Properties

Label 832.4.a.m
Level $832$
Weight $4$
Character orbit 832.a
Self dual yes
Analytic conductor $49.090$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [832,4,Mod(1,832)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(832, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("832.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,0,3,0,-11,0,-19] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(49.0895891248\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 26)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} - 11 q^{5} - 19 q^{7} - 18 q^{9} - 38 q^{11} + 13 q^{13} - 33 q^{15} - 51 q^{17} + 90 q^{19} - 57 q^{21} + 52 q^{23} - 4 q^{25} - 135 q^{27} + 190 q^{29} - 292 q^{31} - 114 q^{33} + 209 q^{35}+ \cdots + 684 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 −11.0000 0 −19.0000 0 −18.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.m 1
4.b odd 2 1 832.4.a.e 1
8.b even 2 1 208.4.a.c 1
8.d odd 2 1 26.4.a.a 1
24.f even 2 1 234.4.a.g 1
24.h odd 2 1 1872.4.a.c 1
40.e odd 2 1 650.4.a.f 1
40.k even 4 2 650.4.b.b 2
56.e even 2 1 1274.4.a.b 1
104.h odd 2 1 338.4.a.e 1
104.m even 4 2 338.4.b.c 2
104.n odd 6 2 338.4.c.f 2
104.p odd 6 2 338.4.c.b 2
104.u even 12 4 338.4.e.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
26.4.a.a 1 8.d odd 2 1
208.4.a.c 1 8.b even 2 1
234.4.a.g 1 24.f even 2 1
338.4.a.e 1 104.h odd 2 1
338.4.b.c 2 104.m even 4 2
338.4.c.b 2 104.p odd 6 2
338.4.c.f 2 104.n odd 6 2
338.4.e.b 4 104.u even 12 4
650.4.a.f 1 40.e odd 2 1
650.4.b.b 2 40.k even 4 2
832.4.a.e 1 4.b odd 2 1
832.4.a.m 1 1.a even 1 1 trivial
1274.4.a.b 1 56.e even 2 1
1872.4.a.c 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(832))\):

\( T_{3} - 3 \) Copy content Toggle raw display
\( T_{5} + 11 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T + 11 \) Copy content Toggle raw display
$7$ \( T + 19 \) Copy content Toggle raw display
$11$ \( T + 38 \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T + 51 \) Copy content Toggle raw display
$19$ \( T - 90 \) Copy content Toggle raw display
$23$ \( T - 52 \) Copy content Toggle raw display
$29$ \( T - 190 \) Copy content Toggle raw display
$31$ \( T + 292 \) Copy content Toggle raw display
$37$ \( T - 441 \) Copy content Toggle raw display
$41$ \( T - 312 \) Copy content Toggle raw display
$43$ \( T - 373 \) Copy content Toggle raw display
$47$ \( T - 41 \) Copy content Toggle raw display
$53$ \( T + 468 \) Copy content Toggle raw display
$59$ \( T - 530 \) Copy content Toggle raw display
$61$ \( T + 592 \) Copy content Toggle raw display
$67$ \( T + 206 \) Copy content Toggle raw display
$71$ \( T - 863 \) Copy content Toggle raw display
$73$ \( T + 322 \) Copy content Toggle raw display
$79$ \( T - 460 \) Copy content Toggle raw display
$83$ \( T - 528 \) Copy content Toggle raw display
$89$ \( T - 870 \) Copy content Toggle raw display
$97$ \( T + 346 \) Copy content Toggle raw display
show more
show less