Properties

Label 832.2.a.g.1.1
Level $832$
Weight $2$
Character 832.1
Self dual yes
Analytic conductor $6.644$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,2,Mod(1,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 832 = 2^{6} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 832.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.64355344817\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 832.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} -2.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{3} -1.00000 q^{5} -3.00000 q^{7} -2.00000 q^{9} +2.00000 q^{11} -1.00000 q^{13} -1.00000 q^{15} -3.00000 q^{17} +2.00000 q^{19} -3.00000 q^{21} -4.00000 q^{23} -4.00000 q^{25} -5.00000 q^{27} -2.00000 q^{29} -4.00000 q^{31} +2.00000 q^{33} +3.00000 q^{35} -5.00000 q^{37} -1.00000 q^{39} -12.0000 q^{41} +7.00000 q^{43} +2.00000 q^{45} +9.00000 q^{47} +2.00000 q^{49} -3.00000 q^{51} -4.00000 q^{53} -2.00000 q^{55} +2.00000 q^{57} +6.00000 q^{59} +4.00000 q^{61} +6.00000 q^{63} +1.00000 q^{65} -10.0000 q^{67} -4.00000 q^{69} +15.0000 q^{71} -2.00000 q^{73} -4.00000 q^{75} -6.00000 q^{77} +8.00000 q^{79} +1.00000 q^{81} -4.00000 q^{83} +3.00000 q^{85} -2.00000 q^{87} +2.00000 q^{89} +3.00000 q^{91} -4.00000 q^{93} -2.00000 q^{95} +10.0000 q^{97} -4.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000 0.577350 0.288675 0.957427i \(-0.406785\pi\)
0.288675 + 0.957427i \(0.406785\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214 −0.223607 0.974679i \(-0.571783\pi\)
−0.223607 + 0.974679i \(0.571783\pi\)
\(6\) 0 0
\(7\) −3.00000 −1.13389 −0.566947 0.823754i \(-0.691875\pi\)
−0.566947 + 0.823754i \(0.691875\pi\)
\(8\) 0 0
\(9\) −2.00000 −0.666667
\(10\) 0 0
\(11\) 2.00000 0.603023 0.301511 0.953463i \(-0.402509\pi\)
0.301511 + 0.953463i \(0.402509\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 2.00000 0.458831 0.229416 0.973329i \(-0.426318\pi\)
0.229416 + 0.973329i \(0.426318\pi\)
\(20\) 0 0
\(21\) −3.00000 −0.654654
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 0 0
\(33\) 2.00000 0.348155
\(34\) 0 0
\(35\) 3.00000 0.507093
\(36\) 0 0
\(37\) −5.00000 −0.821995 −0.410997 0.911636i \(-0.634819\pi\)
−0.410997 + 0.911636i \(0.634819\pi\)
\(38\) 0 0
\(39\) −1.00000 −0.160128
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) 0 0
\(43\) 7.00000 1.06749 0.533745 0.845645i \(-0.320784\pi\)
0.533745 + 0.845645i \(0.320784\pi\)
\(44\) 0 0
\(45\) 2.00000 0.298142
\(46\) 0 0
\(47\) 9.00000 1.31278 0.656392 0.754420i \(-0.272082\pi\)
0.656392 + 0.754420i \(0.272082\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) −4.00000 −0.549442 −0.274721 0.961524i \(-0.588586\pi\)
−0.274721 + 0.961524i \(0.588586\pi\)
\(54\) 0 0
\(55\) −2.00000 −0.269680
\(56\) 0 0
\(57\) 2.00000 0.264906
\(58\) 0 0
\(59\) 6.00000 0.781133 0.390567 0.920575i \(-0.372279\pi\)
0.390567 + 0.920575i \(0.372279\pi\)
\(60\) 0 0
\(61\) 4.00000 0.512148 0.256074 0.966657i \(-0.417571\pi\)
0.256074 + 0.966657i \(0.417571\pi\)
\(62\) 0 0
\(63\) 6.00000 0.755929
\(64\) 0 0
\(65\) 1.00000 0.124035
\(66\) 0 0
\(67\) −10.0000 −1.22169 −0.610847 0.791748i \(-0.709171\pi\)
−0.610847 + 0.791748i \(0.709171\pi\)
\(68\) 0 0
\(69\) −4.00000 −0.481543
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) −2.00000 −0.234082 −0.117041 0.993127i \(-0.537341\pi\)
−0.117041 + 0.993127i \(0.537341\pi\)
\(74\) 0 0
\(75\) −4.00000 −0.461880
\(76\) 0 0
\(77\) −6.00000 −0.683763
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −4.00000 −0.439057 −0.219529 0.975606i \(-0.570452\pi\)
−0.219529 + 0.975606i \(0.570452\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) −2.00000 −0.214423
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 3.00000 0.314485
\(92\) 0 0
\(93\) −4.00000 −0.414781
\(94\) 0 0
\(95\) −2.00000 −0.205196
\(96\) 0 0
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 0 0
