Defining parameters
Level: | \( N \) | \(=\) | \( 832 = 2^{6} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 832.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 34 \) | ||
Sturm bound: | \(672\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(832))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 572 | 120 | 452 |
Cusp forms | 548 | 120 | 428 |
Eisenstein series | 24 | 0 | 24 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(29\) |
\(+\) | \(-\) | \(-\) | \(31\) |
\(-\) | \(+\) | \(-\) | \(31\) |
\(-\) | \(-\) | \(+\) | \(29\) |
Plus space | \(+\) | \(58\) | |
Minus space | \(-\) | \(62\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(832))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(832))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(832)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 2}\)