Defining parameters
Level: | \( N \) | \(=\) | \( 832 = 2^{6} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 832.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(15\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 124 | 24 | 100 |
Cusp forms | 100 | 24 | 76 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
832.2.b.a | $4$ | $6.644$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q+(\beta_{2}+\beta_1)q^{3}+(2\beta_{2}-\beta_1)q^{5}+\cdots\) |
832.2.b.b | $4$ | $6.644$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(12\) | \(q+(\beta_{2}+\beta_1)q^{3}+(-2\beta_{2}+\beta_1)q^{5}+\cdots\) |
832.2.b.c | $8$ | $6.644$ | 8.0.195105024.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{3}-\beta _{4}q^{5}+(-\beta _{1}-\beta _{7})q^{7}+\cdots\) |
832.2.b.d | $8$ | $6.644$ | 8.0.195105024.2 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{4}q^{3}+\beta _{4}q^{5}+(\beta _{1}+\beta _{7})q^{7}+(-1+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)