\(99\) −4.00000 −0.402015
\(100\) 0 0
\(101\) −4.00000 −0.398015 −0.199007 0.979998i \(-0.563772\pi\)
−0.199007 + 0.979998i \(0.563772\pi\)
\(102\) 0 0
\(103\) −4.00000 −0.394132 −0.197066 0.980390i \(-0.563141\pi\)
−0.197066 + 0.980390i \(0.563141\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) 0 0
\(107\) −12.0000 −1.16008 −0.580042 0.814587i \(-0.696964\pi\)
−0.580042 + 0.814587i \(0.696964\pi\)
\(108\) 0 0
\(109\) 19.0000 1.81987 0.909935 0.414751i \(-0.136131\pi\)
0.909935 + 0.414751i \(0.136131\pi\)
\(110\) 0 0
\(111\) −5.00000 −0.474579
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 4.00000 0.373002
\(116\) 0 0
\(117\) 2.00000 0.184900
\(118\) 0 0
\(119\) 9.00000 0.825029
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) −12.0000 −1.08200
\(124\) 0 0
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0 0
\(129\) 7.00000 0.616316
\(130\) 0 0
\(131\) −21.0000 −1.83478 −0.917389 0.397991i \(-0.869707\pi\)
−0.917389 + 0.397991i \(0.869707\pi\)
\(132\) 0 0
\(133\) −6.00000 −0.520266
\(134\) 0 0
\(135\) 5.00000 0.430331
\(136\) 0 0
\(137\) −4.00000 −0.341743 −0.170872 0.985293i \(-0.554658\pi\)
−0.170872 + 0.985293i \(0.554658\pi\)
\(138\) 0 0
\(139\) 19.0000 1.61156 0.805779 0.592216i \(-0.201747\pi\)
0.805779 + 0.592216i \(0.201747\pi\)
\(140\) 0 0
\(141\) 9.00000 0.757937
\(142\) 0 0
\(143\) −2.00000 −0.167248
\(144\) 0 0
\(145\) 2.00000 0.166091
\(146\) 0 0
\(147\) 2.00000 0.164957
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −5.00000 −0.406894 −0.203447 0.979086i \(-0.565214\pi\)
−0.203447 + 0.979086i \(0.565214\pi\)
\(152\) 0 0
\(153\) 6.00000 0.485071
\(154\) 0 0
\(155\) 4.00000 0.321288
\(156\) 0 0
\(157\) 22.0000 1.75579 0.877896 0.478852i \(-0.158947\pi\)
0.877896 + 0.478852i \(0.158947\pi\)
\(158\) 0 0
\(159\) −4.00000 −0.317221
\(160\) 0 0
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) 20.0000 1.56652 0.783260 0.621694i \(-0.213555\pi\)
0.783260 + 0.621694i \(0.213555\pi\)
\(164\) 0 0
\(165\) −2.00000 −0.155700
\(166\) 0 0
\(167\) 8.00000 0.619059 0.309529 0.950890i \(-0.399829\pi\)
0.309529 + 0.950890i \(0.399829\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −4.00000 −0.305888
\(172\) 0 0
\(173\) −16.0000 −1.21646 −0.608229 0.793762i \(-0.708120\pi\)
−0.608229 + 0.793762i \(0.708120\pi\)
\(174\) 0 0
\(175\) 12.0000 0.907115
\(176\) 0 0
\(177\) 6.00000 0.450988
\(178\) 0 0
\(179\) 11.0000 0.822179 0.411089 0.911595i \(-0.365148\pi\)
0.411089 + 0.911595i \(0.365148\pi\)
\(180\) 0 0
\(181\) −20.0000 −1.48659 −0.743294 0.668965i \(-0.766738\pi\)
−0.743294 + 0.668965i \(0.766738\pi\)
\(182\) 0 0
\(183\) 4.00000 0.295689
\(184\) 0 0
\(185\) 5.00000 0.367607
\(186\) 0 0
\(187\) −6.00000 −0.438763
\(188\) 0 0
\(189\) 15.0000 1.09109
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 12.0000 0.863779 0.431889 0.901927i \(-0.357847\pi\)
0.431889 + 0.901927i \(0.357847\pi\)
\(194\) 0 0
\(195\) 1.00000 0.0716115
\(196\) 0 0
\(197\) −15.0000 −1.06871 −0.534353 0.845262i \(-0.679445\pi\)
−0.534353 + 0.845262i \(0.679445\pi\)
\(198\) 0 0
\(199\) −26.0000 −1.84309 −0.921546 0.388270i \(-0.873073\pi\)
−0.921546 + 0.388270i \(0.873073\pi\)
\(200\) 0 0
\(201\) −10.0000 −0.705346
\(202\) 0 0
\(203\) 6.00000 0.421117
\(204\) 0 0
\(205\) 12.0000 0.838116
\(206\) 0 0
\(207\) 8.00000 0.556038
\(208\) 0 0
\(209\) 4.00000 0.276686
\(210\) 0 0
\(211\) 27.0000 1.85876 0.929378 0.369129i \(-0.120344\pi\)
0.929378 + 0.369129i \(0.120344\pi\)
\(212\) 0 0
\(213\) 15.0000 1.02778
\(214\) 0 0
\(215\) −7.00000 −0.477396
\(216\) 0 0
\(217\) 12.0000 0.814613
\(218\) 0 0
\(219\) −2.00000 −0.135147
\(220\) 0 0
\(221\) 3.00000 0.201802
\(222\) 0 0
\(223\) 15.0000 1.00447 0.502237 0.864730i \(-0.332510\pi\)
0.502237 + 0.864730i \(0.332510\pi\)
\(224\) 0 0
\(225\) 8.00000 0.533333
\(226\) 0 0
\(227\) −12.0000 −0.796468 −0.398234 0.917284i \(-0.630377\pi\)
