Properties

Label 832.4.z
Level $832$
Weight $4$
Character orbit 832.z
Rep. character $\chi_{832}(289,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $168$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.z (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(832, [\chi])\).

Total New Old
Modular forms 696 168 528
Cusp forms 648 168 480
Eisenstein series 48 0 48

Trace form

\( 168 q + 756 q^{9} + 156 q^{17} - 4464 q^{25} + 708 q^{41} - 3396 q^{49} - 1344 q^{57} - 2412 q^{65} - 1752 q^{73} - 6804 q^{81} + 264 q^{89} + 3864 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)