Properties

Label 8281.2.a.bq.1.4
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.456850\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.18890 q^{2} +1.79129 q^{3} +2.79129 q^{4} -2.18890 q^{5} +3.92095 q^{6} +1.73205 q^{8} +0.208712 q^{9} +O(q^{10})\) \(q+2.18890 q^{2} +1.79129 q^{3} +2.79129 q^{4} -2.18890 q^{5} +3.92095 q^{6} +1.73205 q^{8} +0.208712 q^{9} -4.79129 q^{10} +1.27520 q^{11} +5.00000 q^{12} -3.92095 q^{15} -1.79129 q^{16} +3.00000 q^{17} +0.456850 q^{18} -6.56670 q^{19} -6.10985 q^{20} +2.79129 q^{22} -7.58258 q^{23} +3.10260 q^{24} -0.208712 q^{25} -5.00000 q^{27} -2.20871 q^{29} -8.58258 q^{30} +8.66025 q^{31} -7.38505 q^{32} +2.28425 q^{33} +6.56670 q^{34} +0.582576 q^{36} -6.92820 q^{37} -14.3739 q^{38} -3.79129 q^{40} -2.55040 q^{41} +4.37386 q^{43} +3.55945 q^{44} -0.456850 q^{45} -16.5975 q^{46} +4.28245 q^{47} -3.20871 q^{48} -0.456850 q^{50} +5.37386 q^{51} -12.1652 q^{53} -10.9445 q^{54} -2.79129 q^{55} -11.7629 q^{57} -4.83465 q^{58} +8.85095 q^{59} -10.9445 q^{60} -12.7477 q^{61} +18.9564 q^{62} -12.5826 q^{64} +5.00000 q^{66} +11.4014 q^{67} +8.37386 q^{68} -13.5826 q^{69} +0.913701 q^{71} +0.361500 q^{72} +3.46410 q^{73} -15.1652 q^{74} -0.373864 q^{75} -18.3296 q^{76} -6.00000 q^{79} +3.92095 q^{80} -9.58258 q^{81} -5.58258 q^{82} +3.55945 q^{83} -6.56670 q^{85} +9.57395 q^{86} -3.95644 q^{87} +2.20871 q^{88} -2.91190 q^{89} -1.00000 q^{90} -21.1652 q^{92} +15.5130 q^{93} +9.37386 q^{94} +14.3739 q^{95} -13.2288 q^{96} -15.2270 q^{97} +0.266150 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} + 2 q^{4} + 10 q^{9} - 10 q^{10} + 20 q^{12} + 2 q^{16} + 12 q^{17} + 2 q^{22} - 12 q^{23} - 10 q^{25} - 20 q^{27} - 18 q^{29} - 16 q^{30} - 16 q^{36} - 30 q^{38} - 6 q^{40} - 10 q^{43} - 22 q^{48} - 6 q^{51} - 12 q^{53} - 2 q^{55} + 4 q^{61} + 30 q^{62} - 32 q^{64} + 20 q^{66} + 6 q^{68} - 36 q^{69} - 24 q^{74} + 26 q^{75} - 24 q^{79} - 20 q^{81} - 4 q^{82} + 30 q^{87} + 18 q^{88} - 4 q^{90} - 48 q^{92} + 10 q^{94} + 30 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.18890 1.54779 0.773893 0.633316i \(-0.218307\pi\)
0.773893 + 0.633316i \(0.218307\pi\)
\(3\) 1.79129 1.03420 0.517100 0.855925i \(-0.327011\pi\)
0.517100 + 0.855925i \(0.327011\pi\)
\(4\) 2.79129 1.39564
\(5\) −2.18890 −0.978906 −0.489453 0.872030i \(-0.662804\pi\)
−0.489453 + 0.872030i \(0.662804\pi\)
\(6\) 3.92095 1.60072
\(7\) 0 0
\(8\) 1.73205 0.612372
\(9\) 0.208712 0.0695707
\(10\) −4.79129 −1.51514
\(11\) 1.27520 0.384487 0.192244 0.981347i \(-0.438424\pi\)
0.192244 + 0.981347i \(0.438424\pi\)
\(12\) 5.00000 1.44338
\(13\) 0 0
\(14\) 0 0
\(15\) −3.92095 −1.01239
\(16\) −1.79129 −0.447822
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0.456850 0.107681
\(19\) −6.56670 −1.50651 −0.753253 0.657731i \(-0.771516\pi\)
−0.753253 + 0.657731i \(0.771516\pi\)
\(20\) −6.10985 −1.36620
\(21\) 0 0
\(22\) 2.79129 0.595105
\(23\) −7.58258 −1.58108 −0.790538 0.612413i \(-0.790199\pi\)
−0.790538 + 0.612413i \(0.790199\pi\)
\(24\) 3.10260 0.633316
\(25\) −0.208712 −0.0417424
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −2.20871 −0.410148 −0.205074 0.978747i \(-0.565743\pi\)
−0.205074 + 0.978747i \(0.565743\pi\)
\(30\) −8.58258 −1.56696
\(31\) 8.66025 1.55543 0.777714 0.628619i \(-0.216379\pi\)
0.777714 + 0.628619i \(0.216379\pi\)
\(32\) −7.38505 −1.30551
\(33\) 2.28425 0.397637
\(34\) 6.56670 1.12618
\(35\) 0 0
\(36\) 0.582576 0.0970959
\(37\) −6.92820 −1.13899 −0.569495 0.821995i \(-0.692861\pi\)
−0.569495 + 0.821995i \(0.692861\pi\)
\(38\) −14.3739 −2.33175
\(39\) 0 0
\(40\) −3.79129 −0.599455
\(41\) −2.55040 −0.398306 −0.199153 0.979968i \(-0.563819\pi\)
−0.199153 + 0.979968i \(0.563819\pi\)
\(42\) 0 0
\(43\) 4.37386 0.667008 0.333504 0.942749i \(-0.391769\pi\)
0.333504 + 0.942749i \(0.391769\pi\)