−0.398234 + 0.917284i \(0.630377\pi\)
\(228\) 0 0
\(229\) 9.00000 0.594737 0.297368 0.954763i \(-0.403891\pi\)
0.297368 + 0.954763i \(0.403891\pi\)
\(230\) 0 0
\(231\) −6.00000 −0.394771
\(232\) 0 0
\(233\) −27.0000 −1.76883 −0.884414 0.466702i \(-0.845442\pi\)
−0.884414 + 0.466702i \(0.845442\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 0 0
\(237\) 8.00000 0.519656
\(238\) 0 0
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 0 0
\(241\) 22.0000 1.41714 0.708572 0.705638i \(-0.249340\pi\)
0.708572 + 0.705638i \(0.249340\pi\)
\(242\) 0 0
\(243\) 16.0000 1.02640
\(244\) 0 0
\(245\) −2.00000 −0.127775
\(246\) 0 0
\(247\) −2.00000 −0.127257
\(248\) 0 0
\(249\) −4.00000 −0.253490
\(250\) 0 0
\(251\) −8.00000 −0.504956 −0.252478 0.967603i \(-0.581245\pi\)
−0.252478 + 0.967603i \(0.581245\pi\)
\(252\) 0 0
\(253\) −8.00000 −0.502956
\(254\) 0 0
\(255\) 3.00000 0.187867
\(256\) 0 0
\(257\) −7.00000 −0.436648 −0.218324 0.975876i \(-0.570059\pi\)
−0.218324 + 0.975876i \(0.570059\pi\)
\(258\) 0 0
\(259\) 15.0000 0.932055
\(260\) 0 0
\(261\) 4.00000 0.247594
\(262\) 0 0
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 4.00000 0.245718
\(266\) 0 0
\(267\) 2.00000 0.122398
\(268\) 0 0
\(269\) 4.00000 0.243884 0.121942 0.992537i \(-0.461088\pi\)
0.121942 + 0.992537i \(0.461088\pi\)
\(270\) 0 0
\(271\) −15.0000 −0.911185 −0.455593 0.890188i \(-0.650573\pi\)
−0.455593 + 0.890188i \(0.650573\pi\)
\(272\) 0 0
\(273\) 3.00000 0.181568
\(274\) 0 0
\(275\) −8.00000 −0.482418
\(276\) 0 0
\(277\) 8.00000 0.480673 0.240337 0.970690i \(-0.422742\pi\)
0.240337 + 0.970690i \(0.422742\pi\)
\(278\) 0 0
\(279\) 8.00000 0.478947
\(280\) 0 0
\(281\) 18.0000 1.07379 0.536895 0.843649i \(-0.319597\pi\)
0.536895 + 0.843649i \(0.319597\pi\)
\(282\) 0 0
\(283\) 20.0000 1.18888 0.594438 0.804141i \(-0.297374\pi\)
0.594438 + 0.804141i \(0.297374\pi\)
\(284\) 0 0
\(285\) −2.00000 −0.118470
\(286\) 0 0
\(287\) 36.0000 2.12501
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 10.0000 0.586210
\(292\) 0 0
\(293\) 7.00000 0.408944 0.204472 0.978872i \(-0.434452\pi\)
0.204472 + 0.978872i \(0.434452\pi\)
\(294\) 0 0
\(295\) −6.00000 −0.349334
\(296\) 0 0
\(297\) −10.0000 −0.580259
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −21.0000 −1.21042
\(302\) 0 0
\(303\) −4.00000 −0.229794
\(304\) 0 0
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −26.0000 −1.48390 −0.741949 0.670456i \(-0.766098\pi\)
−0.741949 + 0.670456i \(0.766098\pi\)
\(308\) 0 0
\(309\) −4.00000 −0.227552
\(310\) 0 0
\(311\) −2.00000 −0.113410 −0.0567048 0.998391i \(-0.518059\pi\)
−0.0567048 + 0.998391i \(0.518059\pi\)
\(312\) 0 0
\(313\) 23.0000 1.30004 0.650018 0.759918i \(-0.274761\pi\)
0.650018 + 0.759918i \(0.274761\pi\)
\(314\) 0 0
\(315\) −6.00000 −0.338062
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −4.00000 −0.223957
\(320\) 0 0
\(321\) −12.0000 −0.669775
\(322\) 0 0
\(323\) −6.00000 −0.333849
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) 19.0000 1.05070
\(328\) 0 0
\(329\) −27.0000 −1.48856
\(330\) 0 0
\(331\) −16.0000 −0.879440 −0.439720 0.898135i \(-0.644922\pi\)
−0.439720 + 0.898135i \(0.644922\pi\)
\(332\) 0 0
\(333\) 10.0000 0.547997
\(334\) 0 0
\(335\) 10.0000 0.546358
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 0 0
\(339\) −6.00000 −0.325875
\(340\) 0 0
\(341\) −8.00000 −0.433224
\(342\) 0 0
\(343\) 15.0000 0.809924
\(344\) 0 0
\(345\) 4.00000 0.215353
\(346\) 0 0
\(347\) 11.0000 0.590511 0.295255 0.955418i \(-0.404595\pi\)
0.295255 + 0.955418i \(0.404595\pi\)
\(348\) 0 0
\(349\) 7.00000 0.374701 0.187351 0.982293i \(-0.440010\pi\)
0.187351 + 0.982293i \(0.440010\pi\)
\(350\) 0 0
\(351\) 5.00000 0.266880
\(352\) 0 0
\(353\) −24.0000 −1.27739 −0.638696 0.769460i \(-0.720526\pi\)
−0.638696 + 0.769460i \(0.720526\pi\)
\(354\) 0 0
\(355\) −15.0000 −0.796117
\(356\) 0 0
