Properties

Label 832.2.k.h
Level $832$
Weight $2$
Character orbit 832.k
Analytic conductor $6.644$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(255,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 52)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{7} q^{3} + \beta_{3} q^{5} - \beta_{5} q^{7} + ( - 2 \beta_{3} + 2 \beta_{2} - 2) q^{9} + ( - \beta_{7} - 2 \beta_{5} - \beta_1) q^{11} + ( - 3 \beta_{3} + 2 \beta_{2}) q^{13} - \beta_{6} q^{15}+ \cdots + ( - 2 \beta_{7} - 2 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 16 q^{9} - 16 q^{21} + 16 q^{29} + 8 q^{33} + 32 q^{37} - 16 q^{45} - 32 q^{53} + 48 q^{57} + 16 q^{61} - 16 q^{65} - 32 q^{73} - 24 q^{81} - 16 q^{85} + 16 q^{89} - 32 q^{93} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{6} + 3\nu^{5} - 11\nu^{4} + 17\nu^{3} - 24\nu^{2} + 16\nu - 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 5\nu^{7} - 17\nu^{6} + 60\nu^{5} - 105\nu^{4} + 155\nu^{3} - 133\nu^{2} + 77\nu - 19 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 5\nu^{7} - 18\nu^{6} + 63\nu^{5} - 115\nu^{4} + 170\nu^{3} - 152\nu^{2} + 89\nu - 23 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( 8\nu^{7} - 28\nu^{6} + 98\nu^{5} - 175\nu^{4} + 256\nu^{3} - 223\nu^{2} + 126\nu - 31 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( 9\nu^{7} - 31\nu^{6} + 108\nu^{5} - 190\nu^{4} + 275\nu^{3} - 236\nu^{2} + 131\nu - 33 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( 9\nu^{7} - 32\nu^{6} + 111\nu^{5} - 200\nu^{4} + 290\nu^{3} - 253\nu^{2} + 141\nu - 33 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 10\nu^{7} - 35\nu^{6} + 123\nu^{5} - 220\nu^{4} + 325\nu^{3} - 285\nu^{2} + 168\nu - 43 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} - \beta_{3} - \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{7} + \beta_{6} - \beta_{5} - 2\beta_{3} - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -2\beta_{7} + 2\beta_{6} - \beta_{5} - 3\beta_{4} + 2\beta_{3} + 5\beta_{2} - 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -5\beta_{7} - \beta_{6} + 3\beta_{5} - 6\beta_{4} + 12\beta_{3} + 4\beta_{2} - 2\beta _1 + 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3\beta_{7} - 10\beta_{6} + 5\beta_{5} + 10\beta_{4} + 6\beta_{3} - 19\beta_{2} - 5\beta _1 + 26 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 22\beta_{7} - 9\beta_{6} - 11\beta_{5} + 45\beta_{4} - 48\beta_{3} - 32\beta_{2} + 5\beta _1 - 6 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7\beta_{7} + 33\beta_{6} - 30\beta_{5} - 83\beta_{3} + 64\beta_{2} + 35\beta _1 - 118 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(-\beta_{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
255.1
0.500000 2.10607i
0.500000 0.0297061i
0.500000 + 1.44392i
0.500000 + 0.691860i
0.500000 0.691860i
0.500000 1.44392i
0.500000 + 0.0297061i
0.500000 + 2.10607i
0 2.79793i 0 0.707107 + 0.707107i 0 −1.97844 1.97844i 0 −4.82843 0
255.2 0 1.47363i 0 −0.707107 0.707107i 0 1.04201 + 1.04201i 0 0.828427 0
255.3 0 1.47363i 0 −0.707107 0.707107i 0 −1.04201 1.04201i 0 0.828427 0
255.4 0 2.79793i 0 0.707107 + 0.707107i 0 1.97844 + 1.97844i 0 −4.82843 0
447.1 0 2.79793i 0 0.707107 0.707107i 0 1.97844 1.97844i 0 −4.82843 0
447.2 0 1.47363i 0 −0.707107 + 0.707107i 0 −1.04201 + 1.04201i 0 0.828427 0
447.3 0 1.47363i 0 −0.707107 + 0.707107i 0 1.04201 1.04201i 0 0.828427 0