\(44\) 3.55945 0.536608
\(45\) −0.456850 −0.0681032
\(46\) −16.5975 −2.44717
\(47\) 4.28245 0.624660 0.312330 0.949974i \(-0.398891\pi\)
0.312330 + 0.949974i \(0.398891\pi\)
\(48\) −3.20871 −0.463138
\(49\) 0 0
\(50\) −0.456850 −0.0646084
\(51\) 5.37386 0.752491
\(52\) 0 0
\(53\) −12.1652 −1.67101 −0.835506 0.549481i \(-0.814825\pi\)
−0.835506 + 0.549481i \(0.814825\pi\)
\(54\) −10.9445 −1.48936
\(55\) −2.79129 −0.376377
\(56\) 0 0
\(57\) −11.7629 −1.55803
\(58\) −4.83465 −0.634821
\(59\) 8.85095 1.15230 0.576148 0.817345i \(-0.304555\pi\)
0.576148 + 0.817345i \(0.304555\pi\)
\(60\) −10.9445 −1.41293
\(61\) −12.7477 −1.63218 −0.816090 0.577925i \(-0.803862\pi\)
−0.816090 + 0.577925i \(0.803862\pi\)
\(62\) 18.9564 2.40747
\(63\) 0 0
\(64\) −12.5826 −1.57282
\(65\) 0 0
\(66\) 5.00000 0.615457
\(67\) 11.4014 1.39290 0.696449 0.717607i \(-0.254762\pi\)
0.696449 + 0.717607i \(0.254762\pi\)
\(68\) 8.37386 1.01548
\(69\) −13.5826 −1.63515
\(70\) 0 0
\(71\) 0.913701 0.108436 0.0542181 0.998529i \(-0.482733\pi\)
0.0542181 + 0.998529i \(0.482733\pi\)
\(72\) 0.361500 0.0426032
\(73\) 3.46410 0.405442 0.202721 0.979236i \(-0.435021\pi\)
0.202721 + 0.979236i \(0.435021\pi\)
\(74\) −15.1652 −1.76291
\(75\) −0.373864 −0.0431700
\(76\) −18.3296 −2.10254
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 3.92095 0.438376
\(81\) −9.58258 −1.06473
\(82\) −5.58258 −0.616492
\(83\) 3.55945 0.390701 0.195350 0.980734i \(-0.437416\pi\)
0.195350 + 0.980734i \(0.437416\pi\)
\(84\) 0 0
\(85\) −6.56670 −0.712259
\(86\) 9.57395 1.03239
\(87\) −3.95644 −0.424175
\(88\) 2.20871 0.235450
\(89\) −2.91190 −0.308661 −0.154330 0.988019i \(-0.549322\pi\)
−0.154330 + 0.988019i \(0.549322\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −21.1652 −2.20662
\(93\) 15.5130 1.60862
\(94\) 9.37386 0.966840
\(95\) 14.3739 1.47473
\(96\) −13.2288 −1.35015
\(97\) −15.2270 −1.54606 −0.773032 0.634367i \(-0.781261\pi\)
−0.773032 + 0.634367i \(0.781261\pi\)
\(98\) 0 0
\(99\) 0.266150 0.0267491
\(100\) −0.582576 −0.0582576
\(101\) 9.79129 0.974270 0.487135 0.873327i \(-0.338042\pi\)
0.487135 + 0.873327i \(0.338042\pi\)
\(102\) 11.7629 1.16470
\(103\) −4.58258 −0.451535 −0.225767 0.974181i \(-0.572489\pi\)
−0.225767 + 0.974181i \(0.572489\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −26.6283 −2.58637
\(107\) −9.79129 −0.946560 −0.473280 0.880912i \(-0.656930\pi\)
−0.473280 + 0.880912i \(0.656930\pi\)
\(108\) −13.9564 −1.34296
\(109\) −7.93725 −0.760251 −0.380126 0.924935i \(-0.624119\pi\)
−0.380126 + 0.924935i \(0.624119\pi\)
\(110\) −6.10985 −0.582552
\(111\) −12.4104 −1.17794
\(112\) 0 0
\(113\) 1.41742 0.133340 0.0666700 0.997775i \(-0.478763\pi\)
0.0666700 + 0.997775i \(0.478763\pi\)
\(114\) −25.7477 −2.41150
\(115\) 16.5975 1.54773
\(116\) −6.16515 −0.572420
\(117\) 0 0
\(118\) 19.3739 1.78351
\(119\) 0 0
\(120\) −6.79129 −0.619957
\(121\) −9.37386 −0.852169
\(122\) −27.9035 −2.52627
\(123\) −4.56850 −0.411928
\(124\) 24.1733 2.17082
\(125\) 11.4014 1.01977
\(126\) 0 0
\(127\) 15.9564 1.41591 0.707953 0.706260i \(-0.249619\pi\)
0.707953 + 0.706260i \(0.249619\pi\)
\(128\) −12.7719 −1.12889
\(129\) 7.83485 0.689820
\(130\) 0 0
\(131\) 3.62614 0.316817 0.158409 0.987374i \(-0.449364\pi\)
0.158409 + 0.987374i \(0.449364\pi\)
\(132\) 6.37600 0.554960
\(133\) 0 0
\(134\) 24.9564 2.15591
\(135\) 10.9445 0.941953
\(136\) 5.19615 0.445566
\(137\) −17.1497 −1.46520 −0.732599 0.680660i \(-0.761693\pi\)
−0.732599 + 0.680660i \(0.761693\pi\)
\(138\) −29.7309 −2.53086
\(139\) 0.791288 0.0671162 0.0335581 0.999437i \(-0.489316\pi\)
0.0335581 + 0.999437i \(0.489316\pi\)
\(140\) 0 0
\(141\) 7.67110 0.646024
\(142\) 2.00000 0.167836
\(143\) 0 0
\(144\) −0.373864 −0.0311553
\(145\) 4.83465 0.401496
\(146\) 7.58258 0.627538
\(147\) 0 0
\(148\) −19.3386 −1.58962