\(357\) 9.00000 0.476331
\(358\) 0 0
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 0 0
\(363\) −7.00000 −0.367405
\(364\) 0 0
\(365\) 2.00000 0.104685
\(366\) 0 0
\(367\) −10.0000 −0.521996 −0.260998 0.965339i \(-0.584052\pi\)
−0.260998 + 0.965339i \(0.584052\pi\)
\(368\) 0 0
\(369\) 24.0000 1.24939
\(370\) 0 0
\(371\) 12.0000 0.623009
\(372\) 0 0
\(373\) −36.0000 −1.86401 −0.932005 0.362446i \(-0.881942\pi\)
−0.932005 + 0.362446i \(0.881942\pi\)
\(374\) 0 0
\(375\) 9.00000 0.464758
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −8.00000 −0.410932 −0.205466 0.978664i \(-0.565871\pi\)
−0.205466 + 0.978664i \(0.565871\pi\)
\(380\) 0 0
\(381\) −16.0000 −0.819705
\(382\) 0 0
\(383\) 7.00000 0.357683 0.178842 0.983878i \(-0.442765\pi\)
0.178842 + 0.983878i \(0.442765\pi\)
\(384\) 0 0
\(385\) 6.00000 0.305788
\(386\) 0 0
\(387\) −14.0000 −0.711660
\(388\) 0 0
\(389\) −6.00000 −0.304212 −0.152106 0.988364i \(-0.548606\pi\)
−0.152106 + 0.988364i \(0.548606\pi\)
\(390\) 0 0
\(391\) 12.0000 0.606866
\(392\) 0 0
\(393\) −21.0000 −1.05931
\(394\) 0 0
\(395\) −8.00000 −0.402524
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) −6.00000 −0.300376
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 4.00000 0.199254
\(404\) 0 0
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) −10.0000 −0.495682
\(408\) 0 0
\(409\) 12.0000 0.593362 0.296681 0.954977i \(-0.404120\pi\)
0.296681 + 0.954977i \(0.404120\pi\)
\(410\) 0 0
\(411\) −4.00000 −0.197305
\(412\) 0 0
\(413\) −18.0000 −0.885722
\(414\) 0 0
\(415\) 4.00000 0.196352
\(416\) 0 0
\(417\) 19.0000 0.930434
\(418\) 0 0
\(419\) 1.00000 0.0488532 0.0244266 0.999702i \(-0.492224\pi\)
0.0244266 + 0.999702i \(0.492224\pi\)
\(420\) 0 0
\(421\) 3.00000 0.146211 0.0731055 0.997324i \(-0.476709\pi\)
0.0731055 + 0.997324i \(0.476709\pi\)
\(422\) 0 0
\(423\) −18.0000 −0.875190
\(424\) 0 0
\(425\) 12.0000 0.582086
\(426\) 0 0
\(427\) −12.0000 −0.580721
\(428\) 0 0
\(429\) −2.00000 −0.0965609
\(430\) 0 0
\(431\) −3.00000 −0.144505 −0.0722525 0.997386i \(-0.523019\pi\)
−0.0722525 + 0.997386i \(0.523019\pi\)
\(432\) 0 0
\(433\) −25.0000 −1.20142 −0.600712 0.799466i \(-0.705116\pi\)
−0.600712 + 0.799466i \(0.705116\pi\)
\(434\) 0 0
\(435\) 2.00000 0.0958927
\(436\) 0 0
\(437\) −8.00000 −0.382692
\(438\) 0 0
\(439\) 2.00000 0.0954548 0.0477274 0.998860i \(-0.484802\pi\)
0.0477274 + 0.998860i \(0.484802\pi\)
\(440\) 0 0
\(441\) −4.00000 −0.190476
\(442\) 0 0
\(443\) −11.0000 −0.522626 −0.261313 0.965254i \(-0.584155\pi\)
−0.261313 + 0.965254i \(0.584155\pi\)
\(444\) 0 0
\(445\) −2.00000 −0.0948091
\(446\) 0 0
\(447\) 6.00000 0.283790
\(448\) 0 0
\(449\) 26.0000 1.22702 0.613508 0.789689i \(-0.289758\pi\)
0.613508 + 0.789689i \(0.289758\pi\)
\(450\) 0 0
\(451\) −24.0000 −1.13012
\(452\) 0 0
\(453\) −5.00000 −0.234920
\(454\) 0 0
\(455\) −3.00000 −0.140642
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) 0 0
\(459\) 15.0000 0.700140
\(460\) 0 0
\(461\) −21.0000 −0.978068 −0.489034 0.872265i \(-0.662651\pi\)
−0.489034 + 0.872265i \(0.662651\pi\)
\(462\) 0 0
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 0 0
\(465\) 4.00000 0.185496
\(466\) 0 0
\(467\) −36.0000 −1.66588 −0.832941 0.553362i \(-0.813345\pi\)
−0.832941 + 0.553362i \(0.813345\pi\)
\(468\) 0 0
\(469\) 30.0000 1.38527
\(470\) 0 0
\(471\) 22.0000 1.01371
\(472\) 0 0
\(473\) 14.0000 0.643721
\(474\) 0 0
\(475\) −8.00000 −0.367065
\(476\) 0 0
\(477\) 8.00000 0.366295
\(478\) 0 0
\(479\) −15.0000 −0.685367 −0.342684 0.939451i \(-0.611336\pi\)
−0.342684 + 0.939451i \(0.611336\pi\)
\(480\) 0 0
\(481\) 5.00000 0.227980
\(482\) 0 0
\(483\) 12.0000 0.546019
\(484\) 0 0
\(485\) −10.0000 −0.454077
\(486\) 0 0
\(487\) 8.00000 0.362515 0.181257 0.983436i \(-0.441983\pi\)
0.181257 + 0.983436i \(0.441983\pi\)
\(488\) 0 0
\(489\) 20.0000 0.904431
\(490\) 0 0
