Properties

Label 832.2.by
Level $832$
Weight $2$
Character orbit 832.by
Rep. character $\chi_{832}(53,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $768$
Newform subspaces $1$
Sturm bound $224$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.by (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 64 \)
Character field: \(\Q(\zeta_{16})\)
Newform subspaces: \( 1 \)
Sturm bound: \(224\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).

Total New Old
Modular forms 912 768 144
Cusp forms 880 768 112
Eisenstein series 32 0 32

Trace form

\( 768 q - 16 q^{22} - 80 q^{24} - 160 q^{30} - 160 q^{36} - 80 q^{42} - 16 q^{44} + 48 q^{50} - 64 q^{51} + 128 q^{54} - 64 q^{55} + 112 q^{56} + 48 q^{62} - 160 q^{63} + 192 q^{64} + 192 q^{66} - 160 q^{67}+ \cdots - 272 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
832.2.by.a 832.by 64.i $768$ $6.644$ None 832.2.by.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{16}]$

Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)