# Properties

 Label 8281.2.a.ck Level $8281$ Weight $2$ Character orbit 8281.a Self dual yes Analytic conductor $66.124$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$8281 = 7^{2} \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8281.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$66.1241179138$$ Analytic rank: $$0$$ Dimension: $$8$$ Coefficient field: $$\mathbb{Q}[x]/(x^{8} - \cdots)$$ Defining polynomial: $$x^{8} - 11 x^{6} + 36 x^{4} - 31 x^{2} + 3$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 91) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\ldots,\beta_{7}$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_{1} q^{2} + ( 1 + \beta_{4} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + \beta_{5} q^{5} + ( \beta_{1} + \beta_{3} + \beta_{5} ) q^{6} + \beta_{3} q^{8} + ( 2 + \beta_{4} + \beta_{6} ) q^{9} +O(q^{10})$$ $$q + \beta_{1} q^{2} + ( 1 + \beta_{4} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + \beta_{5} q^{5} + ( \beta_{1} + \beta_{3} + \beta_{5} ) q^{6} + \beta_{3} q^{8} + ( 2 + \beta_{4} + \beta_{6} ) q^{9} + ( -\beta_{2} + 2 \beta_{4} + \beta_{6} ) q^{10} + ( -\beta_{1} + \beta_{7} ) q^{11} + ( 3 + \beta_{2} + \beta_{4} + \beta_{6} ) q^{12} + ( 2 \beta_{1} + \beta_{5} ) q^{15} + ( -\beta_{2} + \beta_{4} ) q^{16} + ( 1 - \beta_{6} ) q^{17} + ( 3 \beta_{1} + 3 \beta_{5} + \beta_{7} ) q^{18} + ( 2 \beta_{1} - \beta_{3} ) q^{19} + ( 2 \beta_{5} + \beta_{7} ) q^{20} + ( -2 - \beta_{2} + \beta_{4} + \beta_{6} ) q^{22} + ( -1 + \beta_{4} ) q^{23} + ( 3 \beta_{1} - \beta_{3} + \beta_{5} + \beta_{7} ) q^{24} + ( 2 \beta_{2} - \beta_{4} - \beta_{6} ) q^{25} + ( 3 + 2 \beta_{2} + \beta_{4} + \beta_{6} ) q^{27} + ( -2 \beta_{2} + 3 \beta_{4} ) q^{29} + ( 6 + \beta_{2} + 2 \beta_{4} + \beta_{6} ) q^{30} + ( -\beta_{1} - \beta_{3} - \beta_{5} + \beta_{7} ) q^{31} + ( -\beta_{1} - 2 \beta_{3} + \beta_{5} ) q^{32} + ( -\beta_{1} + \beta_{3} - \beta_{5} + \beta_{7} ) q^{33} + ( \beta_{3} - 2 \beta_{5} - \beta_{7} ) q^{34} + ( 6 + 5 \beta_{4} + 2 \beta_{6} ) q^{36} + ( -\beta_{1} - \beta_{3} + \beta_{5} - \beta_{7} ) q^{37} + ( 4 + \beta_{2} - \beta_{4} ) q^{38} + ( 1 + \beta_{4} + \beta_{6} ) q^{40} + ( -\beta_{1} - \beta_{3} - 2 \beta_{5} + \beta_{7} ) q^{41} + ( 2 \beta_{4} - \beta_{6} ) q^{43} + ( -\beta_{3} + 