\(491\) 31.0000 1.39901 0.699505 0.714628i \(-0.253404\pi\)
0.699505 + 0.714628i \(0.253404\pi\)
\(492\) 0 0
\(493\) 6.00000 0.270226
\(494\) 0 0
\(495\) 4.00000 0.179787
\(496\) 0 0
\(497\) −45.0000 −2.01853
\(498\) 0 0
\(499\) −4.00000 −0.179065 −0.0895323 0.995984i \(-0.528537\pi\)
−0.0895323 + 0.995984i \(0.528537\pi\)
\(500\) 0 0
\(501\) 8.00000 0.357414
\(502\) 0 0
\(503\) −10.0000 −0.445878 −0.222939 0.974832i \(-0.571565\pi\)
−0.222939 + 0.974832i \(0.571565\pi\)
\(504\) 0 0
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 1.00000 0.0444116
\(508\) 0 0
\(509\) −30.0000 −1.32973 −0.664863 0.746965i \(-0.731510\pi\)
−0.664863 + 0.746965i \(0.731510\pi\)
\(510\) 0 0
\(511\) 6.00000 0.265424
\(512\) 0 0
\(513\) −10.0000 −0.441511
\(514\) 0 0
\(515\) 4.00000 0.176261
\(516\) 0 0
\(517\) 18.0000 0.791639
\(518\) 0 0
\(519\) −16.0000 −0.702322
\(520\) 0 0
\(521\) −1.00000 −0.0438108 −0.0219054 0.999760i \(-0.506973\pi\)
−0.0219054 + 0.999760i \(0.506973\pi\)
\(522\) 0 0
\(523\) −4.00000 −0.174908 −0.0874539 0.996169i \(-0.527873\pi\)
−0.0874539 + 0.996169i \(0.527873\pi\)
\(524\) 0 0
\(525\) 12.0000 0.523723
\(526\) 0 0
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) 0 0
\(531\) −12.0000 −0.520756
\(532\) 0 0
\(533\) 12.0000 0.519778
\(534\) 0 0
\(535\) 12.0000 0.518805
\(536\) 0 0
\(537\) 11.0000 0.474685
\(538\) 0 0
\(539\) 4.00000 0.172292
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 0 0
\(543\) −20.0000 −0.858282
\(544\) 0 0
\(545\) −19.0000 −0.813871
\(546\) 0 0
\(547\) 17.0000 0.726868 0.363434 0.931620i \(-0.381604\pi\)
0.363434 + 0.931620i \(0.381604\pi\)
\(548\) 0 0
\(549\) −8.00000 −0.341432
\(550\) 0 0
\(551\) −4.00000 −0.170406
\(552\) 0 0
\(553\) −24.0000 −1.02058
\(554\) 0 0
\(555\) 5.00000 0.212238
\(556\) 0 0
\(557\) −7.00000 −0.296600 −0.148300 0.988942i \(-0.547380\pi\)
−0.148300 + 0.988942i \(0.547380\pi\)
\(558\) 0 0
\(559\) −7.00000 −0.296068
\(560\) 0 0
\(561\) −6.00000 −0.253320
\(562\) 0 0
\(563\) 39.0000 1.64365 0.821827 0.569737i \(-0.192955\pi\)
0.821827 + 0.569737i \(0.192955\pi\)
\(564\) 0 0
\(565\) 6.00000 0.252422
\(566\) 0 0
\(567\) −3.00000 −0.125988
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) 29.0000 1.21361 0.606806 0.794850i \(-0.292450\pi\)
0.606806 + 0.794850i \(0.292450\pi\)
\(572\) 0 0
\(573\) −18.0000 −0.751961
\(574\) 0 0
\(575\) 16.0000 0.667246
\(576\) 0 0
\(577\) 10.0000 0.416305 0.208153 0.978096i \(-0.433255\pi\)
0.208153 + 0.978096i \(0.433255\pi\)
\(578\) 0 0
\(579\) 12.0000 0.498703
\(580\) 0 0
\(581\) 12.0000 0.497844
\(582\) 0 0
\(583\) −8.00000 −0.331326
\(584\) 0 0
\(585\) −2.00000 −0.0826898
\(586\) 0 0
\(587\) 20.0000 0.825488 0.412744 0.910847i \(-0.364570\pi\)
0.412744 + 0.910847i \(0.364570\pi\)
\(588\) 0 0
\(589\) −8.00000 −0.329634
\(590\) 0 0
\(591\) −15.0000 −0.617018
\(592\) 0 0
\(593\) −34.0000 −1.39621 −0.698106 0.715994i \(-0.745974\pi\)
−0.698106 + 0.715994i \(0.745974\pi\)
\(594\) 0 0
\(595\) −9.00000 −0.368964
\(596\) 0 0
\(597\) −26.0000 −1.06411
\(598\) 0 0
\(599\) −42.0000 −1.71607 −0.858037 0.513588i \(-0.828316\pi\)
−0.858037 + 0.513588i \(0.828316\pi\)
\(600\) 0 0
\(601\) 21.0000 0.856608 0.428304 0.903635i \(-0.359111\pi\)
0.428304 + 0.903635i \(0.359111\pi\)
\(602\) 0 0
\(603\) 20.0000 0.814463
\(604\) 0 0
\(605\) 7.00000 0.284590
\(606\) 0 0
\(607\) 38.0000 1.54237 0.771186 0.636610i \(-0.219664\pi\)
0.771186 + 0.636610i \(0.219664\pi\)
\(608\) 0 0
\(609\) 6.00000 0.243132
\(610\) 0 0
\(611\) −9.00000 −0.364101
\(612\) 0 0
\(613\) −22.0000 −0.888572 −0.444286 0.895885i \(-0.646543\pi\)
−0.444286 + 0.895885i \(0.646543\pi\)
\(614\) 0 0
\(615\) 12.0000 0.483887
\(616\) 0 0
\(617\) 8.00000 0.322068 0.161034 0.986949i \(-0.448517\pi\)
0.161034 + 0.986949i \(0.448517\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 20.0000 0.802572
\(622\) 0 0
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) 11.0000 0.440000
