Properties

Label 832.2.k.e.447.1
Level $832$
Weight $2$
Character 832.447
Analytic conductor $6.644$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(255,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.255");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.k (of order \(4\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.64355344817\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 447.1
Root \(1.58114 - 1.58114i\) of defining polynomial
Character \(\chi\) \(=\) 832.447
Dual form 832.2.k.e.255.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.58114 + 1.58114i) q^{5} +(1.58114 - 1.58114i) q^{7} +2.00000 q^{9} +O(q^{10})\) \(q+1.00000i q^{3} +(-1.58114 + 1.58114i) q^{5} +(1.58114 - 1.58114i) q^{7} +2.00000 q^{9} +(2.16228 - 2.16228i) q^{11} +(-0.418861 - 3.58114i) q^{13} +(-1.58114 - 1.58114i) q^{15} -5.32456i q^{17} +(5.16228 + 5.16228i) q^{19} +(1.58114 + 1.58114i) q^{21} +0.837722 q^{23} +5.00000i q^{27} -5.16228 q^{29} +(5.16228 + 5.16228i) q^{31} +(2.16228 + 2.16228i) q^{33} +5.00000i q^{35} +(0.418861 + 0.418861i) q^{37} +(3.58114 - 0.418861i) q^{39} +(-1.16228 + 1.16228i) q^{41} +5.00000 q^{43} +(-3.16228 + 3.16228i) q^{45} +(2.74342 - 2.74342i) q^{47} +2.00000i q^{49} +5.32456 q^{51} +9.48683 q^{53} +6.83772i q^{55} +(-5.16228 + 5.16228i) q^{57} +(4.00000 - 4.00000i) q^{59} -2.00000 q^{61} +(3.16228 - 3.16228i) q^{63} +(6.32456 + 5.00000i) q^{65} +(-5.32456 - 5.32456i) q^{67} +0.837722i q^{69} +(1.58114 + 1.58114i) q^{71} +(-6.00000 - 6.00000i) q^{73} -6.83772i q^{77} +15.4868i q^{79} +1.00000 q^{81} +(-12.1623 - 12.1623i) q^{83} +(8.41886 + 8.41886i) q^{85} -5.16228i q^{87} +(-9.16228 - 9.16228i) q^{89} +(-6.32456 - 5.00000i) q^{91} +(-5.16228 + 5.16228i) q^{93} -16.3246 q^{95} +(-10.1623 + 10.1623i) q^{97} +(4.32456 - 4.32456i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 8 q^{9} - 4 q^{11} - 8 q^{13} + 8 q^{19} + 16 q^{23} - 8 q^{29} + 8 q^{31} - 4 q^{33} + 8 q^{37} + 8 q^{39} + 8 q^{41} + 20 q^{43} - 8 q^{47} - 4 q^{51} - 8 q^{57} + 16 q^{59} - 8 q^{61} + 4 q^{67} - 24 q^{73} + 4 q^{81} - 36 q^{83} + 40 q^{85} - 24 q^{89} - 8 q^{93} - 40 q^{95} - 28 q^{97} - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/832\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(703\) \(769\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i 0.957427 + 0.288675i \(0.0932147\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 0 0
\(5\) −1.58114 + 1.58114i −0.707107 + 0.707107i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(6\) 0 0
\(7\) 1.58114 1.58114i 0.597614 0.597614i −0.342063 0.939677i \(-0.611126\pi\)
0.939677 + 0.342063i \(0.111126\pi\)
\(8\) 0 0
\(9\) 2.00000 0.666667
\(10\) 0 0
\(11\) 2.16228 2.16228i 0.651951 0.651951i −0.301511 0.953463i \(-0.597491\pi\)
0.953463 + 0.301511i \(0.0974911\pi\)
\(12\) 0 0
\(13\) −0.418861 3.58114i −0.116171 0.993229i
\(14\) 0 0
\(15\) −1.58114 1.58114i −0.408248 0.408248i
\(16\) 0 0
\(17\) 5.32456i 1.29139i −0.763594 0.645697i \(-0.776567\pi\)
0.763594 0.645697i \(-0.223433\pi\)
\(18\) 0 0
\(19\) 5.16228 + 5.16228i 1.18431 + 1.18431i 0.978617 + 0.205691i \(0.0659441\pi\)
0.205691 + 0.978617i \(0.434056\pi\)
\(20\) 0 0
\(21\) 1.58114 + 1.58114i 0.345033 + 0.345033i
\(22\) 0 0
\(23\) 0.837722 0.174677 0.0873386 0.996179i \(-0.472164\pi\)
0.0873386 + 0.996179i \(0.472164\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.00000i 0.962250i
\(28\) 0 0
\(29\) −5.16228 −0.958611 −0.479305 0.877648i \(-0.659111\pi\)
−0.479305 + 0.877648i \(0.659111\pi\)
\(30\) 0 0
\(31\) 5.16228 + 5.16228i 0.927172 + 0.927172i 0.997522 0.0703499i \(-0.0224116\pi\)
−0.0703499 + 0.997522i \(0.522412\pi\)
\(32\) 0 0
\(33\) 2.16228 + 2.16228i 0.376404 + 0.376404i
\(34\) 0 0
\(35\) 5.00000i 0.845154i
\(36\) 0 0
\(37\) 0.418861 + 0.418861i 0.0688604 + 0.0688604i 0.740698 0.671838i \(-0.234495\pi\)
−0.671838 + 0.740698i \(0.734495\pi\)
\(38\) 0 0
\(39\) 3.58114 0.418861i 0.573441 0.0670715i
\(40\) 0 0