3 \beta_{5} - \beta_{7} ) q^{44} + ( 4 \beta_{1} + 2 \beta_{3} ) q^{45} + ( -\beta_{1} + \beta_{3} + \beta_{5} ) q^{46} + ( \beta_{1} + 2 \beta_{3} + 2 \beta_{5} - \beta_{7} ) q^{47} + ( 2 - \beta_{2} ) q^{48} + ( \beta_{1} + 2 \beta_{3} - 3 \beta_{5} - \beta_{7} ) q^{50} + ( 1 - 2 \beta_{2} - \beta_{4} ) q^{51} + ( 3 + 2 \beta_{2} ) q^{53} + ( 6 \beta_{1} + 2 \beta_{3} + 3 \beta_{5} + \beta_{7} ) q^{54} + ( 1 + 4 \beta_{2} - 3 \beta_{4} - \beta_{6} ) q^{55} + ( -\beta_{1} + 3 \beta_{3} + \beta_{5} - \beta_{7} ) q^{57} + ( -2 \beta_{1} + \beta_{3} + 3 \beta_{5} ) q^{58} + ( -3 \beta_{1} + 2 \beta_{3} - 2 \beta_{5} - \beta_{7} ) q^{59} + ( 4 \beta_{1} + 2 \beta_{3} + 2 \beta_{5} + \beta_{7} ) q^{60} + ( 1 - 2 \beta_{2} ) q^{61} + ( -4 - \beta_{2} - 2 \beta_{4} ) q^{62} + ( -7 - 2 \beta_{2} - 2 \beta_{4} + \beta_{6} ) q^{64} + \beta_{2} q^{66} + ( 3 \beta_{3} + 2 \beta_{5} ) q^{67} + ( -1 + 3 \beta_{2} - 4 \beta_{4} - \beta_{6} ) q^{68} + ( 3 - \beta_{4} + \beta_{6} ) q^{69} + ( 4 \beta_{1} - 3 \beta_{3} - \beta_{5} ) q^{71} + ( 2 \beta_{1} + 3 \beta_{3} + 3 \beta_{5} ) q^{72} + ( 2 \beta_{1} + \beta_{5} + 2 \beta_{7} ) q^{73} + ( -6 - 3 \beta_{2} ) q^{74} + ( -2 \beta_{4} + \beta_{6} ) q^{75} + ( \beta_{1} + 2 \beta_{3} - \beta_{5} ) q^{76} + ( -3 - \beta_{4} - \beta_{6} ) q^{79} + ( 2 \beta_{1} - \beta_{5} - \beta_{7} ) q^{80} + ( 5 + 4 \beta_{2} + 2 \beta_{4} ) q^{81} + ( -4 - 4 \beta_{4} - \beta_{6} ) q^{82} + ( -5 \beta_{1} + \beta_{3} - \beta_{7} ) q^{83} + ( -2 \beta_{1} - 2 \beta_{3} + 3 \beta_{5} ) q^{85} + ( -\beta_{1} + 3 \beta_{3} - \beta_{7} ) q^{86} + ( 8 - 2 \beta_{2} + \beta_{6} ) q^{87} + ( 1 - 2 \beta_{2} + 2 \beta_{4} ) q^{88} + ( 5 \beta_{1} - 3 \beta_{3} - \beta_{5} - \beta_{7} ) q^{89} + ( 16 + 6 \beta_{2} + 2 \beta_{4} ) q^{90} + ( 1 - \beta_{2} + \beta_{4} + \beta_{6} ) q^{92} + ( -6 \beta_{1} + 2 \beta_{3} - 3 \beta_{5} ) q^{93} + ( 6 + \beta_{2} + 5 \beta_{4} + \beta_{6} ) q^{94} + ( -1 - 2 \beta_{2} + 3 \beta_{4} + \beta_{6} ) q^{95} + ( -5 \beta_{1} + \beta_{3} - 2 \beta_{5} - 2 \beta_{7} ) q^{96} + ( -\beta_{1} - \beta_{3} - \beta_{7} ) q^{97} + ( 3 \beta_{1} - \beta_{5} - \beta_{7} ) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 4q^{3} + 6q^{4} + 12q^{9} + O(q^{10})$$ $$8q + 4q^{3} + 