Properties

Label 8281.2.a.cf
Level $8281$
Weight $2$
Character orbit 8281.a
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.6995813.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{4} + \beta_1) q^{2} - \beta_{4} q^{3} + (\beta_{5} + 1) q^{4} - \beta_{3} q^{5} + (\beta_{5} - \beta_{2} + 2) q^{6} + (\beta_{5} - \beta_1 + 1) q^{8} + (\beta_{5} - \beta_{2}) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{4} + \beta_1) q^{2} - \beta_{4} q^{3} + (\beta_{5} + 1) q^{4} - \beta_{3} q^{5} + (\beta_{5} - \beta_{2} + 2) q^{6} + (\beta_{5} - \beta_1 + 1) q^{8} + (\beta_{5} - \beta_{2}) q^{9} + ( - \beta_{3} - \beta_1 + 1) q^{10} + (\beta_{5} + \beta_{4} + \beta_1 + 1) q^{11} + (\beta_{5} - 2 \beta_{4} - \beta_{3} + 1) q^{12} + \beta_{5} q^{15} + ( - \beta_{5} - 2 \beta_{4} - \beta_{2} + \cdots - 2) q^{16}+ \cdots + (2 \beta_{4} - 2 \beta_{2} - 4 \beta_1 + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - q^{5} + 9 q^{6} + 3 q^{8} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{2} + q^{3} + 4 q^{4} - q^{5} + 9 q^{6} + 3 q^{8} - 3 q^{9} + 4 q^{10} + 4 q^{11} + 5 q^{12} - 2 q^{15} - 8 q^{16} + 5 q^{17} + 3 q^{18} + q^{19} + q^{20} + 5 q^{22} + q^{23} + 11 q^{24} - 7 q^{25} + 4 q^{27} - 3 q^{29} + 5 q^{30} - 16 q^{31} + 8 q^{32} - 16 q^{33} + 16 q^{34} + 21 q^{36} - 13 q^{37} - 17 q^{38} - 5 q^{40} + 8 q^{41} + 11 q^{43} + 21 q^{44} + 7 q^{45} + 16 q^{46} + q^{47} + 21 q^{48} + 6 q^{50} + 20 q^{51} + 2 q^{53} + 18 q^{54} + 9 q^{55} - 21 q^{57} - 8 q^{58} - 13 q^{59} + 20 q^{60} - 5 q^{61} + 5 q^{62} - 15 q^{64} + 18 q^{66} - 11 q^{67} + 29 q^{68} + 23 q^{69} + 6 q^{71} + 25 q^{72} + 30 q^{73} + 3 q^{74} - 3 q^{75} + 9 q^{76} - 7 q^{79} + 7 q^{80} + 6 q^{81} + q^{82} - 27 q^{83} - q^{85} - 7 q^{86} + 16 q^{87} - 4 q^{89} + 8 q^{90} + 27 q^{92} - 7 q^{93} + 45 q^{94} + 6 q^{95} - 19 q^{96} + 35 q^{97} + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 6x^{4} + 4x^{3} + 7x^{2} - x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{5} - \nu^{4} - 5\nu^{3} + 4\nu^{2} + 2\nu - 1 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{5} - \nu^{4} - 6\nu^{3} + 4\nu^{2} + 7\nu - 1 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{5} + 2\nu^{4} + 5\nu^{3} - 9\nu^{2} - 3\nu + 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -\beta_{4} + \beta_{3} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{5} + \beta_{3} + 5\beta_{2} + \beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} - 5\beta_{4} + 7\beta_{3} + \beta_{2} + 24\beta _1 + 1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.435907
−2.04394
−0.874884
1.51235
2.33401
−0.363441
−1.85816 −2.29407 1.45276 −0.197362 4.26275 0 1.01686 2.26275 0.366731
1.2 −1.55469 0.489252 0.417051 −1.19151 −0.760633 0 2.46099 −2.76063 1.85243
1.3 0.268125 1.14301 −1.92811 −2.56175 0.306470 0 −1.05323 −1.69353 −0.686871
1.4 0.851125 −0.661223 −1.27559 3.44148 −0.562784 0 −2.78793 −2.56278 2.92913
1.5 1.90556 −0.428448 1.63116 −1.47313 −0.816433 0 −0.702849 −2.81643 −2.80714
1.6 2.38804 2.75148 3.70272 0.982280 6.57063 0 4.06616 4.57063 2.34572
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8281.2.a.cf 6
7.b odd 2 1 8281.2.a.ce 6