\(41\) −1.16228 + 1.16228i −0.181517 + 0.181517i −0.792017 0.610499i \(-0.790969\pi\)
0.610499 + 0.792017i \(0.290969\pi\)
\(42\) 0 0
\(43\) 5.00000 0.762493 0.381246 0.924473i \(-0.375495\pi\)
0.381246 + 0.924473i \(0.375495\pi\)
\(44\) 0 0
\(45\) −3.16228 + 3.16228i −0.471405 + 0.471405i
\(46\) 0 0
\(47\) 2.74342 2.74342i 0.400168 0.400168i −0.478124 0.878292i \(-0.658683\pi\)
0.878292 + 0.478124i \(0.158683\pi\)
\(48\) 0 0
\(49\) 2.00000i 0.285714i
\(50\) 0 0
\(51\) 5.32456 0.745587
\(52\) 0 0
\(53\) 9.48683 1.30312 0.651558 0.758599i \(-0.274116\pi\)
0.651558 + 0.758599i \(0.274116\pi\)
\(54\) 0 0
\(55\) 6.83772i 0.921998i
\(56\) 0 0
\(57\) −5.16228 + 5.16228i −0.683760 + 0.683760i
\(58\) 0 0
\(59\) 4.00000 4.00000i 0.520756 0.520756i −0.397044 0.917800i \(-0.629964\pi\)
0.917800 + 0.397044i \(0.129964\pi\)
\(60\) 0 0
\(61\) −2.00000 −0.256074 −0.128037 0.991769i \(-0.540868\pi\)
−0.128037 + 0.991769i \(0.540868\pi\)
\(62\) 0 0
\(63\) 3.16228 3.16228i 0.398410 0.398410i
\(64\) 0 0
\(65\) 6.32456 + 5.00000i 0.784465 + 0.620174i
\(66\) 0 0
\(67\) −5.32456 5.32456i −0.650498 0.650498i 0.302615 0.953113i \(-0.402140\pi\)
−0.953113 + 0.302615i \(0.902140\pi\)
\(68\) 0 0
\(69\) 0.837722i 0.100850i
\(70\) 0 0
\(71\) 1.58114 + 1.58114i 0.187647 + 0.187647i 0.794678 0.607031i \(-0.207640\pi\)
−0.607031 + 0.794678i \(0.707640\pi\)
\(72\) 0 0
\(73\) −6.00000 6.00000i −0.702247 0.702247i 0.262646 0.964892i \(-0.415405\pi\)
−0.964892 + 0.262646i \(0.915405\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.83772i 0.779231i
\(78\) 0 0
\(79\) 15.4868i 1.74240i 0.490924 + 0.871202i \(0.336659\pi\)
−0.490924 + 0.871202i \(0.663341\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −12.1623 12.1623i −1.33498 1.33498i −0.900847 0.434136i \(-0.857054\pi\)
−0.434136 0.900847i \(-0.642946\pi\)
\(84\) 0 0
\(85\) 8.41886 + 8.41886i 0.913154 + 0.913154i
\(86\) 0 0
\(87\) 5.16228i 0.553454i
\(88\) 0 0
\(89\) −9.16228 9.16228i −0.971199 0.971199i 0.0283972 0.999597i \(-0.490960\pi\)
−0.999597 + 0.0283972i \(0.990960\pi\)
\(90\) 0 0
\(91\) −6.32456 5.00000i −0.662994 0.524142i
\(92\) 0 0
\(93\) −5.16228 + 5.16228i −0.535303 + 0.535303i
\(94\) 0 0
\(95\) −16.3246 −1.67486
\(96\) 0 0
\(97\) −10.1623 + 10.1623i −1.03182 + 1.03182i −0.0323462 + 0.999477i \(0.510298\pi\)
−0.999477 + 0.0323462i \(0.989702\pi\)
\(98\) 0 0
\(99\) 4.32456 4.32456i 0.434634 0.434634i
\(100\) 0 0
\(101\) 2.32456i 0.231302i −0.993290 0.115651i \(-0.963105\pi\)
0.993290 0.115651i \(-0.0368954\pi\)
\(102\) 0 0
\(103\) 11.4868 1.13183 0.565916 0.824463i \(-0.308523\pi\)
0.565916 + 0.824463i \(0.308523\pi\)
\(104\) 0 0
\(105\) −5.00000 −0.487950
\(106\) 0 0
\(107\) 0.324555i 0.0313759i 0.999877 + 0.0156880i \(0.00499384\pi\)
−0.999877 + 0.0156880i \(0.995006\pi\)
\(108\) 0 0
\(109\) 10.7434 10.7434i 1.02903 1.02903i 0.0294669 0.999566i \(-0.490619\pi\)
0.999566 0.0294669i \(-0.00938097\pi\)
\(110\) 0 0
\(111\) −0.418861 + 0.418861i −0.0397565 + 0.0397565i
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) −1.32456 + 1.32456i −0.123515 + 0.123515i
\(116\) 0 0
\(117\) −0.837722 7.16228i −0.0774475 0.662153i
\(118\) 0 0
\(119\) −8.41886 8.41886i −0.771756 0.771756i
\(120\) 0 0
\(121\) 1.64911i 0.149919i
\(122\) 0 0
\(123\) −1.16228 1.16228i −0.104799 0.104799i
\(124\) 0 0
\(125\) −7.90569 7.90569i −0.707107 0.707107i
\(126\) 0 0
\(127\) 15.1623 1.34543 0.672717 0.739900i \(-0.265127\pi\)
0.672717 + 0.739900i \(0.265127\pi\)
\(128\) 0 0
\(129\) 5.00000i 0.440225i
\(130\) 0 0
\(131\) 13.6491i 1.19253i 0.802788 + 0.596264i \(0.203349\pi\)
−0.802788 + 0.596264i \(0.796651\pi\)
\(132\) 0 0
\(133\) 16.3246 1.41552
\(134\) 0 0
\(135\) −7.90569 7.90569i −0.680414 0.680414i
\(136\) 0 0
\(137\) −3.00000 3.00000i −0.256307 0.256307i 0.567243 0.823550i \(-0.308010\pi\)
−0.823550 + 0.567243i \(0.808010\pi\)
\(138\) 0 0
\(139\) 2.67544i 0.226928i 0.993542 + 0.113464i \(0.0361947\pi\)
−0.993542 + 0.113464i \(0.963805\pi\)
\(140\) 0 0