6q^{4} + 12q^{9} - 6q^{10} + 18q^{12} - 2q^{16} + 8q^{17} - 18q^{22} - 12q^{23} + 16q^{27} - 8q^{29} + 38q^{30} + 28q^{36} + 34q^{38} + 4q^{40} - 8q^{43} + 18q^{48} + 16q^{51} + 20q^{53} + 12q^{55} + 12q^{61} - 22q^{62} - 44q^{64} - 2q^{66} + 2q^{68} + 28q^{69} - 42q^{74} + 8q^{75} - 20q^{79} + 24q^{81} - 16q^{82} + 68q^{87} + 4q^{88} + 108q^{90} + 6q^{92} + 26q^{94} - 16q^{95} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{8} - 11 x^{6} + 36 x^{4} - 31 x^{2} + 3$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$\nu^{2} - 3$$ $$\beta_{3}$$ $$=$$ $$\nu^{3} - 4 \nu$$ $$\beta_{4}$$ $$=$$ $$\nu^{4} - 5 \nu^{2} + 1$$ $$\beta_{5}$$ $$=$$ $$\nu^{5} - 6 \nu^{3} + 5 \nu$$ $$\beta_{6}$$ $$=$$ $$\nu^{6} - 8 \nu^{4} + 16 \nu^{2} - 5$$ $$\beta_{7}$$ $$=$$ $$\nu^{7} - 10 \nu^{5} + 29 \nu^{3} - 20 \nu$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{2} + 3$$ $$\nu^{3}$$ $$=$$ $$\beta_{3} + 4 \beta_{1}$$ $$\nu^{4}$$ $$=$$ $$\beta_{4} + 5 \beta_{2} + 14$$ $$\nu^{5}$$ $$=$$ $$\beta_{5} + 6 \beta_{3} + 19 \beta_{1}$$ $$\nu^{6}$$ $$=$$ $$\beta_{6} + 8 \beta_{4} + 24 \beta_{2} + 69$$ $$\nu^{7}$$ $$=$$ $$\beta_{7} + 10 \beta_{5} + 31 \beta_{3} + 94 \beta_{1}$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −2.28481 −2.12549 −1.07305 −0.332375 0.332375 1.07305 2.12549 2.28481
−2.28481 3.15042 3.22037 −2.12499 −7.19813 0 −2.78832 6.92516 4.85521
1.2 −2.12549 −0.178854 2.51771 3.60603 0.380153 0 −1.10038 −2.96801 −7.66457
1.3 −1.07305 −2.43140 −0.848553 0.625432 2.60903 0 3.05665 2.91173 −0.671123
1.4 −0.332375 1.45984 −1.88953 −1.44562 −0.485214 0 1.29278 −0.868875 0.480489
1.5 0.332375 1.45984 −1.88953 1.44562 0.485214 0 −1.29278 −0.868875 0.480489
1.6 1.07305 −2.43140 −0.848553 −0.625432 −2.60903 0 −3.05665 2.91173 −0.671123
1.7 2.12549 −0.178854 2.51771 −3.60603 −0.380153 0 1.10038 −2.96801 −7.66457
1.8 2.28481 3.15042 3.22037 2.12499 7.19813 0 2.78832 6.92516 4.85521
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.8 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$7$$ $$1$$
$$13$$ $$-1$$

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8281.2.a.ck 8
7.b odd 2 1 8281.2.a.cj 8
7.c even 3 2 1183.2.e.i 16
13.b even 2 1 inner 8281.2.a.ck 8
13.d odd 4 2 637.2.c.f 8
91.b odd 2 1 8281.2.a.cj 8
91.i even 4 2 637.2.c.e 8
91.r even 6 2 1183.2.e.i 16