\(149\) −2.18890 −0.179322 −0.0896609 0.995972i \(-0.528578\pi\)
−0.0896609 + 0.995972i \(0.528578\pi\)
\(150\) −0.818350 −0.0668180
\(151\) −12.1244 −0.986666 −0.493333 0.869841i \(-0.664222\pi\)
−0.493333 + 0.869841i \(0.664222\pi\)
\(152\) −11.3739 −0.922542
\(153\) 0.626136 0.0506201
\(154\) 0 0
\(155\) −18.9564 −1.52262
\(156\) 0 0
\(157\) −21.9564 −1.75231 −0.876157 0.482025i \(-0.839901\pi\)
−0.876157 + 0.482025i \(0.839901\pi\)
\(158\) −13.1334 −1.04484
\(159\) −21.7913 −1.72816
\(160\) 16.1652 1.27797
\(161\) 0 0
\(162\) −20.9753 −1.64798
\(163\) 6.92820 0.542659 0.271329 0.962487i \(-0.412537\pi\)
0.271329 + 0.962487i \(0.412537\pi\)
\(164\) −7.11890 −0.555893
\(165\) −5.00000 −0.389249
\(166\) 7.79129 0.604721
\(167\) 19.9663 1.54504 0.772518 0.634993i \(-0.218997\pi\)
0.772518 + 0.634993i \(0.218997\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −14.3739 −1.10243
\(171\) −1.37055 −0.104809
\(172\) 12.2087 0.930906
\(173\) −7.74773 −0.589049 −0.294524 0.955644i \(-0.595161\pi\)
−0.294524 + 0.955644i \(0.595161\pi\)
\(174\) −8.66025 −0.656532
\(175\) 0 0
\(176\) −2.28425 −0.172182
\(177\) 15.8546 1.19171
\(178\) −6.37386 −0.477741
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) −1.27520 −0.0950478
\(181\) 9.16515 0.681240 0.340620 0.940201i \(-0.389363\pi\)
0.340620 + 0.940201i \(0.389363\pi\)
\(182\) 0 0
\(183\) −22.8348 −1.68800
\(184\) −13.1334 −0.968208
\(185\) 15.1652 1.11496
\(186\) 33.9564 2.48981
\(187\) 3.82560 0.279756
\(188\) 11.9536 0.871803
\(189\) 0 0
\(190\) 31.4630 2.28256
\(191\) −0.626136 −0.0453056 −0.0226528 0.999743i \(-0.507211\pi\)
−0.0226528 + 0.999743i \(0.507211\pi\)
\(192\) −22.5390 −1.62661
\(193\) 12.4104 0.893321 0.446660 0.894704i \(-0.352613\pi\)
0.446660 + 0.894704i \(0.352613\pi\)
\(194\) −33.3303 −2.39298
\(195\) 0 0
\(196\) 0 0
\(197\) −10.9445 −0.779764 −0.389882 0.920865i \(-0.627484\pi\)
−0.389882 + 0.920865i \(0.627484\pi\)
\(198\) 0.582576 0.0414019
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) −0.361500 −0.0255619
\(201\) 20.4231 1.44054
\(202\) 21.4322 1.50796
\(203\) 0 0
\(204\) 15.0000 1.05021
\(205\) 5.58258 0.389904
\(206\) −10.0308 −0.698879
\(207\) −1.58258 −0.109997
\(208\) 0 0
\(209\) −8.37386 −0.579232
\(210\) 0 0
\(211\) 1.41742 0.0975795 0.0487898 0.998809i \(-0.484464\pi\)
0.0487898 + 0.998809i \(0.484464\pi\)
\(212\) −33.9564 −2.33214
\(213\) 1.63670 0.112145
\(214\) −21.4322 −1.46507
\(215\) −9.57395 −0.652938
\(216\) −8.66025 −0.589256
\(217\) 0 0
\(218\) −17.3739 −1.17671
\(219\) 6.20520 0.419309
\(220\) −7.79129 −0.525289
\(221\) 0 0
\(222\) −27.1652 −1.82321
\(223\) 20.7092 1.38679 0.693394 0.720559i \(-0.256115\pi\)
0.693394 + 0.720559i \(0.256115\pi\)
\(224\) 0 0
\(225\) −0.0435608 −0.00290405
\(226\) 3.10260 0.206382
\(227\) 12.3151 0.817379 0.408689 0.912673i \(-0.365986\pi\)
0.408689 + 0.912673i \(0.365986\pi\)
\(228\) −32.8335 −2.17445
\(229\) 6.92820 0.457829 0.228914 0.973447i \(-0.426482\pi\)
0.228914 + 0.973447i \(0.426482\pi\)
\(230\) 36.3303 2.39555
\(231\) 0 0
\(232\) −3.82560 −0.251163
\(233\) 6.95644 0.455731 0.227866 0.973693i \(-0.426825\pi\)
0.227866 + 0.973693i \(0.426825\pi\)
\(234\) 0 0
\(235\) −9.37386 −0.611483
\(236\) 24.7056 1.60820
\(237\) −10.7477 −0.698140
\(238\) 0 0
\(239\) 13.2288 0.855697 0.427849 0.903850i \(-0.359272\pi\)
0.427849 + 0.903850i \(0.359272\pi\)
\(240\) 7.02355 0.453368
\(241\) 4.11165 0.264855 0.132427 0.991193i \(-0.457723\pi\)
0.132427 + 0.991193i \(0.457723\pi\)
\(242\) −20.5185 −1.31898
\(243\) −2.16515 −0.138895
\(244\) −35.5826 −2.27794
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 0 0
\(248\) 15.0000 0.952501
\(249\) 6.37600 0.404063
\(250\) 24.9564 1.57838
\(251\) 21.1652 1.33593 0.667966 0.744192i \(-0.267165\pi\)
0.667966 + 0.744192i \(0.267165\pi\)
\(252\) 0 0