7.d odd 6 2 1183.2.e.g 12
13.b even 2 1 8281.2.a.ca 6
13.e even 6 2 637.2.f.j 12
91.b odd 2 1 8281.2.a.bz 6
91.k even 6 2 637.2.h.l 12
91.l odd 6 2 91.2.h.b yes 12
91.p odd 6 2 91.2.g.b 12
91.s odd 6 2 1183.2.e.h 12
91.t odd 6 2 637.2.f.k 12
91.u even 6 2 637.2.g.l 12
273.y even 6 2 819.2.n.d 12
273.br even 6 2 819.2.s.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.g.b 12 91.p odd 6 2
91.2.h.b yes 12 91.l odd 6 2
637.2.f.j 12 13.e even 6 2
637.2.f.k 12 91.t odd 6 2
637.2.g.l 12 91.u even 6 2
637.2.h.l 12 91.k even 6 2
819.2.n.d 12 273.y even 6 2
819.2.s.d 12 273.br even 6 2
1183.2.e.g 12 7.d odd 6 2
1183.2.e.h 12 91.s odd 6 2
8281.2.a.bz 6 91.b odd 2 1
8281.2.a.ca 6 13.b even 2 1
8281.2.a.ce 6 7.b odd 2 1
8281.2.a.cf 6 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8281))\):

\( T_{2}^{6} - 2T_{2}^{5} - 6T_{2}^{4} + 11T_{2}^{3} + 8T_{2}^{2} - 14T_{2} + 3 \) Copy content Toggle raw display
\( T_{3}^{6} - T_{3}^{5} - 7T_{3}^{4} + 4T_{3}^{3} + 6T_{3}^{2} - T_{3} - 1 \) Copy content Toggle raw display
\( T_{5}^{6} + T_{5}^{5} - 11T_{5}^{4} - 18T_{5}^{3} + 6T_{5}^{2} + 17T_{5} + 3 \) Copy content Toggle raw display
\( T_{11}^{6} - 4T_{11}^{5} - 21T_{11}^{4} + 76T_{11}^{3} + 81T_{11}^{2} - 207T_{11} + 81 \) Copy content Toggle raw display
\( T_{17}^{6} - 5T_{17}^{5} - 12T_{17}^{4} + 14T_{17}^{3} + 20T_{17}^{2} - 8T_{17} - 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 2 T^{5} + \cdots + 3 \) Copy content Toggle raw display
$3$ \( T^{6} - T^{5} - 7 T^{4} + \cdots - 1 \) Copy content Toggle raw display
$5$ \( T^{6} + T^{5} - 11 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} - 4 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$13$ \( T^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 5 T^{5} + \cdots - 9 \) Copy content Toggle raw display
$19$ \( T^{6} - T^{5} + \cdots + 873 \) Copy content Toggle raw display
$23$ \( T^{6} - T^{5} + \cdots - 24387 \) Copy content Toggle raw display
$29$ \( T^{6} + 3 T^{5} + \cdots - 201 \) Copy content Toggle raw display
$31$ \( T^{6} + 16 T^{5} + \cdots - 2477 \) Copy content Toggle raw display
$37$ \( T^{6} + 13 T^{5} + \cdots - 13477 \) Copy content Toggle raw display
$41$ \( T^{6} - 8 T^{5} + \cdots + 2043 \) Copy content Toggle raw display
$43$ \( T^{6} - 11 T^{5} + \cdots + 37 \) Copy content Toggle raw display
$47$ \( T^{6} - T^{5} + \cdots - 17847 \) Copy content Toggle raw display
$53$ \( T^{6} - 2 T^{5} + \cdots - 69 \) Copy content Toggle raw display
$59$ \( T^{6} + 13 T^{5} + \cdots + 9123 \) Copy content Toggle raw display
$61$ \( T^{6} + 5 T^{5} + \cdots + 32481 \) Copy content Toggle raw display
$67$ \( T^{6} + 11 T^{5} + \cdots - 16623 \) Copy content Toggle raw display
$71$ \( T^{6} - 6 T^{5} + \cdots + 23043 \) Copy content Toggle raw display
$73$ \( T^{6} - 30 T^{5} + \cdots - 14029 \) Copy content Toggle raw display
$79$ \( T^{6} + 7 T^{5} + \cdots + 10529 \) Copy content Toggle raw display
$83$ \( T^{6} + 27 T^{5} + \cdots + 2673 \) Copy content Toggle raw display
$89$ \( T^{6} + 4 T^{5} + \cdots - 304479 \) Copy content Toggle raw display
$97$ \( T^{6} - 35 T^{5} + \cdots - 3899 \) Copy content Toggle raw display
show more
show less