Properties

Label 832.2.ct
Level $832$
Weight $2$
Character orbit 832.ct
Rep. character $\chi_{832}(115,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $1760$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.ct (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 832 \)
Character field: \(\Q(\zeta_{48})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).

Total New Old
Modular forms 1824 1824 0
Cusp forms 1760 1760 0
Eisenstein series 64 64 0

Trace form

\( 1760 q - 16 q^{2} - 8 q^{3} - 24 q^{4} - 16 q^{5} - 16 q^{6} - 16 q^{7} - 16 q^{8} - 8 q^{9} - 24 q^{10} - 16 q^{11} - 64 q^{12} - 16 q^{13} - 32 q^{14} - 24 q^{15} - 8 q^{16} - 24 q^{17} - 16 q^{18} - 16 q^{19}+ \cdots - 296 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
832.2.ct.a 832.ct 832.bt $1760$ $6.644$ None 832.2.cn.a \(-16\) \(-8\) \(-16\) \(-16\) $\mathrm{SU}(2)[C_{48}]$