\(253\) −9.66930 −0.607904
\(254\) 34.9271 2.19152
\(255\) −11.7629 −0.736619
\(256\) −2.79129 −0.174455
\(257\) −27.9564 −1.74387 −0.871937 0.489617i \(-0.837136\pi\)
−0.871937 + 0.489617i \(0.837136\pi\)
\(258\) 17.1497 1.06769
\(259\) 0 0
\(260\) 0 0
\(261\) −0.460985 −0.0285343
\(262\) 7.93725 0.490365
\(263\) −27.3303 −1.68526 −0.842629 0.538494i \(-0.818993\pi\)
−0.842629 + 0.538494i \(0.818993\pi\)
\(264\) 3.95644 0.243502
\(265\) 26.6283 1.63576
\(266\) 0 0
\(267\) −5.21605 −0.319217
\(268\) 31.8245 1.94399
\(269\) −11.2087 −0.683407 −0.341704 0.939808i \(-0.611004\pi\)
−0.341704 + 0.939808i \(0.611004\pi\)
\(270\) 23.9564 1.45794
\(271\) 28.7219 1.74473 0.872364 0.488856i \(-0.162586\pi\)
0.872364 + 0.488856i \(0.162586\pi\)
\(272\) −5.37386 −0.325838
\(273\) 0 0
\(274\) −37.5390 −2.26781
\(275\) −0.266150 −0.0160494
\(276\) −37.9129 −2.28209
\(277\) 15.7477 0.946189 0.473095 0.881012i \(-0.343137\pi\)
0.473095 + 0.881012i \(0.343137\pi\)
\(278\) 1.73205 0.103882
\(279\) 1.80750 0.108212
\(280\) 0 0
\(281\) −6.39590 −0.381548 −0.190774 0.981634i \(-0.561100\pi\)
−0.190774 + 0.981634i \(0.561100\pi\)
\(282\) 16.7913 0.999907
\(283\) 24.7477 1.47110 0.735550 0.677471i \(-0.236924\pi\)
0.735550 + 0.677471i \(0.236924\pi\)
\(284\) 2.55040 0.151338
\(285\) 25.7477 1.52516
\(286\) 0 0
\(287\) 0 0
\(288\) −1.54135 −0.0908249
\(289\) −8.00000 −0.470588
\(290\) 10.5826 0.621430
\(291\) −27.2759 −1.59894
\(292\) 9.66930 0.565853
\(293\) 7.84190 0.458129 0.229064 0.973411i \(-0.426433\pi\)
0.229064 + 0.973411i \(0.426433\pi\)
\(294\) 0 0
\(295\) −19.3739 −1.12799
\(296\) −12.0000 −0.697486
\(297\) −6.37600 −0.369973
\(298\) −4.79129 −0.277552
\(299\) 0 0
\(300\) −1.04356 −0.0602500
\(301\) 0 0
\(302\) −26.5390 −1.52715
\(303\) 17.5390 1.00759
\(304\) 11.7629 0.674646
\(305\) 27.9035 1.59775
\(306\) 1.37055 0.0783492
\(307\) −24.1733 −1.37964 −0.689820 0.723980i \(-0.742311\pi\)
−0.689820 + 0.723980i \(0.742311\pi\)
\(308\) 0 0
\(309\) −8.20871 −0.466977
\(310\) −41.4938 −2.35669
\(311\) 5.53901 0.314089 0.157044 0.987592i \(-0.449803\pi\)
0.157044 + 0.987592i \(0.449803\pi\)
\(312\) 0 0
\(313\) 20.7477 1.17273 0.586365 0.810047i \(-0.300558\pi\)
0.586365 + 0.810047i \(0.300558\pi\)
\(314\) −48.0605 −2.71221
\(315\) 0 0
\(316\) −16.7477 −0.942133
\(317\) −18.5203 −1.04020 −0.520101 0.854105i \(-0.674106\pi\)
−0.520101 + 0.854105i \(0.674106\pi\)
\(318\) −47.6990 −2.67483
\(319\) −2.81655 −0.157697
\(320\) 27.5420 1.53965
\(321\) −17.5390 −0.978932
\(322\) 0 0
\(323\) −19.7001 −1.09614
\(324\) −26.7477 −1.48598
\(325\) 0 0
\(326\) 15.1652 0.839920
\(327\) −14.2179 −0.786252
\(328\) −4.41742 −0.243911
\(329\) 0 0
\(330\) −10.9445 −0.602475
\(331\) −1.08450 −0.0596095 −0.0298048 0.999556i \(-0.509489\pi\)
−0.0298048 + 0.999556i \(0.509489\pi\)
\(332\) 9.93545 0.545279
\(333\) −1.44600 −0.0792403
\(334\) 43.7042 2.39139
\(335\) −24.9564 −1.36352
\(336\) 0 0
\(337\) 12.9564 0.705782 0.352891 0.935664i \(-0.385199\pi\)
0.352891 + 0.935664i \(0.385199\pi\)
\(338\) 0 0
\(339\) 2.53901 0.137900
\(340\) −18.3296 −0.994060
\(341\) 11.0436 0.598042
\(342\) −3.00000 −0.162221
\(343\) 0 0
\(344\) 7.57575 0.408457
\(345\) 29.7309 1.60066
\(346\) −16.9590 −0.911722
\(347\) −4.41742 −0.237140 −0.118570 0.992946i \(-0.537831\pi\)
−0.118570 + 0.992946i \(0.537831\pi\)
\(348\) −11.0436 −0.591997
\(349\) −10.6784 −0.571599 −0.285800 0.958289i \(-0.592259\pi\)
−0.285800 + 0.958289i \(0.592259\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −9.41742 −0.501950
\(353\) −26.8190 −1.42743 −0.713716 0.700435i \(-0.752989\pi\)
−0.713716 + 0.700435i \(0.752989\pi\)
\(354\) 34.7042 1.84451
\(355\) −2.00000 −0.106149
\(356\) −8.12795 −0.430781
\(357\) 0 0
\(358\) 19.7001 1.04118
\(359\) 12.6766 0.669043 0.334522 0.942388i \(-0.391425\pi\)