447.4 0 2.79793i 0 0.707107 0.707107i 0 −1.97844 + 1.97844i 0 −4.82843 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 255.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
13.d odd 4 1 inner
52.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.2.k.h 8
4.b odd 2 1 inner 832.2.k.h 8
8.b even 2 1 52.2.f.b 8
8.d odd 2 1 52.2.f.b 8
13.d odd 4 1 inner 832.2.k.h 8
24.f even 2 1 468.2.n.i 8
24.h odd 2 1 468.2.n.i 8
52.f even 4 1 inner 832.2.k.h 8
104.e even 2 1 676.2.f.g 8
104.h odd 2 1 676.2.f.g 8
104.j odd 4 1 52.2.f.b 8
104.j odd 4 1 676.2.f.g 8
104.m even 4 1 52.2.f.b 8
104.m even 4 1 676.2.f.g 8
104.n odd 6 2 676.2.l.l 16
104.p odd 6 2 676.2.l.h 16
104.r even 6 2 676.2.l.l 16
104.s even 6 2 676.2.l.h 16
104.u even 12 2 676.2.l.h 16
104.u even 12 2 676.2.l.l 16
104.x odd 12 2 676.2.l.h 16
104.x odd 12 2 676.2.l.l 16
312.w odd 4 1 468.2.n.i 8
312.y even 4 1 468.2.n.i 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
52.2.f.b 8 8.b even 2 1
52.2.f.b 8 8.d odd 2 1
52.2.f.b 8 104.j odd 4 1
52.2.f.b 8 104.m even 4 1
468.2.n.i 8 24.f even 2 1
468.2.n.i 8 24.h odd 2 1
468.2.n.i 8 312.w odd 4 1
468.2.n.i 8 312.y even 4 1
676.2.f.g 8 104.e even 2 1
676.2.f.g 8 104.h odd 2 1
676.2.f.g 8 104.j odd 4 1
676.2.f.g 8 104.m even 4 1
676.2.l.h 16 104.p odd 6 2
676.2.l.h 16 104.s even 6 2
676.2.l.h 16 104.u even 12 2
676.2.l.h 16 104.x odd 12 2
676.2.l.l 16 104.n odd 6 2
676.2.l.l 16 104.r even 6 2
676.2.l.l 16 104.u even 12 2
676.2.l.l 16 104.x odd 12 2
832.2.k.h 8 1.a even 1 1 trivial
832.2.k.h 8 4.b odd 2 1 inner
832.2.k.h 8 13.d odd 4 1 inner
832.2.k.h 8 52.f even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(832, [\chi])\):

\( T_{3}^{4} + 10T_{3}^{2} + 17 \) Copy content Toggle raw display
\( T_{5}^{4} + 1 \) Copy content Toggle raw display
\( T_{7}^{8} + 66T_{7}^{4} + 289 \) Copy content Toggle raw display
\( T_{11}^{8} + 648T_{11}^{4} + 4624 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} + 10 T^{2} + 17)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 66T^{4} + 289 \) Copy content Toggle raw display
$11$ \( T^{8} + 648T^{4} + 4624 \) Copy content Toggle raw display
$13$ \( (T^{4} - 24 T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 34 T^{2} + 1)^{2} \) Copy content Toggle raw display
$19$ \( T^{8} + 2592 T^{4} + 73984 \) Copy content Toggle raw display
$23$ \( (T^{4} - 20 T^{2} + 68)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 4 T + 2)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} + 1056 T^{4} + 73984 \) Copy content Toggle raw display
$37$ \( (T^{4} - 16 T^{3} + \cdots + 529)^{2} \) Copy content Toggle raw display
$41$ \( (T^{4} + 1296)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} - 58 T^{2} + 833)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 66T^{4} + 289 \) Copy content Toggle raw display
$53$ \( (T^{2} + 8 T - 2)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} + 10368 T^{4} + 1183744 \) Copy content Toggle raw display
$61$ \( (T^{2} - 4 T - 4)^{4} \) Copy content Toggle raw display
$67$ \( T^{8} + 264T^{4} + 4624 \) Copy content Toggle raw display
$71$ \( T^{8} + 29538 T^{4} + 80874049 \) Copy content Toggle raw display
$73$ \( (T^{4} + 16 T^{3} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 92 T^{2} + 68)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 8328 T^{4} + 4624 \) Copy content Toggle raw display
$89$ \( (T^{4} - 8 T^{3} + \cdots + 784)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + 8 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
show more
show less