\(141\) 2.74342 + 2.74342i 0.231037 + 0.231037i
\(142\) 0 0
\(143\) −8.64911 6.83772i −0.723275 0.571799i
\(144\) 0 0
\(145\) 8.16228 8.16228i 0.677840 0.677840i
\(146\) 0 0
\(147\) −2.00000 −0.164957
\(148\) 0 0
\(149\) −2.00000 + 2.00000i −0.163846 + 0.163846i −0.784268 0.620422i \(-0.786961\pi\)
0.620422 + 0.784268i \(0.286961\pi\)
\(150\) 0 0
\(151\) −10.7434 + 10.7434i −0.874287 + 0.874287i −0.992936 0.118649i \(-0.962144\pi\)
0.118649 + 0.992936i \(0.462144\pi\)
\(152\) 0 0
\(153\) 10.6491i 0.860930i
\(154\) 0 0
\(155\) −16.3246 −1.31122
\(156\) 0 0
\(157\) −14.9737 −1.19503 −0.597514 0.801858i \(-0.703845\pi\)
−0.597514 + 0.801858i \(0.703845\pi\)
\(158\) 0 0
\(159\) 9.48683i 0.752355i
\(160\) 0 0
\(161\) 1.32456 1.32456i 0.104390 0.104390i
\(162\) 0 0
\(163\) 9.00000 9.00000i 0.704934 0.704934i −0.260531 0.965465i \(-0.583898\pi\)
0.965465 + 0.260531i \(0.0838976\pi\)
\(164\) 0 0
\(165\) −6.83772 −0.532316
\(166\) 0 0
\(167\) −1.48683 + 1.48683i −0.115055 + 0.115055i −0.762290 0.647236i \(-0.775925\pi\)
0.647236 + 0.762290i \(0.275925\pi\)
\(168\) 0 0
\(169\) −12.6491 + 3.00000i −0.973009 + 0.230769i
\(170\) 0 0
\(171\) 10.3246 + 10.3246i 0.789538 + 0.789538i
\(172\) 0 0
\(173\) 15.4868i 1.17744i 0.808336 + 0.588721i \(0.200368\pi\)
−0.808336 + 0.588721i \(0.799632\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 4.00000 + 4.00000i 0.300658 + 0.300658i
\(178\) 0 0
\(179\) −9.64911 −0.721208 −0.360604 0.932719i \(-0.617429\pi\)
−0.360604 + 0.932719i \(0.617429\pi\)
\(180\) 0 0
\(181\) 9.16228i 0.681027i −0.940240 0.340513i \(-0.889399\pi\)
0.940240 0.340513i \(-0.110601\pi\)
\(182\) 0 0
\(183\) 2.00000i 0.147844i
\(184\) 0 0
\(185\) −1.32456 −0.0973832
\(186\) 0 0
\(187\) −11.5132 11.5132i −0.841926 0.841926i
\(188\) 0 0
\(189\) 7.90569 + 7.90569i 0.575055 + 0.575055i
\(190\) 0 0
\(191\) 25.1623i 1.82068i −0.413863 0.910339i \(-0.635821\pi\)
0.413863 0.910339i \(-0.364179\pi\)
\(192\) 0 0
\(193\) 4.16228 + 4.16228i 0.299607 + 0.299607i 0.840860 0.541253i \(-0.182050\pi\)
−0.541253 + 0.840860i \(0.682050\pi\)
\(194\) 0 0
\(195\) −5.00000 + 6.32456i −0.358057 + 0.452911i
\(196\) 0 0
\(197\) −4.41886 + 4.41886i −0.314831 + 0.314831i −0.846778 0.531947i \(-0.821461\pi\)
0.531947 + 0.846778i \(0.321461\pi\)
\(198\) 0 0
\(199\) −20.8377 −1.47715 −0.738573 0.674173i \(-0.764500\pi\)
−0.738573 + 0.674173i \(0.764500\pi\)
\(200\) 0 0
\(201\) 5.32456 5.32456i 0.375565 0.375565i
\(202\) 0 0
\(203\) −8.16228 + 8.16228i −0.572880 + 0.572880i
\(204\) 0 0
\(205\) 3.67544i 0.256704i
\(206\) 0 0
\(207\) 1.67544 0.116451
\(208\) 0 0
\(209\) 22.3246 1.54422
\(210\) 0 0
\(211\) 15.6491i 1.07733i −0.842520 0.538665i \(-0.818929\pi\)
0.842520 0.538665i \(-0.181071\pi\)
\(212\) 0 0
\(213\) −1.58114 + 1.58114i −0.108338 + 0.108338i
\(214\) 0 0
\(215\) −7.90569 + 7.90569i −0.539164 + 0.539164i
\(216\) 0 0
\(217\) 16.3246 1.10818
\(218\) 0 0
\(219\) 6.00000 6.00000i 0.405442 0.405442i
\(220\) 0 0
\(221\) −19.0680 + 2.23025i −1.28265 + 0.150023i
\(222\) 0 0
\(223\) −13.0680 13.0680i −0.875096 0.875096i 0.117926 0.993022i \(-0.462375\pi\)
−0.993022 + 0.117926i \(0.962375\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 3.16228 + 3.16228i 0.209888 + 0.209888i 0.804220 0.594332i \(-0.202583\pi\)
−0.594332 + 0.804220i \(0.702583\pi\)
\(228\) 0 0
\(229\) 9.90569 + 9.90569i 0.654587 + 0.654587i 0.954094 0.299507i \(-0.0968223\pi\)
−0.299507 + 0.954094i \(0.596822\pi\)
\(230\) 0 0
\(231\) 6.83772 0.449889
\(232\) 0 0
\(233\) 5.32456i 0.348823i 0.984673 + 0.174412i \(0.0558023\pi\)
−0.984673 + 0.174412i \(0.944198\pi\)
\(234\) 0 0
\(235\) 8.67544i 0.565924i
\(236\) 0 0
\(237\) −15.4868 −1.00598
\(238\) 0 0
\(239\) −15.5811 15.5811i −1.00786 1.00786i −0.999969 0.00789122i \(-0.997488\pi\)
−0.00789122 0.999969i \(-0.502512\pi\)
\(240\) 0 0
\(241\) −15.4868 15.4868i −0.997595 0.997595i 0.00240251 0.999997i \(-0.499235\pi\)
−0.999997 + 0.00240251i \(0.999235\pi\)
\(242\) 0 0