0.334522 + 0.942388i \(0.391425\pi\)
\(360\) −0.791288 −0.0417045
\(361\) 24.1216 1.26956
\(362\) 20.0616 1.05441
\(363\) −16.7913 −0.881314
\(364\) 0 0
\(365\) −7.58258 −0.396890
\(366\) −49.9832 −2.61266
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 13.5826 0.708041
\(369\) −0.532300 −0.0277104
\(370\) 33.1950 1.72573
\(371\) 0 0
\(372\) 43.3013 2.24507
\(373\) 36.7913 1.90498 0.952490 0.304569i \(-0.0985124\pi\)
0.952490 + 0.304569i \(0.0985124\pi\)
\(374\) 8.37386 0.433002
\(375\) 20.4231 1.05464
\(376\) 7.41742 0.382524
\(377\) 0 0
\(378\) 0 0
\(379\) −4.54860 −0.233646 −0.116823 0.993153i \(-0.537271\pi\)
−0.116823 + 0.993153i \(0.537271\pi\)
\(380\) 40.1216 2.05819
\(381\) 28.5826 1.46433
\(382\) −1.37055 −0.0701235
\(383\) −3.92095 −0.200351 −0.100176 0.994970i \(-0.531940\pi\)
−0.100176 + 0.994970i \(0.531940\pi\)
\(384\) −22.8782 −1.16750
\(385\) 0 0
\(386\) 27.1652 1.38267
\(387\) 0.912878 0.0464042
\(388\) −42.5028 −2.15775
\(389\) −36.3303 −1.84202 −0.921010 0.389540i \(-0.872634\pi\)
−0.921010 + 0.389540i \(0.872634\pi\)
\(390\) 0 0
\(391\) −22.7477 −1.15040
\(392\) 0 0
\(393\) 6.49545 0.327652
\(394\) −23.9564 −1.20691
\(395\) 13.1334 0.660813
\(396\) 0.742901 0.0373322
\(397\) −15.1515 −0.760432 −0.380216 0.924898i \(-0.624150\pi\)
−0.380216 + 0.924898i \(0.624150\pi\)
\(398\) −24.0779 −1.20692
\(399\) 0 0
\(400\) 0.373864 0.0186932
\(401\) 29.5601 1.47616 0.738081 0.674712i \(-0.235732\pi\)
0.738081 + 0.674712i \(0.235732\pi\)
\(402\) 44.7042 2.22964
\(403\) 0 0
\(404\) 27.3303 1.35973
\(405\) 20.9753 1.04227
\(406\) 0 0
\(407\) −8.83485 −0.437927
\(408\) 9.30780 0.460805
\(409\) −0.361500 −0.0178750 −0.00893751 0.999960i \(-0.502845\pi\)
−0.00893751 + 0.999960i \(0.502845\pi\)
\(410\) 12.2197 0.603488
\(411\) −30.7201 −1.51531
\(412\) −12.7913 −0.630182
\(413\) 0 0
\(414\) −3.46410 −0.170251
\(415\) −7.79129 −0.382459
\(416\) 0 0
\(417\) 1.41742 0.0694116
\(418\) −18.3296 −0.896528
\(419\) 25.7477 1.25786 0.628929 0.777462i \(-0.283493\pi\)
0.628929 + 0.777462i \(0.283493\pi\)
\(420\) 0 0
\(421\) −20.0616 −0.977743 −0.488872 0.872356i \(-0.662591\pi\)
−0.488872 + 0.872356i \(0.662591\pi\)
\(422\) 3.10260 0.151032
\(423\) 0.893800 0.0434580
\(424\) −21.0707 −1.02328
\(425\) −0.626136 −0.0303721
\(426\) 3.58258 0.173576
\(427\) 0 0
\(428\) −27.3303 −1.32106
\(429\) 0 0
\(430\) −20.9564 −1.01061
\(431\) −15.6084 −0.751828 −0.375914 0.926655i \(-0.622671\pi\)
−0.375914 + 0.926655i \(0.622671\pi\)
\(432\) 8.95644 0.430917
\(433\) −22.4955 −1.08106 −0.540531 0.841324i \(-0.681777\pi\)
−0.540531 + 0.841324i \(0.681777\pi\)
\(434\) 0 0
\(435\) 8.66025 0.415227
\(436\) −22.1552 −1.06104
\(437\) 49.7925 2.38190
\(438\) 13.5826 0.649001
\(439\) −11.5390 −0.550727 −0.275364 0.961340i \(-0.588798\pi\)
−0.275364 + 0.961340i \(0.588798\pi\)
\(440\) −4.83465 −0.230483
\(441\) 0 0
\(442\) 0 0
\(443\) 3.16515 0.150381 0.0751904 0.997169i \(-0.476044\pi\)
0.0751904 + 0.997169i \(0.476044\pi\)
\(444\) −34.6410 −1.64399
\(445\) 6.37386 0.302150
\(446\) 45.3303 2.14645
\(447\) −3.92095 −0.185455
\(448\) 0 0
\(449\) −19.8709 −0.937766 −0.468883 0.883260i \(-0.655343\pi\)
−0.468883 + 0.883260i \(0.655343\pi\)
\(450\) −0.0953502 −0.00449485
\(451\) −3.25227 −0.153144
\(452\) 3.95644 0.186095
\(453\) −21.7182 −1.02041
\(454\) 26.9564 1.26513
\(455\) 0 0
\(456\) −20.3739 −0.954094
\(457\) −8.94630 −0.418490 −0.209245 0.977863i \(-0.567101\pi\)
−0.209245 + 0.977863i \(0.567101\pi\)
\(458\) 15.1652 0.708621
\(459\) −15.0000 −0.700140
\(460\) 46.3284 2.16007
\(461\) −17.8727 −0.832415 −0.416208 0.909270i \(-0.636641\pi\)
−0.416208 + 0.909270i \(0.636641\pi\)
\(462\) 0 0
\(463\) −7.93725 −0.368875 −0.184438 0.982844i \(-0.559046\pi\)
−0.184438 + 0.982844i \(0.559046\pi\)
\(464\) 3.95644 0.183673
\(465\) −33.9564 −1.57469