\(626\) 0 0
\(627\) 4.00000 0.159745
\(628\) 0 0
\(629\) 15.0000 0.598089
\(630\) 0 0
\(631\) −25.0000 −0.995234 −0.497617 0.867397i \(-0.665792\pi\)
−0.497617 + 0.867397i \(0.665792\pi\)
\(632\) 0 0
\(633\) 27.0000 1.07315
\(634\) 0 0
\(635\) 16.0000 0.634941
\(636\) 0 0
\(637\) −2.00000 −0.0792429
\(638\) 0 0
\(639\) −30.0000 −1.18678
\(640\) 0 0
\(641\) −2.00000 −0.0789953 −0.0394976 0.999220i \(-0.512576\pi\)
−0.0394976 + 0.999220i \(0.512576\pi\)
\(642\) 0 0
\(643\) −2.00000 −0.0788723 −0.0394362 0.999222i \(-0.512556\pi\)
−0.0394362 + 0.999222i \(0.512556\pi\)
\(644\) 0 0
\(645\) −7.00000 −0.275625
\(646\) 0 0
\(647\) 26.0000 1.02217 0.511083 0.859532i \(-0.329245\pi\)
0.511083 + 0.859532i \(0.329245\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 12.0000 0.470317
\(652\) 0 0
\(653\) −32.0000 −1.25226 −0.626128 0.779720i \(-0.715361\pi\)
−0.626128 + 0.779720i \(0.715361\pi\)
\(654\) 0 0
\(655\) 21.0000 0.820538
\(656\) 0 0
\(657\) 4.00000 0.156055
\(658\) 0 0
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) 0 0
\(663\) 3.00000 0.116510
\(664\) 0 0
\(665\) 6.00000 0.232670
\(666\) 0 0
\(667\) 8.00000 0.309761
\(668\) 0 0
\(669\) 15.0000 0.579934
\(670\) 0 0
\(671\) 8.00000 0.308837
\(672\) 0 0
\(673\) 13.0000 0.501113 0.250557 0.968102i \(-0.419386\pi\)
0.250557 + 0.968102i \(0.419386\pi\)
\(674\) 0 0
\(675\) 20.0000 0.769800
\(676\) 0 0
\(677\) 40.0000 1.53732 0.768662 0.639655i \(-0.220923\pi\)
0.768662 + 0.639655i \(0.220923\pi\)
\(678\) 0 0
\(679\) −30.0000 −1.15129
\(680\) 0 0
\(681\) −12.0000 −0.459841
\(682\) 0 0
\(683\) −16.0000 −0.612223 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(684\) 0 0
\(685\) 4.00000 0.152832
\(686\) 0 0
\(687\) 9.00000 0.343371
\(688\) 0 0
\(689\) 4.00000 0.152388
\(690\) 0 0
\(691\) −32.0000 −1.21734 −0.608669 0.793424i \(-0.708296\pi\)
−0.608669 + 0.793424i \(0.708296\pi\)
\(692\) 0 0
\(693\) 12.0000 0.455842
\(694\) 0 0
\(695\) −19.0000 −0.720711
\(696\) 0 0
\(697\) 36.0000 1.36360
\(698\) 0 0
\(699\) −27.0000 −1.02123
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) −10.0000 −0.377157
\(704\) 0 0
\(705\) −9.00000 −0.338960
\(706\) 0 0
\(707\) 12.0000 0.451306
\(708\) 0 0
\(709\) 30.0000 1.12667 0.563337 0.826227i \(-0.309517\pi\)
0.563337 + 0.826227i \(0.309517\pi\)
\(710\) 0 0
\(711\) −16.0000 −0.600047
\(712\) 0 0
\(713\) 16.0000 0.599205
\(714\) 0 0
\(715\) 2.00000 0.0747958
\(716\) 0 0
\(717\) −27.0000 −1.00833
\(718\) 0 0
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) 0 0
\(721\) 12.0000 0.446903
\(722\) 0 0
\(723\) 22.0000 0.818189
\(724\) 0 0
\(725\) 8.00000 0.297113
\(726\) 0 0
\(727\) 14.0000 0.519231 0.259616 0.965712i \(-0.416404\pi\)
0.259616 + 0.965712i \(0.416404\pi\)
\(728\) 0 0
\(729\) 13.0000 0.481481
\(730\) 0 0
\(731\) −21.0000 −0.776713
\(732\) 0 0
\(733\) 29.0000 1.07114 0.535570 0.844491i \(-0.320097\pi\)
0.535570 + 0.844491i \(0.320097\pi\)
\(734\) 0 0
\(735\) −2.00000 −0.0737711
\(736\) 0 0
\(737\) −20.0000 −0.736709
\(738\) 0 0
\(739\) 16.0000 0.588570 0.294285 0.955718i \(-0.404919\pi\)
0.294285 + 0.955718i \(0.404919\pi\)
\(740\) 0 0
\(741\) −2.00000 −0.0734718
\(742\) 0 0
\(743\) −51.0000 −1.87101 −0.935504 0.353315i \(-0.885054\pi\)
−0.935504 + 0.353315i \(0.885054\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) 8.00000 0.292705
\(748\) 0 0
\(749\) 36.0000 1.31541
\(750\) 0 0
\(751\) 4.00000 0.145962 0.0729810 0.997333i \(-0.476749\pi\)
0.0729810 + 0.997333i \(0.476749\pi\)
\(752\) 0 0
\(753\) −8.00000 −0.291536
\(754\) 0 0
\(755\) 5.00000 0.181969
\(756\) 0 0
\(757\) −20.0000 −0.726912 −0.363456 0.931611i \(-0.618403\pi\)
−0.363456 + 0.931611i \(0.618403\pi\)
\(758\) 0 0
\(759\) −8.00000 −0.290382
\(760\) 0 0
\(761\) 14.0000 0.507500 0.253750 0.967270i \(-0.418336\pi\)
0.253750 + 0.967270i \(0.418336\pi\)
\(762\) 0 0
