Properties

Label 832.6.a
Level $832$
Weight $6$
Character orbit 832.a
Rep. character $\chi_{832}(1,\cdot)$
Character field $\Q$
Dimension $120$
Newform subspaces $34$
Sturm bound $672$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 34 \)
Sturm bound: \(672\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(832))\).

Total New Old
Modular forms 572 120 452
Cusp forms 548 120 428
Eisenstein series 24 0 24

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(13\)FrickeDim
\(+\)\(+\)\(+\)\(29\)
\(+\)\(-\)\(-\)\(31\)
\(-\)\(+\)\(-\)\(31\)
\(-\)\(-\)\(+\)\(29\)
Plus space\(+\)\(58\)
Minus space\(-\)\(62\)

Trace form

\( 120 q + 9720 q^{9} + O(q^{10}) \) \( 120 q + 9720 q^{9} + 75000 q^{25} - 8144 q^{29} - 11344 q^{33} + 21296 q^{37} + 23216 q^{41} + 72048 q^{45} + 288120 q^{49} - 28256 q^{53} + 61616 q^{57} - 96160 q^{61} - 240432 q^{69} + 255904 q^{77} + 650376 q^{81} + 233168 q^{85} + 12640 q^{89} - 365712 q^{93} - 264352 q^{97} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(832))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 13
832.6.a.a 832.a 1.a $1$ $133.439$ \(\Q\) None 104.6.a.a \(0\) \(-23\) \(9\) \(-165\) $-$ $-$ $\mathrm{SU}(2)$ \(q-23q^{3}+9q^{5}-165q^{7}+286q^{9}+\cdots\)
832.6.a.b 832.a 1.a $1$ $133.439$ \(\Q\) None 52.6.a.b \(0\) \(-17\) \(91\) \(-233\) $+$ $+$ $\mathrm{SU}(2)$ \(q-17q^{3}+91q^{5}-233q^{7}+46q^{9}+\cdots\)
832.6.a.c 832.a 1.a $1$ $133.439$ \(\Q\) None 52.6.a.a \(0\) \(-5\) \(3\) \(-53\) $-$ $+$ $\mathrm{SU}(2)$ \(q-5q^{3}+3q^{5}-53q^{7}-218q^{9}-702q^{11}+\cdots\)
832.6.a.d 832.a 1.a $1$ $133.439$ \(\Q\) None 26.6.a.a \(0\) \(0\) \(14\) \(-170\) $+$ $-$ $\mathrm{SU}(2)$ \(q+14q^{5}-170q^{7}-3^{5}q^{9}+250q^{11}+\cdots\)
832.6.a.e 832.a 1.a $1$ $133.439$ \(\Q\) None 26.6.a.a \(0\) \(0\) \(14\) \(170\) $-$ $-$ $\mathrm{SU}(2)$ \(q+14q^{5}+170q^{7}-3^{5}q^{9}-250q^{11}+\cdots\)
832.6.a.f 832.a 1.a $1$ $133.439$ \(\Q\) None 52.6.a.a \(0\) \(5\) \(3\) \(53\) $+$ $+$ $\mathrm{SU}(2)$ \(q+5q^{3}+3q^{5}+53q^{7}-218q^{9}+702q^{11}+\cdots\)
832.6.a.g 832.a 1.a $1$ $133.439$ \(\Q\) None 52.6.a.b \(0\) \(17\) \(91\) \(233\) $-$ $+$ $\mathrm{SU}(2)$ \(q+17q^{3}+91q^{5}+233q^{7}+46q^{9}+\cdots\)
832.6.a.h 832.a 1.a $1$ $133.439$ \(\Q\) None 104.6.a.a \(0\) \(23\) \(9\) \(165\) $+$ $-$ $\mathrm{SU}(2)$ \(q+23q^{3}+9q^{5}+165q^{7}+286q^{9}+\cdots\)
832.6.a.i 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{17}) \) None 13.6.a.a \(0\) \(-28\) \(42\) \(36\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-14-3\beta )q^{3}+(21-20\beta )q^{5}+(18+\cdots)q^{7}+\cdots\)
832.6.a.j 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{337}) \) None 104.6.a.b \(0\) \(-23\) \(47\) \(-95\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-11-\beta )q^{3}+(21+5\beta )q^{5}+(-7^{2}+\cdots)q^{7}+\cdots\)
832.6.a.k 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{849}) \) None 26.6.a.c \(0\) \(-9\) \(-73\) \(155\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{3}+(-38+3\beta )q^{5}+(82+\cdots)q^{7}+\cdots\)
832.6.a.l 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{2785}) \) None 26.6.a.b \(0\) \(-9\) \(37\) \(327\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-4-\beta )q^{3}+(18+\beta )q^{5}+(164-\beta )q^{7}+\cdots\)
832.6.a.m 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{849}) \) None 26.6.a.c \(0\) \(9\) \(-73\) \(-155\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{3}+(-35-3\beta )q^{5}+(-73+\cdots)q^{7}+\cdots\)
832.6.a.n 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{2785}) \) None 26.6.a.b \(0\) \(9\) \(37\) \(-327\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(5-\beta )q^{3}+(19-\beta )q^{5}+(-163-\beta )q^{7}+\cdots\)
832.6.a.o 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{337}) \) None 104.6.a.b \(0\) \(23\) \(47\) \(95\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(12-\beta )q^{3}+(26-5\beta )q^{5}+(46+3\beta )q^{7}+\cdots\)
832.6.a.p 832.a 1.a $2$ $133.439$ \(\Q(\sqrt{17}) \) None 13.6.a.a \(0\) \(28\) \(42\) \(-36\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(14-3\beta )q^{3}+(21+20\beta )q^{5}+(-18+\cdots)q^{7}+\cdots\)
832.6.a.q 832.a 1.a $3$ $133.439$ 3.3.1848689.1 None 104.6.a.c \(0\) \(-20\) \(-56\) \(76\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-7+\beta _{1})q^{3}+(-19-\beta _{2})q^{5}+(5^{2}+\cdots)q^{7}+\cdots\)
