# Properties

 Label 832.4.a.z Level $832$ Weight $4$ Character orbit 832.a Self dual yes Analytic conductor $49.090$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [832,4,Mod(1,832)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(832, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("832.1");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$832 = 2^{6} \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 832.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$49.0895891248$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{17})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 4$$ x^2 - x - 4 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 13) Fricke sign: $$+1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{17})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + (3 \beta + 1) q^{3} + (\beta + 1) q^{5} + (11 \beta - 1) q^{7} + (15 \beta + 10) q^{9}+O(q^{10})$$ q + (3*b + 1) * q^3 + (b + 1) * q^5 + (11*b - 1) * q^7 + (15*b + 10) * q^9 $$q + (3 \beta + 1) q^{3} + (\beta + 1) q^{5} + (11 \beta - 1) q^{7} + (15 \beta + 10) q^{9} + ( - 12 \beta + 46) q^{11} + 13 q^{13} + (7 \beta + 13) q^{15} + (17 \beta + 1) q^{17} + (32 \beta - 58) q^{19} + (41 \beta + 131) q^{21} + ( - 12 \beta - 92) q^{23} + (3 \beta - 120) q^{25} + (9 \beta + 163) q^{27} + (96 \beta - 26) q^{29} + ( - 34 \beta + 60) q^{31} + (90 \beta - 98) q^{33} + (21 \beta + 43) q^{35} + (5 \beta - 107) q^{37} + (39 \beta + 13) q^{39} + ( - 22 \beta - 104) q^{41} + ( - 143 \beta + 215) q^{43} + (40 \beta + 70) q^{45} + ( - 121 \beta - 157) q^{47} + (99 \beta + 142) q^{49} + (71 \beta + 205) q^{51} + (30 \beta + 44) q^{53} + (22 \beta - 2) q^{55} + ( - 46 \beta + 326) q^{57} + ( - 124 \beta - 122) q^{59} + ( - 190 \beta + 624) q^{61} + (260 \beta + 650) q^{63} + (13 \beta + 13) q^{65} + (232 \beta - 82) q^{67} + ( - 324 \beta - 236) q^{69} + ( - 231 \beta + 181) q^{71} + ( - 260 \beta + 358) q^{73} + ( - 348 \beta - 84) q^{75} + (386 \beta - 574) q^{77} + (40 \beta + 484) q^{79} + (120 \beta + 1) q^{81} + (182 \beta + 888) q^{83} + (35 \beta + 69) q^{85} + (306 \beta + 1126) q^{87} + (388 \beta - 554) q^{89} + (143 \beta - 13) q^{91} + (44 \beta - 348) q^{93} + (6 \beta + 70) q^{95} + ( - 508 \beta - 210) q^{97} + (390 \beta - 260) q^{99}+O(q^{100})$$ q + (3*b + 1) * q^3 + (b + 1) * q^5 + (11*b - 1) * q^7 + (15*b + 10) * q^9 + (-12*b + 46) * q^11 + 13 * q^13 + (7*b + 13) * q^15 + (17*b + 1) * q^17 + (32*b - 58) * q^19 + (41*b + 131) * q^21 + (-12*b - 92) * q^23 + (3*b - 120) * q^25 + (9*b + 163) * q^27 + (96*b - 26) * q^29 + (-34*b + 60) * q^31 + (90*b - 98) * q^33 + (21*b + 43) * q^35 + (5*b - 107) * q^37 + (39*b + 13) * q^39 + (-22*b - 104) * q^41 + (-143*b + 215) * q^43 + (40*b + 70) * q^45 + (-121*b - 157) * q^47 + (99*b + 142) * q^49 + (71*b + 205) * q^51 + (30*b + 44) * q^53 + (22*b - 2) * q^55 + (-46*b + 326) * q^57 + (-124*b - 122) * q^59 + (-190*b + 624) * q^61 + (260*b + 650) * q^63 + (13*b + 13) * q^65 + (232*b - 82) * q^67 + (-324*b - 236) * q^69 + (-231*b + 181) * q^71 + (-260*b + 358) * q^73 + (-348*b - 84) * q^75 + (386*b - 574) * q^77 + (40*b + 484) * q^79 + (120*b + 1) * q^81 + (182*b + 888) * q^83 + (35*b + 69) * q^85 + (306*b + 1126) * q^87 + (388*b - 554) * q^89 + (143*b - 13) * q^91 + (44*b - 348) * q^93 + (6*b + 70) * q^95 + (-508*b - 210) * q^97 + (390*b - 260) * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 