Defining parameters
Level: | \( N \) | = | \( 832 = 2^{6} \cdot 13 \) |
Weight: | \( k \) | = | \( 6 \) |
Nonzero newspaces: | \( 28 \) | ||
Sturm bound: | \(258048\) | ||
Trace bound: | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(832))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108384 | 60002 | 48382 |
Cusp forms | 106656 | 59518 | 47138 |
Eisenstein series | 1728 | 484 | 1244 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(832))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_1(832))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_1(832)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 14}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 10}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 7}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(64))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(104))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(208))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(416))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_1(832))\)\(^{\oplus 1}\)