\(243\) 16.0000i 1.02640i
\(244\) 0 0
\(245\) −3.16228 3.16228i −0.202031 0.202031i
\(246\) 0 0
\(247\) 16.3246 20.6491i 1.03871 1.31387i
\(248\) 0 0
\(249\) 12.1623 12.1623i 0.770753 0.770753i
\(250\) 0 0
\(251\) −18.6491 −1.17712 −0.588561 0.808453i \(-0.700305\pi\)
−0.588561 + 0.808453i \(0.700305\pi\)
\(252\) 0 0
\(253\) 1.81139 1.81139i 0.113881 0.113881i
\(254\) 0 0
\(255\) −8.41886 + 8.41886i −0.527210 + 0.527210i
\(256\) 0 0
\(257\) 29.6491i 1.84946i 0.380623 + 0.924730i \(0.375710\pi\)
−0.380623 + 0.924730i \(0.624290\pi\)
\(258\) 0 0
\(259\) 1.32456 0.0823039
\(260\) 0 0
\(261\) −10.3246 −0.639074
\(262\) 0 0
\(263\) 6.00000i 0.369976i −0.982741 0.184988i \(-0.940775\pi\)
0.982741 0.184988i \(-0.0592246\pi\)
\(264\) 0 0
\(265\) −15.0000 + 15.0000i −0.921443 + 0.921443i
\(266\) 0 0
\(267\) 9.16228 9.16228i 0.560722 0.560722i
\(268\) 0 0
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 0 0
\(271\) 13.0680 13.0680i 0.793823 0.793823i −0.188291 0.982113i \(-0.560295\pi\)
0.982113 + 0.188291i \(0.0602947\pi\)
\(272\) 0 0
\(273\) 5.00000 6.32456i 0.302614 0.382780i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.324555i 0.0195006i −0.999952 0.00975032i \(-0.996896\pi\)
0.999952 0.00975032i \(-0.00310367\pi\)
\(278\) 0 0
\(279\) 10.3246 + 10.3246i 0.618115 + 0.618115i
\(280\) 0 0
\(281\) −17.4868 17.4868i −1.04318 1.04318i −0.999025 0.0441522i \(-0.985941\pi\)
−0.0441522 0.999025i \(-0.514059\pi\)
\(282\) 0 0
\(283\) 24.6491 1.46524 0.732619 0.680639i \(-0.238298\pi\)
0.732619 + 0.680639i \(0.238298\pi\)
\(284\) 0 0
\(285\) 16.3246i 0.966983i
\(286\) 0 0
\(287\) 3.67544i 0.216955i
\(288\) 0 0
\(289\) −11.3509 −0.667699
\(290\) 0 0
\(291\) −10.1623 10.1623i −0.595723 0.595723i
\(292\) 0 0
\(293\) 16.7434 + 16.7434i 0.978161 + 0.978161i 0.999767 0.0216057i \(-0.00687785\pi\)
−0.0216057 + 0.999767i \(0.506878\pi\)
\(294\) 0 0
\(295\) 12.6491i 0.736460i
\(296\) 0 0
\(297\) 10.8114 + 10.8114i 0.627340 + 0.627340i
\(298\) 0 0
\(299\) −0.350889 3.00000i −0.0202925 0.173494i
\(300\) 0 0
\(301\) 7.90569 7.90569i 0.455677 0.455677i
\(302\) 0 0
\(303\) 2.32456 0.133542
\(304\) 0 0
\(305\) 3.16228 3.16228i 0.181071 0.181071i
\(306\) 0 0
\(307\) −12.3246 + 12.3246i −0.703400 + 0.703400i −0.965139 0.261739i \(-0.915704\pi\)
0.261739 + 0.965139i \(0.415704\pi\)
\(308\) 0 0
\(309\) 11.4868i 0.653463i
\(310\) 0 0
\(311\) −12.9737 −0.735669 −0.367835 0.929891i \(-0.619901\pi\)
−0.367835 + 0.929891i \(0.619901\pi\)
\(312\) 0 0
\(313\) −9.64911 −0.545400 −0.272700 0.962099i \(-0.587917\pi\)
−0.272700 + 0.962099i \(0.587917\pi\)
\(314\) 0 0
\(315\) 10.0000i 0.563436i
\(316\) 0 0
\(317\) 7.67544 7.67544i 0.431096 0.431096i −0.457905 0.889001i \(-0.651400\pi\)
0.889001 + 0.457905i \(0.151400\pi\)
\(318\) 0 0
\(319\) −11.1623 + 11.1623i −0.624968 + 0.624968i
\(320\) 0 0
\(321\) −0.324555 −0.0181149
\(322\) 0 0
\(323\) 27.4868 27.4868i 1.52941 1.52941i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.7434 + 10.7434i 0.594112 + 0.594112i
\(328\) 0 0
\(329\) 8.67544i 0.478293i
\(330\) 0 0
\(331\) −4.48683 4.48683i −0.246619 0.246619i 0.572963 0.819581i \(-0.305794\pi\)
−0.819581 + 0.572963i \(0.805794\pi\)
\(332\) 0 0
\(333\) 0.837722 + 0.837722i 0.0459069 + 0.0459069i
\(334\) 0 0
\(335\) 16.8377 0.919943
\(336\) 0 0
\(337\) 15.6491i 0.852461i −0.904615 0.426231i \(-0.859841\pi\)
0.904615 0.426231i \(-0.140159\pi\)
\(338\) 0 0
\(339\) 16.0000i 0.869001i
\(340\) 0 0
\(341\) 22.3246 1.20894
\(342\) 0 0
\(343\) 14.2302 + 14.2302i 0.768361 + 0.768361i
\(344\) 0 0
\(345\) −1.32456 1.32456i −0.0713117 0.0713117i
\(346\) 0 0
\(347\) 26.2982i 1.41176i 0.708330 + 0.705881i \(0.249449\pi\)
−0.708330 + 0.705881i \(0.750551\pi\)
\(348\) 0 0
\(349\) 5.58114 + 5.58114i 0.298752 + 0.298752i 0.840525 0.541773i \(-0.182247\pi\)
−0.541773 + 0.840525i \(0.682247\pi\)
\(350\) 0 0
\(351\) 17.9057 2.09431i 0.955735 0.111786i
\(352\) 0 0
\(353\) −6.16228 + 6.16228i −0.327985 + 0.327985i −0.851820 0.523835i \(-0.824501\pi\)