832.6.a.r 832.a 1.a $3$ $133.439$ 3.3.203961.1 None 52.6.a.c \(0\) \(-12\) \(-8\) \(138\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-5-2\beta _{1}+\beta _{2})q^{3}+(-6-5\beta _{1}+\cdots)q^{5}+\cdots\)
832.6.a.s 832.a 1.a $3$ $133.439$ 3.3.168897.1 None 13.6.a.b \(0\) \(-8\) \(-56\) \(-60\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{1})q^{3}+(-21+4\beta _{1}-3\beta _{2})q^{5}+\cdots\)
832.6.a.t 832.a 1.a $3$ $133.439$ 3.3.168897.1 None 13.6.a.b \(0\) \(8\) \(-56\) \(60\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(3-\beta _{1})q^{3}+(-21+4\beta _{1}-3\beta _{2})q^{5}+\cdots\)
832.6.a.u 832.a 1.a $3$ $133.439$ 3.3.203961.1 None 52.6.a.c \(0\) \(12\) \(-8\) \(-138\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(5+2\beta _{1}-\beta _{2})q^{3}+(-6-5\beta _{1}+5\beta _{2})q^{5}+\cdots\)
832.6.a.v 832.a 1.a $3$ $133.439$ 3.3.1848689.1 None 104.6.a.c \(0\) \(20\) \(-56\) \(-76\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(7-\beta _{1})q^{3}+(-19-\beta _{2})q^{5}+(-5^{2}+\cdots)q^{7}+\cdots\)
832.6.a.w 832.a 1.a $4$ $133.439$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 104.6.a.d \(0\) \(-11\) \(-31\) \(-39\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-3+\beta _{2})q^{3}+(-7-\beta _{1}-3\beta _{2}+\cdots)q^{5}+\cdots\)
832.6.a.x 832.a 1.a $4$ $133.439$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 104.6.a.d \(0\) \(11\) \(-31\) \(39\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(3-\beta _{2})q^{3}+(-7-\beta _{1}-3\beta _{2}-\beta _{3})q^{5}+\cdots\)
832.6.a.y 832.a 1.a $5$ $133.439$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 104.6.a.e \(0\) \(-9\) \(-19\) \(-109\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2+\beta _{1})q^{3}+(-4+\beta _{1}-\beta _{3})q^{5}+\cdots\)
832.6.a.z 832.a 1.a $5$ $133.439$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 104.6.a.e \(0\) \(9\) \(-19\) \(109\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(2-\beta _{1})q^{3}+(-4+\beta _{1}-\beta _{3})q^{5}+\cdots\)
832.6.a.ba 832.a 1.a $6$ $133.439$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 416.6.a.b \(0\) \(0\) \(-112\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-19-\beta _{3})q^{5}+(2\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
832.6.a.bb 832.a 1.a $6$ $133.439$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 416.6.a.a \(0\) \(0\) \(112\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(19+\beta _{3})q^{5}+(-2\beta _{1}-\beta _{2}+\cdots)q^{7}+\cdots\)
832.6.a.bc 832.a 1.a $7$ $133.439$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 416.6.a.c \(0\) \(-17\) \(-25\) \(147\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-2-\beta _{1})q^{3}+(-4-\beta _{2})q^{5}+(21+\cdots)q^{7}+\cdots\)
832.6.a.bd 832.a 1.a $7$ $133.439$ \(\mathbb{Q}[x]/(x^{7} - \cdots)\) None 416.6.a.c \(0\) \(17\) \(-25\) \(-147\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(2+\beta _{1})q^{3}+(-4-\beta _{2})q^{5}+(-21+\cdots)q^{7}+\cdots\)
832.6.a.be 832.a 1.a $8$ $133.439$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 416.6.a.e \(0\) \(-1\) \(75\) \(147\) $+$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{3}+(9+\beta _{3})q^{5}+(19-\beta _{1}-\beta _{5}+\cdots)q^{7}+\cdots\)
832.6.a.bf 832.a 1.a $8$ $133.439$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 416.6.a.f \(0\) \(0\) \(-38\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-5+\beta _{3})q^{5}+(-5\beta _{1}-\beta _{5}+\cdots)q^{7}+\cdots\)
832.6.a.bg 832.a 1.a $8$ $133.439$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 416.6.a.e \(0\) \(1\) \(75\) \(-147\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(9+\beta _{3})q^{5}+(-19+\beta _{1}+\cdots)q^{7}+\cdots\)
832.6.a.bh 832.a 1.a $10$ $133.439$ \(\mathbb{Q}[x]/(x^{10} - \cdots)\) None 416.6.a.h \(0\) \(0\) \(-62\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{3}+(-6-\beta _{2})q^{5}-\beta _{6}q^{7}+(133+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(832))\) into lower level spaces

\( S_{6}^{\mathrm{old}}(\Gamma_0(832)) \simeq \) \(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(416))\)\(^{\oplus 2}\)