5 q^{3} + 3 q^{5} + 9 q^{7} + 35 q^{9}+O(q^{10})$$ 2 * q + 5 * q^3 + 3 * q^5 + 9 * q^7 + 35 * q^9 $$2 q + 5 q^{3} + 3 q^{5} + 9 q^{7} + 35 q^{9} + 80 q^{11} + 26 q^{13} + 33 q^{15} + 19 q^{17} - 84 q^{19} + 303 q^{21} - 196 q^{23} - 237 q^{25} + 335 q^{27} + 44 q^{29} + 86 q^{31} - 106 q^{33} + 107 q^{35} - 209 q^{37} + 65 q^{39} - 230 q^{41} + 287 q^{43} + 180 q^{45} - 435 q^{47} + 383 q^{49} + 481 q^{51} + 118 q^{53} + 18 q^{55} + 606 q^{57} - 368 q^{59} + 1058 q^{61} + 1560 q^{63} + 39 q^{65} + 68 q^{67} - 796 q^{69} + 131 q^{71} + 456 q^{73} - 516 q^{75} - 762 q^{77} + 1008 q^{79} + 122 q^{81} + 1958 q^{83} + 173 q^{85} + 2558 q^{87} - 720 q^{89} + 117 q^{91} - 652 q^{93} + 146 q^{95} - 928 q^{97} - 130 q^{99}+O(q^{100})$$ 2 * q + 5 * q^3 + 3 * q^5 + 9 * q^7 + 35 * q^9 + 80 * q^11 + 26 * q^13 + 33 * q^15 + 19 * q^17 - 84 * q^19 + 303 * q^21 - 196 * q^23 - 237 * q^25 + 335 * q^27 + 44 * q^29 + 86 * q^31 - 106 * q^33 + 107 * q^35 - 209 * q^37 + 65 * q^39 - 230 * q^41 + 287 * q^43 + 180 * q^45 - 435 * q^47 + 383 * q^49 + 481 * q^51 + 118 * q^53 + 18 * q^55 + 606 * q^57 - 368 * q^59 + 1058 * q^61 + 1560 * q^63 + 39 * q^65 + 68 * q^67 - 796 * q^69 + 131 * q^71 + 456 * q^73 - 516 * q^75 - 762 * q^77 + 1008 * q^79 + 122 * q^81 + 1958 * q^83 + 173 * q^85 + 2558 * q^87 - 720 * q^89 + 117 * q^91 - 652 * q^93 + 146 * q^95 - 928 * q^97 - 130 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.56155 2.56155
0 −3.68466 0 −0.561553 0 −18.1771 0 −13.4233 0
1.2 0 8.68466 0 3.56155 0 27.1771 0 48.4233 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.z 2
4.b odd 2 1 832.4.a.s 2
8.b even 2 1 208.4.a.h 2
8.d odd 2 1 13.4.a.b 2
24.f even 2 1 117.4.a.d 2
24.h odd 2 1 1872.4.a.bb 2
40.e odd 2 1 325.4.a.f 2
40.k even 4 2 325.4.b.e 4
56.e even 2 1 637.4.a.b 2
88.g even 2 1 1573.4.a.b 2
104.h odd 2 1 169.4.a.g 2
104.m even 4 2 169.4.b.f 4
104.n odd 6 2 169.4.c.g 4
104.p odd 6 2 169.4.c.j 4
104.u even 12 4 169.4.e.f 8
312.h even 2 1 1521.4.a.r 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.a.b 2 8.d odd 2 1
117.4.a.d 2 24.f even 2 1
169.4.a.g 2 104.h odd 2 1
169.4.b.f 4 104.m even 4 2
169.4.c.g 4 104.n odd 6 2
169.4.c.j 4 104.p odd 6 2
169.4.e.f 8 104.u even 12 4
208.4.a.h 2 8.b even 2 1
325.4.a.f 2 40.e odd 2 1
325.4.b.e 4 40.k even 4 2
637.4.a.b 2 56.e even 2 1
832.4.a.s 2 4.b odd 2 1
832.4.a.z 2 1.a even 1 1 trivial
1521.4.a.r 2 312.h even 2 1
1573.4.a.b 2 88.g even 2 1
1872.4.a.bb 2 24.h odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{4}^{\mathrm{new}}(\Gamma_0(832))$$:

 $$T_{3}^{2} - 5T_{3} - 32$$ T3^2 - 5*T3 - 32 $$T_{5}^{2} - 3T_{5} - 2$$ T5^2 - 3*T5 - 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$T^{2} - 5T - 32$$
$5$ $$T^{2} - 3T - 2$$
$7$ $$T^{2} - 9T - 494$$
$11$ $$T^{2} - 80T + 988$$
$13$ $$(T - 13)^{2}$$
$17$ $$T^{2} - 19T - 1138$$
$19$ $$T^{2} + 84T - 2588$$
$23$ $$T^{2} + 196T + 8992$$
$29$ $$T^{2} - 44T - 38684$$
$31$ $$T^{2} - 86T - 3064$$
$37$ $$T^{2} + 209T + 10814$$
$41$ $$T^{2} + 230T + 11168$$
$43$ $$T^{2} - 287T - 66316$$
$47$ $$T^{2} + 435T - 14918$$
$53$ $$T^{2} - 118T - 344$$
$59$ $$T^{2} + 368T - 31492$$
$61$ $$T^{2} - 1058 T + 126416$$
$67$ $$T^{2} - 68T - 227596$$
$71$ $$T^{2} - 131T - 222494$$
$73$ $$T^{2} - 456T - 235316$$
$79$ $$T^{2} - 1008 T + 247216$$
$83$ $$T^{2} - 1958 T + 817664$$
$89$ $$T^{2} + 720T - 510212$$
$97$ $$T^{2} + 928T - 881476$$