Properties

Label 832.4.by
Level $832$
Weight $4$
Character orbit 832.by
Rep. character $\chi_{832}(53,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $2304$
Sturm bound $448$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.by (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(448\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(832, [\chi])\).

Total New Old
Modular forms 2704 2304 400
Cusp forms 2672 2304 368
Eisenstein series 32 0 32

Trace form

\( 2304 q - 944 q^{22} - 2000 q^{24} + 4640 q^{30} + 1760 q^{36} - 6320 q^{42} - 2000 q^{44} + 5712 q^{50} - 5952 q^{51} + 3456 q^{54} - 576 q^{55} - 784 q^{56} - 2928 q^{62} + 10080 q^{63} - 12096 q^{64}+ \cdots + 24208 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{4}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)