862988962 \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots - 1462893860 \) Copy content Toggle raw display
$79$ \( T^{2} - 52024 T + 439936528 \) Copy content Toggle raw display
$83$ \( T^{2} - 37758 T + 83472480 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots + 1072134396 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 4229773940 \) Copy content Toggle raw display
show more
show less