\(466\) 15.2270 0.705375
\(467\) −11.8348 −0.547651 −0.273826 0.961779i \(-0.588289\pi\)
−0.273826 + 0.961779i \(0.588289\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −20.5185 −0.946446
\(471\) −39.3303 −1.81224
\(472\) 15.3303 0.705634
\(473\) 5.57755 0.256456
\(474\) −23.5257 −1.08057
\(475\) 1.37055 0.0628852
\(476\) 0 0
\(477\) −2.53901 −0.116254
\(478\) 28.9564 1.32444
\(479\) −10.2215 −0.467032 −0.233516 0.972353i \(-0.575023\pi\)
−0.233516 + 0.972353i \(0.575023\pi\)
\(480\) 28.9564 1.32167
\(481\) 0 0
\(482\) 9.00000 0.409939
\(483\) 0 0
\(484\) −26.1652 −1.18933
\(485\) 33.3303 1.51345
\(486\) −4.73930 −0.214979
\(487\) 10.3169 0.467501 0.233751 0.972297i \(-0.424900\pi\)
0.233751 + 0.972297i \(0.424900\pi\)
\(488\) −22.0797 −0.999502
\(489\) 12.4104 0.561218
\(490\) 0 0
\(491\) −37.1216 −1.67527 −0.837637 0.546227i \(-0.816063\pi\)
−0.837637 + 0.546227i \(0.816063\pi\)
\(492\) −12.7520 −0.574905
\(493\) −6.62614 −0.298426
\(494\) 0 0
\(495\) −0.582576 −0.0261848
\(496\) −15.5130 −0.696555
\(497\) 0 0
\(498\) 13.9564 0.625403
\(499\) −42.2168 −1.88988 −0.944941 0.327240i \(-0.893881\pi\)
−0.944941 + 0.327240i \(0.893881\pi\)
\(500\) 31.8245 1.42323
\(501\) 35.7653 1.59788
\(502\) 46.3284 2.06774
\(503\) −22.1216 −0.986353 −0.493176 0.869929i \(-0.664164\pi\)
−0.493176 + 0.869929i \(0.664164\pi\)
\(504\) 0 0
\(505\) −21.4322 −0.953719
\(506\) −21.1652 −0.940906
\(507\) 0 0
\(508\) 44.5390 1.97610
\(509\) 21.9844 0.974440 0.487220 0.873279i \(-0.338011\pi\)
0.487220 + 0.873279i \(0.338011\pi\)
\(510\) −25.7477 −1.14013
\(511\) 0 0
\(512\) 19.4340 0.858868
\(513\) 32.8335 1.44964
\(514\) −61.1939 −2.69915
\(515\) 10.0308 0.442010
\(516\) 21.8693 0.962743
\(517\) 5.46099 0.240174
\(518\) 0 0
\(519\) −13.8784 −0.609195
\(520\) 0 0
\(521\) 25.5826 1.12079 0.560396 0.828224i \(-0.310649\pi\)
0.560396 + 0.828224i \(0.310649\pi\)
\(522\) −1.00905 −0.0441649
\(523\) −12.3303 −0.539166 −0.269583 0.962977i \(-0.586886\pi\)
−0.269583 + 0.962977i \(0.586886\pi\)
\(524\) 10.1216 0.442164
\(525\) 0 0
\(526\) −59.8233 −2.60842
\(527\) 25.9808 1.13174
\(528\) −4.09175 −0.178071
\(529\) 34.4955 1.49980
\(530\) 58.2867 2.53181
\(531\) 1.84730 0.0801661
\(532\) 0 0
\(533\) 0 0
\(534\) −11.4174 −0.494080
\(535\) 21.4322 0.926593
\(536\) 19.7477 0.852972
\(537\) 16.1216 0.695698
\(538\) −24.5348 −1.05777
\(539\) 0 0
\(540\) 30.5493 1.31463
\(541\) 30.0924 1.29377 0.646887 0.762586i \(-0.276071\pi\)
0.646887 + 0.762586i \(0.276071\pi\)
\(542\) 62.8693 2.70047
\(543\) 16.4174 0.704539
\(544\) −22.1552 −0.949895
\(545\) 17.3739 0.744215
\(546\) 0 0
\(547\) 15.7477 0.673324 0.336662 0.941626i \(-0.390702\pi\)
0.336662 + 0.941626i \(0.390702\pi\)
\(548\) −47.8698 −2.04490
\(549\) −2.66061 −0.113552
\(550\) −0.582576 −0.0248411
\(551\) 14.5040 0.617889
\(552\) −23.5257 −1.00132
\(553\) 0 0
\(554\) 34.4702 1.46450
\(555\) 27.1652 1.15310
\(556\) 2.20871 0.0936703
\(557\) −27.8281 −1.17911 −0.589556 0.807727i \(-0.700697\pi\)
−0.589556 + 0.807727i \(0.700697\pi\)
\(558\) 3.95644 0.167489
\(559\) 0 0
\(560\) 0 0
\(561\) 6.85275 0.289323
\(562\) −14.0000 −0.590554
\(563\) 0.330303 0.0139206 0.00696030 0.999976i \(-0.497784\pi\)
0.00696030 + 0.999976i \(0.497784\pi\)
\(564\) 21.4123 0.901619
\(565\) −3.10260 −0.130527
\(566\) 54.1703 2.27695
\(567\) 0 0
\(568\) 1.58258 0.0664034
\(569\) 10.7477 0.450568 0.225284 0.974293i \(-0.427669\pi\)
0.225284 + 0.974293i \(0.427669\pi\)
\(570\) 56.3592 2.36063
\(571\) 24.9564 1.04439 0.522197 0.852825i \(-0.325112\pi\)
0.522197 + 0.852825i \(0.325112\pi\)
\(572\) 0 0
\(573\) −1.12159 −0.0468551
\(574\) 0 0
\(575\) 1.58258 0.0659980
\(576\) −2.62614 −0.109422
\(577\) −19.7756 −0.823267 −0.411634 0.911349i \(-0.635042\pi\)
−0.411634 + 0.911349i \(0.635042\pi\)
\(578\) −17.5112 −0.728370