0.523835 + 0.851820i \(0.324501\pi\)
\(354\) 0 0
\(355\) −5.00000 −0.265372
\(356\) 0 0
\(357\) 8.41886 8.41886i 0.445573 0.445573i
\(358\) 0 0
\(359\) −21.1623 + 21.1623i −1.11690 + 1.11690i −0.124709 + 0.992193i \(0.539800\pi\)
−0.992193 + 0.124709i \(0.960200\pi\)
\(360\) 0 0
\(361\) 34.2982i 1.80517i
\(362\) 0 0
\(363\) −1.64911 −0.0865559
\(364\) 0 0
\(365\) 18.9737 0.993127
\(366\) 0 0
\(367\) 16.8377i 0.878922i 0.898262 + 0.439461i \(0.144831\pi\)
−0.898262 + 0.439461i \(0.855169\pi\)
\(368\) 0 0
\(369\) −2.32456 + 2.32456i −0.121012 + 0.121012i
\(370\) 0 0
\(371\) 15.0000 15.0000i 0.778761 0.778761i
\(372\) 0 0
\(373\) −12.6491 −0.654946 −0.327473 0.944861i \(-0.606197\pi\)
−0.327473 + 0.944861i \(0.606197\pi\)
\(374\) 0 0
\(375\) 7.90569 7.90569i 0.408248 0.408248i
\(376\) 0 0
\(377\) 2.16228 + 18.4868i 0.111363 + 0.952120i
\(378\) 0 0
\(379\) 13.0000 + 13.0000i 0.667765 + 0.667765i 0.957198 0.289433i \(-0.0934668\pi\)
−0.289433 + 0.957198i \(0.593467\pi\)
\(380\) 0 0
\(381\) 15.1623i 0.776787i
\(382\) 0 0
\(383\) 7.25658 + 7.25658i 0.370794 + 0.370794i 0.867766 0.496972i \(-0.165555\pi\)
−0.496972 + 0.867766i \(0.665555\pi\)
\(384\) 0 0
\(385\) 10.8114 + 10.8114i 0.550999 + 0.550999i
\(386\) 0 0
\(387\) 10.0000 0.508329
\(388\) 0 0
\(389\) 4.00000i 0.202808i 0.994845 + 0.101404i \(0.0323335\pi\)
−0.994845 + 0.101404i \(0.967667\pi\)
\(390\) 0 0
\(391\) 4.46050i 0.225577i
\(392\) 0 0
\(393\) −13.6491 −0.688507
\(394\) 0 0
\(395\) −24.4868 24.4868i −1.23207 1.23207i
\(396\) 0 0
\(397\) −27.2982 27.2982i −1.37006 1.37006i −0.860343 0.509715i \(-0.829751\pi\)
−0.509715 0.860343i \(-0.670249\pi\)
\(398\) 0 0
\(399\) 16.3246i 0.817250i
\(400\) 0 0
\(401\) −13.9737 13.9737i −0.697812 0.697812i 0.266127 0.963938i \(-0.414256\pi\)
−0.963938 + 0.266127i \(0.914256\pi\)
\(402\) 0 0
\(403\) 16.3246 20.6491i 0.813184 1.02861i
\(404\) 0 0
\(405\) −1.58114 + 1.58114i −0.0785674 + 0.0785674i
\(406\) 0 0
\(407\) 1.81139 0.0897872
\(408\) 0 0
\(409\) 10.6754 10.6754i 0.527867 0.527867i −0.392069 0.919936i \(-0.628241\pi\)
0.919936 + 0.392069i \(0.128241\pi\)
\(410\) 0 0
\(411\) 3.00000 3.00000i 0.147979 0.147979i
\(412\) 0 0
\(413\) 12.6491i 0.622422i
\(414\) 0 0
\(415\) 38.4605 1.88795
\(416\) 0 0
\(417\) −2.67544 −0.131017
\(418\) 0 0
\(419\) 17.3246i 0.846360i 0.906046 + 0.423180i \(0.139086\pi\)
−0.906046 + 0.423180i \(0.860914\pi\)
\(420\) 0 0
\(421\) 5.58114 5.58114i 0.272008 0.272008i −0.557900 0.829908i \(-0.688393\pi\)
0.829908 + 0.557900i \(0.188393\pi\)
\(422\) 0 0
\(423\) 5.48683 5.48683i 0.266779 0.266779i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −3.16228 + 3.16228i −0.153033 + 0.153033i
\(428\) 0 0
\(429\) 6.83772 8.64911i 0.330128 0.417583i
\(430\) 0 0
\(431\) 11.3925 + 11.3925i 0.548759 + 0.548759i 0.926082 0.377323i \(-0.123155\pi\)
−0.377323 + 0.926082i \(0.623155\pi\)
\(432\) 0 0
\(433\) 27.9737i 1.34433i −0.740402 0.672164i \(-0.765365\pi\)
0.740402 0.672164i \(-0.234635\pi\)
\(434\) 0 0
\(435\) 8.16228 + 8.16228i 0.391351 + 0.391351i
\(436\) 0 0
\(437\) 4.32456 + 4.32456i 0.206872 + 0.206872i
\(438\) 0 0
\(439\) 24.6491 1.17644 0.588219 0.808702i \(-0.299829\pi\)
0.588219 + 0.808702i \(0.299829\pi\)
\(440\) 0 0
\(441\) 4.00000i 0.190476i
\(442\) 0 0
\(443\) 20.2982i 0.964398i −0.876062 0.482199i \(-0.839838\pi\)
0.876062 0.482199i \(-0.160162\pi\)
\(444\) 0 0
\(445\) 28.9737 1.37348
\(446\) 0 0
\(447\) −2.00000 2.00000i −0.0945968 0.0945968i
\(448\) 0 0
\(449\) −7.51317 7.51317i −0.354568 0.354568i 0.507238 0.861806i \(-0.330667\pi\)
−0.861806 + 0.507238i \(0.830667\pi\)
\(450\) 0 0
\(451\) 5.02633i 0.236681i
\(452\) 0 0
\(453\) −10.7434 10.7434i −0.504770 0.504770i
\(454\) 0 0
\(455\) 17.9057 2.09431i 0.839432 0.0981826i
\(456\) 0 0
\(457\) 5.81139 5.81139i 0.271845 0.271845i −0.557997 0.829843i \(-0.688430\pi\)
0.829843 + 0.557997i \(0.188430\pi\)
\(458\) 0 0
\(459\) 26.6228 1.24264
\(460\) 0 0