\(763\) −57.0000 −2.06354
\(764\) 0 0
\(765\) −6.00000 −0.216930
\(766\) 0 0
\(767\) −6.00000 −0.216647
\(768\) 0 0
\(769\) 8.00000 0.288487 0.144244 0.989542i \(-0.453925\pi\)
0.144244 + 0.989542i \(0.453925\pi\)
\(770\) 0 0
\(771\) −7.00000 −0.252099
\(772\) 0 0
\(773\) 51.0000 1.83434 0.917171 0.398493i \(-0.130467\pi\)
0.917171 + 0.398493i \(0.130467\pi\)
\(774\) 0 0
\(775\) 16.0000 0.574737
\(776\) 0 0
\(777\) 15.0000 0.538122
\(778\) 0 0
\(779\) −24.0000 −0.859889
\(780\) 0 0
\(781\) 30.0000 1.07348
\(782\) 0 0
\(783\) 10.0000 0.357371
\(784\) 0 0
\(785\) −22.0000 −0.785214
\(786\) 0 0
\(787\) −52.0000 −1.85360 −0.926800 0.375555i \(-0.877452\pi\)
−0.926800 + 0.375555i \(0.877452\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 18.0000 0.640006
\(792\) 0 0
\(793\) −4.00000 −0.142044
\(794\) 0 0
\(795\) 4.00000 0.141865
\(796\) 0 0
\(797\) −54.0000 −1.91278 −0.956389 0.292096i \(-0.905647\pi\)
−0.956389 + 0.292096i \(0.905647\pi\)
\(798\) 0 0
\(799\) −27.0000 −0.955191
\(800\) 0 0
\(801\) −4.00000 −0.141333
\(802\) 0 0
\(803\) −4.00000 −0.141157
\(804\) 0 0
\(805\) −12.0000 −0.422944
\(806\) 0 0
\(807\) 4.00000 0.140807
\(808\) 0 0
\(809\) 47.0000 1.65243 0.826216 0.563353i \(-0.190489\pi\)
0.826216 + 0.563353i \(0.190489\pi\)
\(810\) 0 0
\(811\) −4.00000 −0.140459 −0.0702295 0.997531i \(-0.522373\pi\)
−0.0702295 + 0.997531i \(0.522373\pi\)
\(812\) 0 0
\(813\) −15.0000 −0.526073
\(814\) 0 0
\(815\) −20.0000 −0.700569
\(816\) 0 0
\(817\) 14.0000 0.489798
\(818\) 0 0
\(819\) −6.00000 −0.209657
\(820\) 0 0
\(821\) 15.0000 0.523504 0.261752 0.965135i \(-0.415700\pi\)
0.261752 + 0.965135i \(0.415700\pi\)
\(822\) 0 0
\(823\) 46.0000 1.60346 0.801730 0.597687i \(-0.203913\pi\)
0.801730 + 0.597687i \(0.203913\pi\)
\(824\) 0 0
\(825\) −8.00000 −0.278524
\(826\) 0 0
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) 0 0
\(829\) −14.0000 −0.486240 −0.243120 0.969996i \(-0.578171\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(830\) 0 0
\(831\) 8.00000 0.277517
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 0 0
\(835\) −8.00000 −0.276851
\(836\) 0 0
\(837\) 20.0000 0.691301
\(838\) 0 0
\(839\) 40.0000 1.38095 0.690477 0.723355i \(-0.257401\pi\)
0.690477 + 0.723355i \(0.257401\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 18.0000 0.619953
\(844\) 0 0
\(845\) −1.00000 −0.0344010
\(846\) 0 0
\(847\) 21.0000 0.721569
\(848\) 0 0
\(849\) 20.0000 0.686398
\(850\) 0 0
\(851\) 20.0000 0.685591
\(852\) 0 0
\(853\) 9.00000 0.308154 0.154077 0.988059i \(-0.450760\pi\)
0.154077 + 0.988059i \(0.450760\pi\)
\(854\) 0 0
\(855\) 4.00000 0.136797
\(856\) 0 0
\(857\) 30.0000 1.02478 0.512390 0.858753i \(-0.328760\pi\)
0.512390 + 0.858753i \(0.328760\pi\)
\(858\) 0 0
\(859\) 4.00000 0.136478 0.0682391 0.997669i \(-0.478262\pi\)
0.0682391 + 0.997669i \(0.478262\pi\)
\(860\) 0 0
\(861\) 36.0000 1.22688
\(862\) 0 0
\(863\) 9.00000 0.306364 0.153182 0.988198i \(-0.451048\pi\)
0.153182 + 0.988198i \(0.451048\pi\)
\(864\) 0 0
\(865\) 16.0000 0.544016
\(866\) 0 0
\(867\) −8.00000 −0.271694
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 10.0000 0.338837
\(872\) 0 0
\(873\) −20.0000 −0.676897
\(874\) 0 0
\(875\) −27.0000 −0.912767
\(876\) 0 0
\(877\) −23.0000 −0.776655 −0.388327 0.921521i \(-0.626947\pi\)
−0.388327 + 0.921521i \(0.626947\pi\)
\(878\) 0 0
\(879\) 7.00000 0.236104
\(880\) 0 0
\(881\) −35.0000 −1.17918 −0.589590 0.807703i \(-0.700711\pi\)
−0.589590 + 0.807703i \(0.700711\pi\)
\(882\) 0 0
\(883\) −11.0000 −0.370179 −0.185090 0.982722i \(-0.559258\pi\)
−0.185090 + 0.982722i \(0.559258\pi\)
\(884\) 0 0
\(885\) −6.00000 −0.201688
\(886\) 0 0
\(887\) −20.0000 −0.671534 −0.335767 0.941945i \(-0.608996\pi\)
−0.335767 + 0.941945i \(0.608996\pi\)
\(888\) 0 0
\(889\) 48.0000 1.60987
\(890\) 0 0
\(891\) 2.00000 0.0670025
\(892\) 0 0
\(893\) 18.0000 0.602347
\(894\) 0 0