\(579\) 22.2306 0.923873
\(580\) 13.4949 0.560345
\(581\) 0 0
\(582\) −59.7042 −2.47482
\(583\) −15.5130 −0.642483
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) 17.1652 0.709086
\(587\) 35.4793 1.46439 0.732193 0.681097i \(-0.238497\pi\)
0.732193 + 0.681097i \(0.238497\pi\)
\(588\) 0 0
\(589\) −56.8693 −2.34326
\(590\) −42.4075 −1.74589
\(591\) −19.6048 −0.806432
\(592\) 12.4104 0.510065
\(593\) 19.6048 0.805071 0.402535 0.915404i \(-0.368129\pi\)
0.402535 + 0.915404i \(0.368129\pi\)
\(594\) −13.9564 −0.572640
\(595\) 0 0
\(596\) −6.10985 −0.250269
\(597\) −19.7042 −0.806438
\(598\) 0 0
\(599\) −20.3739 −0.832453 −0.416227 0.909261i \(-0.636648\pi\)
−0.416227 + 0.909261i \(0.636648\pi\)
\(600\) −0.647551 −0.0264361
\(601\) 1.37386 0.0560411 0.0280205 0.999607i \(-0.491080\pi\)
0.0280205 + 0.999607i \(0.491080\pi\)
\(602\) 0 0
\(603\) 2.37960 0.0969049
\(604\) −33.8426 −1.37703
\(605\) 20.5185 0.834194
\(606\) 38.3912 1.55953
\(607\) 7.74773 0.314471 0.157235 0.987561i \(-0.449742\pi\)
0.157235 + 0.987561i \(0.449742\pi\)
\(608\) 48.4955 1.96675
\(609\) 0 0
\(610\) 61.0780 2.47298
\(611\) 0 0
\(612\) 1.74773 0.0706477
\(613\) 37.3067 1.50680 0.753401 0.657561i \(-0.228412\pi\)
0.753401 + 0.657561i \(0.228412\pi\)
\(614\) −52.9129 −2.13539
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) 27.8082 1.11951 0.559757 0.828657i \(-0.310894\pi\)
0.559757 + 0.828657i \(0.310894\pi\)
\(618\) −17.9681 −0.722781
\(619\) −12.4104 −0.498816 −0.249408 0.968398i \(-0.580236\pi\)
−0.249408 + 0.968398i \(0.580236\pi\)
\(620\) −52.9129 −2.12503
\(621\) 37.9129 1.52139
\(622\) 12.1244 0.486142
\(623\) 0 0
\(624\) 0 0
\(625\) −23.9129 −0.956515
\(626\) 45.4147 1.81514
\(627\) −15.0000 −0.599042
\(628\) −61.2867 −2.44561
\(629\) −20.7846 −0.828737
\(630\) 0 0
\(631\) −12.0489 −0.479659 −0.239830 0.970815i \(-0.577092\pi\)
−0.239830 + 0.970815i \(0.577092\pi\)
\(632\) −10.3923 −0.413384
\(633\) 2.53901 0.100917
\(634\) −40.5390 −1.61001
\(635\) −34.9271 −1.38604
\(636\) −60.8258 −2.41190
\(637\) 0 0
\(638\) −6.16515 −0.244081
\(639\) 0.190700 0.00754399
\(640\) 27.9564 1.10508
\(641\) −15.6261 −0.617195 −0.308598 0.951193i \(-0.599860\pi\)
−0.308598 + 0.951193i \(0.599860\pi\)
\(642\) −38.3912 −1.51518
\(643\) −13.5704 −0.535163 −0.267581 0.963535i \(-0.586224\pi\)
−0.267581 + 0.963535i \(0.586224\pi\)
\(644\) 0 0
\(645\) −17.1497 −0.675269
\(646\) −43.1216 −1.69660
\(647\) 29.0780 1.14318 0.571588 0.820541i \(-0.306328\pi\)
0.571588 + 0.820541i \(0.306328\pi\)
\(648\) −16.5975 −0.652012
\(649\) 11.2867 0.443043
\(650\) 0 0
\(651\) 0 0
\(652\) 19.3386 0.757358
\(653\) 11.2087 0.438631 0.219315 0.975654i \(-0.429618\pi\)
0.219315 + 0.975654i \(0.429618\pi\)
\(654\) −31.1216 −1.21695
\(655\) −7.93725 −0.310134
\(656\) 4.56850 0.178370
\(657\) 0.723000 0.0282069
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) −13.9564 −0.543254
\(661\) 18.7665 0.729933 0.364966 0.931021i \(-0.381081\pi\)
0.364966 + 0.931021i \(0.381081\pi\)
\(662\) −2.37386 −0.0922628
\(663\) 0 0
\(664\) 6.16515 0.239254
\(665\) 0 0
\(666\) −3.16515 −0.122647
\(667\) 16.7477 0.648475
\(668\) 55.7316 2.15632
\(669\) 37.0961 1.43422
\(670\) −54.6272 −2.11043
\(671\) −16.2559 −0.627552
\(672\) 0 0
\(673\) 28.4955 1.09842 0.549210 0.835685i \(-0.314929\pi\)
0.549210 + 0.835685i \(0.314929\pi\)
\(674\) 28.3604 1.09240
\(675\) 1.04356 0.0401667
\(676\) 0 0
\(677\) −33.7913 −1.29870 −0.649352 0.760488i \(-0.724960\pi\)
−0.649352 + 0.760488i \(0.724960\pi\)
\(678\) 5.55765 0.213440
\(679\) 0 0
\(680\) −11.3739 −0.436168
\(681\) 22.0598 0.845334
\(682\) 24.1733 0.925642
\(683\) 25.0671 0.959164 0.479582 0.877497i \(-0.340788\pi\)
0.479582 + 0.877497i \(0.340788\pi\)
\(684\) −3.82560 −0.146276
\(685\) 37.5390 1.43429
\(686\) 0 0
\(687\) 12.4104 0.473487
\(688\) −7.83485 −0.298701