\(461\) −11.0680 + 11.0680i −0.515487 + 0.515487i −0.916202 0.400716i \(-0.868762\pi\)
0.400716 + 0.916202i \(0.368762\pi\)
\(462\) 0 0
\(463\) −7.16228 + 7.16228i −0.332859 + 0.332859i −0.853671 0.520812i \(-0.825629\pi\)
0.520812 + 0.853671i \(0.325629\pi\)
\(464\) 0 0
\(465\) 16.3246i 0.757033i
\(466\) 0 0
\(467\) −34.6491 −1.60337 −0.801685 0.597747i \(-0.796063\pi\)
−0.801685 + 0.597747i \(0.796063\pi\)
\(468\) 0 0
\(469\) −16.8377 −0.777494
\(470\) 0 0
\(471\) 14.9737i 0.689950i
\(472\) 0 0
\(473\) 10.8114 10.8114i 0.497108 0.497108i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 18.9737 0.868744
\(478\) 0 0
\(479\) −29.3925 + 29.3925i −1.34298 + 1.34298i −0.449900 + 0.893079i \(0.648540\pi\)
−0.893079 + 0.449900i \(0.851460\pi\)
\(480\) 0 0
\(481\) 1.32456 1.67544i 0.0603945 0.0763937i
\(482\) 0 0
\(483\) 1.32456 + 1.32456i 0.0602694 + 0.0602694i
\(484\) 0 0
\(485\) 32.1359i 1.45922i
\(486\) 0 0
\(487\) −3.81139 3.81139i −0.172710 0.172710i 0.615459 0.788169i \(-0.288971\pi\)
−0.788169 + 0.615459i \(0.788971\pi\)
\(488\) 0 0
\(489\) 9.00000 + 9.00000i 0.406994 + 0.406994i
\(490\) 0 0
\(491\) 41.3246 1.86495 0.932476 0.361233i \(-0.117644\pi\)
0.932476 + 0.361233i \(0.117644\pi\)
\(492\) 0 0
\(493\) 27.4868i 1.23794i
\(494\) 0 0
\(495\) 13.6754i 0.614666i
\(496\) 0 0
\(497\) 5.00000 0.224281
\(498\) 0 0
\(499\) 3.48683 + 3.48683i 0.156092 + 0.156092i 0.780833 0.624740i \(-0.214795\pi\)
−0.624740 + 0.780833i \(0.714795\pi\)
\(500\) 0 0
\(501\) −1.48683 1.48683i −0.0664268 0.0664268i
\(502\) 0 0
\(503\) 10.6491i 0.474820i −0.971409 0.237410i \(-0.923701\pi\)
0.971409 0.237410i \(-0.0762985\pi\)
\(504\) 0 0
\(505\) 3.67544 + 3.67544i 0.163555 + 0.163555i
\(506\) 0 0
\(507\) −3.00000 12.6491i −0.133235 0.561767i
\(508\) 0 0
\(509\) −2.00000 + 2.00000i −0.0886484 + 0.0886484i −0.750040 0.661392i \(-0.769966\pi\)
0.661392 + 0.750040i \(0.269966\pi\)
\(510\) 0 0
\(511\) −18.9737 −0.839346
\(512\) 0 0
\(513\) −25.8114 + 25.8114i −1.13960 + 1.13960i
\(514\) 0 0
\(515\) −18.1623 + 18.1623i −0.800326 + 0.800326i
\(516\) 0 0
\(517\) 11.8641i 0.521781i
\(518\) 0 0
\(519\) −15.4868 −0.679797
\(520\) 0 0
\(521\) −23.3246 −1.02187 −0.510934 0.859620i \(-0.670700\pi\)
−0.510934 + 0.859620i \(0.670700\pi\)
\(522\) 0 0
\(523\) 12.3246i 0.538915i 0.963012 + 0.269458i \(0.0868444\pi\)
−0.963012 + 0.269458i \(0.913156\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 27.4868 27.4868i 1.19735 1.19735i
\(528\) 0 0
\(529\) −22.2982 −0.969488
\(530\) 0 0
\(531\) 8.00000 8.00000i 0.347170 0.347170i
\(532\) 0 0
\(533\) 4.64911 + 3.67544i 0.201375 + 0.159201i
\(534\) 0 0
\(535\) −0.513167 0.513167i −0.0221861 0.0221861i
\(536\) 0 0
\(537\) 9.64911i 0.416390i
\(538\) 0 0
\(539\) 4.32456 + 4.32456i 0.186272 + 0.186272i
\(540\) 0 0
\(541\) 7.06797 + 7.06797i 0.303876 + 0.303876i 0.842528 0.538652i \(-0.181066\pi\)
−0.538652 + 0.842528i \(0.681066\pi\)
\(542\) 0 0
\(543\) 9.16228 0.393191
\(544\) 0 0
\(545\) 33.9737i 1.45527i
\(546\) 0 0
\(547\) 10.6754i 0.456449i 0.973609 + 0.228225i \(0.0732920\pi\)
−0.973609 + 0.228225i \(0.926708\pi\)
\(548\) 0 0
\(549\) −4.00000 −0.170716
\(550\) 0 0
\(551\) −26.6491 26.6491i −1.13529 1.13529i
\(552\) 0 0
\(553\) 24.4868 + 24.4868i 1.04129 + 1.04129i
\(554\) 0 0
\(555\) 1.32456i 0.0562242i
\(556\) 0 0
\(557\) 6.41886 + 6.41886i 0.271976 + 0.271976i 0.829895 0.557919i \(-0.188400\pi\)
−0.557919 + 0.829895i \(0.688400\pi\)
\(558\) 0 0
\(559\) −2.09431 17.9057i −0.0885797 0.757330i
\(560\) 0 0
\(561\) 11.5132 11.5132i 0.486086 0.486086i
\(562\) 0 0
\(563\) −0.675445 −0.0284666 −0.0142333 0.999899i \(-0.504531\pi\)
−0.0142333 + 0.999899i \(0.504531\pi\)
\(564\) 0 0
\(565\) −25.2982 + 25.2982i −1.06430 + 1.06430i
\(566\) 0 0
\(567\) 1.58114 1.58114i 0.0664016 0.0664016i
\(568\) 0 0
\(569\) 33.9737i 1.42425i −0.702053 0.712125i \(-0.747733\pi\)
0.702053 0.712125i \(-0.252267\pi\)
\(570\) 0 0
\(571\) 23.9737 1.00327 0.501633 0.865080i \(-0.332733\pi\)
0.501633 + 0.865080i \(0.332733\pi\)