\(895\) −11.0000 −0.367689
\(896\) 0 0
\(897\) 4.00000 0.133556
\(898\) 0 0
\(899\) 8.00000 0.266815
\(900\) 0 0
\(901\) 12.0000 0.399778
\(902\) 0 0
\(903\) −21.0000 −0.698836
\(904\) 0 0
\(905\) 20.0000 0.664822
\(906\) 0 0
\(907\) −5.00000 −0.166022 −0.0830111 0.996549i \(-0.526454\pi\)
−0.0830111 + 0.996549i \(0.526454\pi\)
\(908\) 0 0
\(909\) 8.00000 0.265343
\(910\) 0 0
\(911\) −26.0000 −0.861418 −0.430709 0.902491i \(-0.641737\pi\)
−0.430709 + 0.902491i \(0.641737\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) −4.00000 −0.132236
\(916\) 0 0
\(917\) 63.0000 2.08044
\(918\) 0 0
\(919\) 48.0000 1.58337 0.791687 0.610927i \(-0.209203\pi\)
0.791687 + 0.610927i \(0.209203\pi\)
\(920\) 0 0
\(921\) −26.0000 −0.856729
\(922\) 0 0
\(923\) −15.0000 −0.493731
\(924\) 0 0
\(925\) 20.0000 0.657596
\(926\) 0 0
\(927\) 8.00000 0.262754
\(928\) 0 0
\(929\) 36.0000 1.18112 0.590561 0.806993i \(-0.298907\pi\)
0.590561 + 0.806993i \(0.298907\pi\)
\(930\) 0 0
\(931\) 4.00000 0.131095
\(932\) 0 0
\(933\) −2.00000 −0.0654771
\(934\) 0 0
\(935\) 6.00000 0.196221
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 0 0
\(939\) 23.0000 0.750577
\(940\) 0 0
\(941\) 1.00000 0.0325991 0.0162995 0.999867i \(-0.494811\pi\)
0.0162995 + 0.999867i \(0.494811\pi\)
\(942\) 0 0
\(943\) 48.0000 1.56310
\(944\) 0 0
\(945\) −15.0000 −0.487950
\(946\) 0 0
\(947\) −46.0000 −1.49480 −0.747400 0.664375i \(-0.768698\pi\)
−0.747400 + 0.664375i \(0.768698\pi\)
\(948\) 0 0
\(949\) 2.00000 0.0649227
\(950\) 0 0
\(951\) −18.0000 −0.583690
\(952\) 0 0
\(953\) −33.0000 −1.06897 −0.534487 0.845176i \(-0.679495\pi\)
−0.534487 + 0.845176i \(0.679495\pi\)
\(954\) 0 0
\(955\) 18.0000 0.582466
\(956\) 0 0
\(957\) −4.00000 −0.129302
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) 24.0000 0.773389
\(964\) 0 0
\(965\) −12.0000 −0.386294
\(966\) 0 0
\(967\) 43.0000 1.38279 0.691393 0.722478i \(-0.256997\pi\)
0.691393 + 0.722478i \(0.256997\pi\)
\(968\) 0 0
\(969\) −6.00000 −0.192748
\(970\) 0 0
\(971\) −51.0000 −1.63667 −0.818334 0.574743i \(-0.805102\pi\)
−0.818334 + 0.574743i \(0.805102\pi\)
\(972\) 0 0
\(973\) −57.0000 −1.82734
\(974\) 0 0
\(975\) 4.00000 0.128103
\(976\) 0 0
\(977\) −14.0000 −0.447900 −0.223950 0.974601i \(-0.571895\pi\)
−0.223950 + 0.974601i \(0.571895\pi\)
\(978\) 0 0
\(979\) 4.00000 0.127841
\(980\) 0 0
\(981\) −38.0000 −1.21325
\(982\) 0 0
\(983\) −27.0000 −0.861166 −0.430583 0.902551i \(-0.641692\pi\)
−0.430583 + 0.902551i \(0.641692\pi\)
\(984\) 0 0
\(985\) 15.0000 0.477940
\(986\) 0 0
\(987\) −27.0000 −0.859419
\(988\) 0 0
\(989\) −28.0000 −0.890348
\(990\) 0 0
\(991\) −2.00000 −0.0635321 −0.0317660 0.999495i \(-0.510113\pi\)
−0.0317660 + 0.999495i \(0.510113\pi\)
\(992\) 0 0
\(993\) −16.0000 −0.507745
\(994\) 0 0
\(995\) 26.0000 0.824255
\(996\) 0 0
\(997\) 10.0000 0.316703 0.158352 0.987383i \(-0.449382\pi\)
0.158352 + 0.987383i \(0.449382\pi\)
\(998\) 0 0
\(999\) 25.0000 0.790965
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 832.2.a.g.1.1 1
3.2 odd 2 7488.2.a.bi.1.1 1
4.3 odd 2 832.2.a.b.1.1 1
8.3 odd 2 416.2.a.b.1.1 yes 1
8.5 even 2 416.2.a.a.1.1 1
12.11 even 2 7488.2.a.bj.1.1 1
16.3 odd 4 3328.2.b.c.1665.1 2
16.5 even 4 3328.2.b.r.1665.1 2
16.11 odd 4 3328.2.b.c.1665.2 2
16.13 even 4 3328.2.b.r.1665.2 2
24.5 odd 2 3744.2.a.e.1.1 1
24.11 even 2 3744.2.a.f.1.1 1
104.51 odd 2 5408.2.a.i.1.1 1
104.77 even 2 5408.2.a.e.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.a.1.1 1 8.5 even 2
416.2.a.b.1.1 yes 1 8.3 odd 2
832.2.a.b.1.1 1 4.3 odd 2
832.2.a.g.1.1 1 1.1 even 1 trivial
3328.2.b.c.1665.1 2 16.3 odd 4
3328.2.b.c.1665.2 2 16.11 odd 4
3328.2.b.r.1665.1 2 16.5 even 4
3328.2.b.r.1665.2 2 16.13 even 4
3744.2.a.e.1.1 1 24.5 odd 2
3744.2.a.f.1.1 1 24.11 even 2
5408.2.a.e.1.1 1 104.77 even 2
5408.2.a.i.1.1 1 104.51 odd 2
7488.2.a.bi.1.1 1 3.2 odd 2
7488.2.a.bj.1.1 1 12.11 even 2