Properties

Label 832.2.b
Level $832$
Weight $2$
Character orbit 832.b
Rep. character $\chi_{832}(417,\cdot)$
Character field $\Q$
Dimension $24$
Newform subspaces $4$
Sturm bound $224$
Trace bound $15$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(224\)
Trace bound: \(15\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(832, [\chi])\).

Total New Old
Modular forms 124 24 100
Cusp forms 100 24 76
Eisenstein series 24 0 24

Trace form

\( 24 q - 24 q^{9} - 24 q^{25} - 48 q^{33} + 48 q^{41} + 24 q^{49} + 48 q^{57} + 72 q^{81} - 96 q^{89} - 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(832, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
832.2.b.a 832.b 8.b $4$ $6.644$ \(\Q(\zeta_{8})\) None 832.2.b.a \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{3}+(2\beta_{2}-\beta_1)q^{5}+\cdots\)
832.2.b.b 832.b 8.b $4$ $6.644$ \(\Q(\zeta_{8})\) None 832.2.b.a \(0\) \(0\) \(0\) \(12\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta_{2}+\beta_1)q^{3}+(-2\beta_{2}+\beta_1)q^{5}+\cdots\)
832.2.b.c 832.b 8.b $8$ $6.644$ 8.0.195105024.2 None 832.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}-\beta _{4}q^{5}+(-\beta _{1}-\beta _{7})q^{7}+\cdots\)
832.2.b.d 832.b 8.b $8$ $6.644$ 8.0.195105024.2 None 832.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{4}q^{3}+\beta _{4}q^{5}+(\beta _{1}+\beta _{7})q^{7}+(-1+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(832, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(832, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(64, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(416, [\chi])\)\(^{\oplus 2}\)