\(572\) 0 0
\(573\) 25.1623 1.05117
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −16.9737 + 16.9737i −0.706623 + 0.706623i −0.965824 0.259201i \(-0.916541\pi\)
0.259201 + 0.965824i \(0.416541\pi\)
\(578\) 0 0
\(579\) −4.16228 + 4.16228i −0.172978 + 0.172978i
\(580\) 0 0
\(581\) −38.4605 −1.59561
\(582\) 0 0
\(583\) 20.5132 20.5132i 0.849569 0.849569i
\(584\) 0 0
\(585\) 12.6491 + 10.0000i 0.522976 + 0.413449i
\(586\) 0 0
\(587\) −7.00000 7.00000i −0.288921 0.288921i 0.547733 0.836653i \(-0.315491\pi\)
−0.836653 + 0.547733i \(0.815491\pi\)
\(588\) 0 0
\(589\) 53.2982i 2.19611i
\(590\) 0 0
\(591\) −4.41886 4.41886i −0.181768 0.181768i
\(592\) 0 0
\(593\) 6.48683 + 6.48683i 0.266382 + 0.266382i 0.827641 0.561258i \(-0.189683\pi\)
−0.561258 + 0.827641i \(0.689683\pi\)
\(594\) 0 0
\(595\) 26.6228 1.09143
\(596\) 0 0
\(597\) 20.8377i 0.852831i
\(598\) 0 0
\(599\) 35.6228i 1.45551i 0.685839 + 0.727754i \(0.259436\pi\)
−0.685839 + 0.727754i \(0.740564\pi\)
\(600\) 0 0
\(601\) 44.9473 1.83344 0.916720 0.399530i \(-0.130827\pi\)
0.916720 + 0.399530i \(0.130827\pi\)
\(602\) 0 0
\(603\) −10.6491 10.6491i −0.433665 0.433665i
\(604\) 0 0
\(605\) −2.60747 2.60747i −0.106009 0.106009i
\(606\) 0 0
\(607\) 18.9737i 0.770117i −0.922892 0.385059i \(-0.874181\pi\)
0.922892 0.385059i \(-0.125819\pi\)
\(608\) 0 0
\(609\) −8.16228 8.16228i −0.330752 0.330752i
\(610\) 0 0
\(611\) −10.9737 8.67544i −0.443947 0.350971i
\(612\) 0 0
\(613\) −21.4868 + 21.4868i −0.867845 + 0.867845i −0.992234 0.124389i \(-0.960303\pi\)
0.124389 + 0.992234i \(0.460303\pi\)
\(614\) 0 0
\(615\) 3.67544 0.148208
\(616\) 0 0
\(617\) 22.9737 22.9737i 0.924885 0.924885i −0.0724846 0.997370i \(-0.523093\pi\)
0.997370 + 0.0724846i \(0.0230928\pi\)
\(618\) 0 0
\(619\) −27.4868 + 27.4868i −1.10479 + 1.10479i −0.110965 + 0.993824i \(0.535394\pi\)
−0.993824 + 0.110965i \(0.964606\pi\)
\(620\) 0 0
\(621\) 4.18861i 0.168083i
\(622\) 0 0
\(623\) −28.9737 −1.16081
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 22.3246i 0.891557i
\(628\) 0 0
\(629\) 2.23025 2.23025i 0.0889259 0.0889259i
\(630\) 0 0
\(631\) −0.230249 + 0.230249i −0.00916609 + 0.00916609i −0.711675 0.702509i \(-0.752063\pi\)
0.702509 + 0.711675i \(0.252063\pi\)
\(632\) 0 0
\(633\) 15.6491 0.621996
\(634\) 0 0
\(635\) −23.9737 + 23.9737i −0.951366 + 0.951366i
\(636\) 0 0
\(637\) 7.16228 0.837722i 0.283780 0.0331918i
\(638\) 0 0
\(639\) 3.16228 + 3.16228i 0.125098 + 0.125098i
\(640\) 0 0
\(641\) 34.3246i 1.35574i 0.735183 + 0.677869i \(0.237096\pi\)
−0.735183 + 0.677869i \(0.762904\pi\)
\(642\) 0 0
\(643\) 6.67544 + 6.67544i 0.263254 + 0.263254i 0.826375 0.563121i \(-0.190399\pi\)
−0.563121 + 0.826375i \(0.690399\pi\)
\(644\) 0 0
\(645\) −7.90569 7.90569i −0.311286 0.311286i
\(646\) 0 0
\(647\) 14.9737 0.588676 0.294338 0.955701i \(-0.404901\pi\)
0.294338 + 0.955701i \(0.404901\pi\)
\(648\) 0 0
\(649\) 17.2982i 0.679015i
\(650\) 0 0
\(651\) 16.3246i 0.639810i
\(652\) 0 0
\(653\) −42.9737 −1.68169 −0.840845 0.541276i \(-0.817941\pi\)
−0.840845 + 0.541276i \(0.817941\pi\)
\(654\) 0 0
\(655\) −21.5811 21.5811i −0.843245 0.843245i
\(656\) 0 0
\(657\) −12.0000 12.0000i −0.468165 0.468165i
\(658\) 0 0
\(659\) 8.97367i 0.349564i 0.984607 + 0.174782i \(0.0559221\pi\)
−0.984607 + 0.174782i \(0.944078\pi\)
\(660\) 0 0
\(661\) −16.8377 16.8377i −0.654911 0.654911i 0.299260 0.954172i \(-0.403260\pi\)
−0.954172 + 0.299260i \(0.903260\pi\)
\(662\) 0 0
\(663\) −2.23025 19.0680i −0.0866157 0.740539i
\(664\) 0 0
\(665\) −25.8114 + 25.8114i −1.00092 + 1.00092i
\(666\) 0 0
\(667\) −4.32456 −0.167447
\(668\) 0 0
\(669\) 13.0680 13.0680i 0.505237 0.505237i
\(670\) 0 0
\(671\) −4.32456 + 4.32456i −0.166948 + 0.166948i
\(672\) 0 0
\(673\) 19.9737i 0.769928i −0.922932 0.384964i \(-0.874214\pi\)
0.922932 0.384964i \(-0.125786\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −10.8377 −0.416528 −0.208264 0.978073i \(-0.566781\pi\)
−0.208264 + 0.978073i \(0.566781\pi\)
