Defining parameters
| Level: | \( N \) | \(=\) | \( 832 = 2^{6} \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 832.by (of order \(16\) and degree \(8\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 64 \) |
| Character field: | \(\Q(\zeta_{16})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(224\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 912 | 768 | 144 |
| Cusp forms | 880 | 768 | 112 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 832.2.by.a | $768$ | $6.644$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)