91.z odd 12 4 91.2.r.a 16
91.bb even 12 4 637.2.r.f 16
273.cd even 12 4 819.2.dl.e 16

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.r.a 16 91.z odd 12 4
637.2.c.e 8 91.i even 4 2
637.2.c.f 8 13.d odd 4 2
637.2.r.f 16 91.bb even 12 4
819.2.dl.e 16 273.cd even 12 4
1183.2.e.i 16 7.c even 3 2
1183.2.e.i 16 91.r even 6 2
8281.2.a.cj 8 7.b odd 2 1
8281.2.a.cj 8 91.b odd 2 1
8281.2.a.ck 8 1.a even 1 1 trivial
8281.2.a.ck 8 13.b even 2 1 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8281))$$:

 $$T_{2}^{8} - 11 T_{2}^{6} + 36 T_{2}^{4} - 31 T_{2}^{2} + 3$$ $$T_{3}^{4} - 2 T_{3}^{3} - 7 T_{3}^{2} + 10 T_{3} + 2$$ $$T_{5}^{8} - 20 T_{5}^{6} + 103 T_{5}^{4} - 160 T_{5}^{2} + 48$$ $$T_{11}^{8} - 52 T_{11}^{6} + 596 T_{11}^{4} - 340 T_{11}^{2} + 27$$ $$T_{17}^{4} - 4 T_{17}^{3} - 20 T_{17}^{2} + 52 T_{17} + 123$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$3 - 31 T^{2} + 36 T^{4} - 11 T^{6} + T^{8}$$
$3$ $$( 2 + 10 T - 7 T^{2} - 2 T^{3} + T^{4} )^{2}$$
$5$ $$48 - 160 T^{2} + 103 T^{4} - 20 T^{6} + T^{8}$$
$7$ $$T^{8}$$
$11$ $$27 - 340 T^{2} + 596 T^{4} - 52 T^{6} + T^{8}$$
$13$ $$T^{8}$$
$17$ $$( 123 + 52 T - 20 T^{2} - 4 T^{3} + T^{4} )^{2}$$
$19$ $$3267 - 2332 T^{2} + 540 T^{4} - 44 T^{6} + T^{8}$$
$23$ $$( -6 - 10 T + 5 T^{2} + 6 T^{3} + T^{4} )^{2}$$
$29$ $$( 624 - 208 T - 63 T^{2} + 4 T^{3} + T^{4} )^{2}$$
$31$ $$33708 - 19492 T^{2} + 2091 T^{4} - 80 T^{6} + T^{8}$$
$37$ $$8748 - 49572 T^{2} + 4347 T^{4} - 120 T^{6} + T^{8}$$
$41$ $$292032 - 88192 T^{2} + 5732 T^{4} - 132 T^{6} + T^{8}$$
$43$ $$( -104 + 156 T - 66 T^{2} + 4 T^{3} + T^{4} )^{2}$$
$47$ $$240267 - 243892 T^{2} + 12212 T^{4} - 196 T^{6} + T^{8}$$
$53$ $$( 87 + 130 T - 10 T^{3} + T^{4} )^{2}$$
$59$ $$111747 - 161740 T^{2} + 10476 T^{4} - 188 T^{6} + T^{8}$$
$61$ $$( 223 + 94 T - 24 T^{2} - 6 T^{3} + T^{4} )^{2}$$
$67$ $$257547 - 285148 T^{2} + 21652 T^{4} - 284 T^{6} + T^{8}$$
$71$ $$397488 - 253084 T^{2} + 19829 T^{4} - 292 T^{6} + T^{8}$$
$73$ $$2904768 - 472240 T^{2} + 19975 T^{4} - 260 T^{6} + T^{8}$$
$79$ $$( -8 - 60 T + 9 T^{2} + 10 T^{3} + T^{4} )^{2}$$
$83$ $$5483712 - 959920 T^{2} + 28692 T^{4} - 296 T^{6} + T^{8}$$
$89$ $$7622508 - 2938804 T^{2} + 62899 T^{4} - 440 T^{6} + T^{8}$$
$97$ $$192 - 4816 T^{2} + 2740 T^{4} - 104 T^{6} + T^{8}$$