\(678\) 0 0
\(679\) 32.1359i 1.23326i
\(680\) 0 0
\(681\) −3.16228 + 3.16228i −0.121179 + 0.121179i
\(682\) 0 0
\(683\) −0.811388 + 0.811388i −0.0310469 + 0.0310469i −0.722460 0.691413i \(-0.756989\pi\)
0.691413 + 0.722460i \(0.256989\pi\)
\(684\) 0 0
\(685\) 9.48683 0.362473
\(686\) 0 0
\(687\) −9.90569 + 9.90569i −0.377926 + 0.377926i
\(688\) 0 0
\(689\) −3.97367 33.9737i −0.151385 1.29429i
\(690\) 0 0
\(691\) 2.64911 + 2.64911i 0.100777 + 0.100777i 0.755698 0.654921i \(-0.227298\pi\)
−0.654921 + 0.755698i \(0.727298\pi\)
\(692\) 0 0
\(693\) 13.6754i 0.519487i
\(694\) 0 0
\(695\) −4.23025 4.23025i −0.160463 0.160463i
\(696\) 0 0
\(697\) 6.18861 + 6.18861i 0.234410 + 0.234410i
\(698\) 0 0
\(699\) −5.32456 −0.201393
\(700\) 0 0
\(701\) 31.1623i 1.17698i 0.808503 + 0.588491i \(0.200278\pi\)
−0.808503 + 0.588491i \(0.799722\pi\)
\(702\) 0 0
\(703\) 4.32456i 0.163104i
\(704\) 0 0
\(705\) −8.67544 −0.326736
\(706\) 0 0
\(707\) −3.67544 3.67544i −0.138229 0.138229i
\(708\) 0 0
\(709\) −9.35089 9.35089i −0.351180 0.351180i 0.509368 0.860549i \(-0.329879\pi\)
−0.860549 + 0.509368i \(0.829879\pi\)
\(710\) 0 0
\(711\) 30.9737i 1.16160i
\(712\) 0 0
\(713\) 4.32456 + 4.32456i 0.161956 + 0.161956i
\(714\) 0 0
\(715\) 24.4868 2.86406i 0.915756 0.107110i
\(716\) 0 0
\(717\) 15.5811 15.5811i 0.581888 0.581888i
\(718\) 0 0
\(719\) −0.188612 −0.00703403 −0.00351701 0.999994i \(-0.501120\pi\)
−0.00351701 + 0.999994i \(0.501120\pi\)
\(720\) 0 0
\(721\) 18.1623 18.1623i 0.676399 0.676399i
\(722\) 0 0
\(723\) 15.4868 15.4868i 0.575962 0.575962i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −34.4605 −1.27807 −0.639035 0.769178i \(-0.720666\pi\)
−0.639035 + 0.769178i \(0.720666\pi\)
\(728\) 0 0
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) 26.6228i 0.984679i
\(732\) 0 0
\(733\) 2.41886 2.41886i 0.0893427 0.0893427i −0.661023 0.750366i \(-0.729877\pi\)
0.750366 + 0.661023i \(0.229877\pi\)
\(734\) 0 0
\(735\) 3.16228 3.16228i 0.116642 0.116642i
\(736\) 0 0
\(737\) −23.0263 −0.848186
\(738\) 0 0
\(739\) −2.83772 + 2.83772i −0.104387 + 0.104387i −0.757372 0.652984i \(-0.773517\pi\)
0.652984 + 0.757372i \(0.273517\pi\)
\(740\) 0 0
\(741\) 20.6491 + 16.3246i 0.758564 + 0.599698i
\(742\) 0 0
\(743\) −28.2302 28.2302i −1.03567 1.03567i −0.999340 0.0363275i \(-0.988434\pi\)
−0.0363275 0.999340i \(-0.511566\pi\)
\(744\) 0 0
\(745\) 6.32456i 0.231714i
\(746\) 0 0
\(747\) −24.3246 24.3246i −0.889989 0.889989i
\(748\) 0 0
\(749\) 0.513167 + 0.513167i 0.0187507 + 0.0187507i
\(750\) 0 0
\(751\) 11.0263 0.402357 0.201178 0.979555i \(-0.435523\pi\)
0.201178 + 0.979555i \(0.435523\pi\)
\(752\) 0 0
\(753\) 18.6491i 0.679611i
\(754\) 0 0
\(755\) 33.9737i 1.23643i
\(756\) 0 0
\(757\) −28.4605 −1.03441 −0.517207 0.855860i \(-0.673028\pi\)
−0.517207 + 0.855860i \(0.673028\pi\)
\(758\) 0 0
\(759\) 1.81139 + 1.81139i 0.0657492 + 0.0657492i
\(760\) 0 0
\(761\) 18.3246 + 18.3246i 0.664265 + 0.664265i 0.956382 0.292118i \(-0.0943599\pi\)
−0.292118 + 0.956382i \(0.594360\pi\)
\(762\) 0 0
\(763\) 33.9737i 1.22993i
\(764\) 0 0
\(765\) 16.8377 + 16.8377i 0.608769 + 0.608769i
\(766\) 0 0
\(767\) −16.0000 12.6491i −0.577727 0.456733i
\(768\) 0 0
\(769\) −24.6491 + 24.6491i −0.888870 + 0.888870i −0.994415 0.105545i \(-0.966341\pi\)
0.105545 + 0.994415i \(0.466341\pi\)
\(770\) 0 0
\(771\) −29.6491 −1.06779
\(772\) 0 0
\(773\) 30.7434 30.7434i 1.10576 1.10576i 0.112063 0.993701i \(-0.464254\pi\)
0.993701 0.112063i \(-0.0357457\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 1.32456i 0.0475182i
\(778\) 0 0
\(779\) −12.0000 −0.429945
\(780\) 0 0
\(781\) 6.83772 0.244673
\(782\) 0 0
\(783\) 25.8114i 0.922424i
\(784\) 0 0
\(785\) 23.6754 23.6754i 0.845013 0.845013i
\(786\) 0 0
\(787\) −27.4868 + 27.4868i −0.979800 + 0.979800i −0.999800 0.0200002i \(-0.993633\pi\)
0.0200002 + 0.999800i \(0.493633\pi\)
\(788\) 0 0
\(789\) 6.00000 0.213606
\(790\) 0 0
\(791\) 25.2982 25.2982i 0.899501 0.899501i