\(689\) 0 0
\(690\) 65.0780 2.47748
\(691\) 29.3694 1.11727 0.558633 0.829415i \(-0.311326\pi\)
0.558633 + 0.829415i \(0.311326\pi\)
\(692\) −21.6261 −0.822102
\(693\) 0 0
\(694\) −9.66930 −0.367042
\(695\) −1.73205 −0.0657004
\(696\) −6.85275 −0.259753
\(697\) −7.65120 −0.289810
\(698\) −23.3739 −0.884714
\(699\) 12.4610 0.471318
\(700\) 0 0
\(701\) −31.9129 −1.20533 −0.602666 0.797993i \(-0.705895\pi\)
−0.602666 + 0.797993i \(0.705895\pi\)
\(702\) 0 0
\(703\) 45.4955 1.71589
\(704\) −16.0453 −0.604730
\(705\) −16.7913 −0.632396
\(706\) −58.7042 −2.20936
\(707\) 0 0
\(708\) 44.2548 1.66320
\(709\) −7.28970 −0.273771 −0.136885 0.990587i \(-0.543709\pi\)
−0.136885 + 0.990587i \(0.543709\pi\)
\(710\) −4.37780 −0.164296
\(711\) −1.25227 −0.0469639
\(712\) −5.04356 −0.189015
\(713\) −65.6670 −2.45925
\(714\) 0 0
\(715\) 0 0
\(716\) 25.1216 0.938838
\(717\) 23.6965 0.884962
\(718\) 27.7477 1.03554
\(719\) −5.83485 −0.217603 −0.108802 0.994063i \(-0.534701\pi\)
−0.108802 + 0.994063i \(0.534701\pi\)
\(720\) 0.818350 0.0304981
\(721\) 0 0
\(722\) 52.7998 1.96500
\(723\) 7.36515 0.273913
\(724\) 25.5826 0.950769
\(725\) 0.460985 0.0171206
\(726\) −36.7545 −1.36409
\(727\) 27.7477 1.02911 0.514553 0.857459i \(-0.327958\pi\)
0.514553 + 0.857459i \(0.327958\pi\)
\(728\) 0 0
\(729\) 24.8693 0.921086
\(730\) −16.5975 −0.614301
\(731\) 13.1216 0.485320
\(732\) −63.7386 −2.35585
\(733\) −9.02175 −0.333226 −0.166613 0.986022i \(-0.553283\pi\)
−0.166613 + 0.986022i \(0.553283\pi\)
\(734\) −39.4002 −1.45429
\(735\) 0 0
\(736\) 55.9977 2.06410
\(737\) 14.5390 0.535551
\(738\) −1.16515 −0.0428898
\(739\) 12.4104 0.456524 0.228262 0.973600i \(-0.426696\pi\)
0.228262 + 0.973600i \(0.426696\pi\)
\(740\) 42.3303 1.55609
\(741\) 0 0
\(742\) 0 0
\(743\) 5.36695 0.196894 0.0984472 0.995142i \(-0.468612\pi\)
0.0984472 + 0.995142i \(0.468612\pi\)
\(744\) 26.8693 0.985077
\(745\) 4.79129 0.175539
\(746\) 80.5325 2.94850
\(747\) 0.742901 0.0271813
\(748\) 10.6784 0.390439
\(749\) 0 0
\(750\) 44.7042 1.63237
\(751\) 3.74773 0.136757 0.0683783 0.997659i \(-0.478218\pi\)
0.0683783 + 0.997659i \(0.478218\pi\)
\(752\) −7.67110 −0.279736
\(753\) 37.9129 1.38162
\(754\) 0 0
\(755\) 26.5390 0.965854
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) −9.95644 −0.361634
\(759\) −17.3205 −0.628695
\(760\) 24.8963 0.903082
\(761\) −32.0152 −1.16055 −0.580274 0.814421i \(-0.697055\pi\)
−0.580274 + 0.814421i \(0.697055\pi\)
\(762\) 62.5644 2.26647
\(763\) 0 0
\(764\) −1.74773 −0.0632305
\(765\) −1.37055 −0.0495524
\(766\) −8.58258 −0.310101
\(767\) 0 0
\(768\) −5.00000 −0.180422
\(769\) −25.2578 −0.910818 −0.455409 0.890282i \(-0.650507\pi\)
−0.455409 + 0.890282i \(0.650507\pi\)
\(770\) 0 0
\(771\) −50.0780 −1.80352
\(772\) 34.6410 1.24676
\(773\) 22.8981 0.823586 0.411793 0.911277i \(-0.364903\pi\)
0.411793 + 0.911277i \(0.364903\pi\)
\(774\) 1.99820 0.0718238
\(775\) −1.80750 −0.0649273
\(776\) −26.3739 −0.946767
\(777\) 0 0
\(778\) −79.5234 −2.85105
\(779\) 16.7477 0.600050
\(780\) 0 0
\(781\) 1.16515 0.0416924
\(782\) −49.7925 −1.78058
\(783\) 11.0436 0.394665
\(784\) 0 0
\(785\) 48.0605 1.71535
\(786\) 14.2179 0.507136
\(787\) −5.48220 −0.195419 −0.0977097 0.995215i \(-0.531152\pi\)
−0.0977097 + 0.995215i \(0.531152\pi\)
\(788\) −30.5493 −1.08827
\(789\) −48.9564 −1.74290
\(790\) 28.7477 1.02280
\(791\) 0 0
\(792\) 0.460985 0.0163804
\(793\) 0 0
\(794\) −33.1652 −1.17699
\(795\) 47.6990 1.69171
\(796\) −30.7042 −1.08828
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) 12.8474 0.454507
\(800\) 1.54135 0.0544950
\(801\) −0.607749 −0.0214738
\(802\) 64.7042 2.28478
\(803\) 4.41742 0.155888
\(804\) 57.0068 2.01047
\(805\) 0 0
\(806\) 0 0
\(807\) −20.0780 −0.706780
\(808\) 16.9590 0.596616
\(809\) −29.2432 −1.02814 −0.514068 0.857750i \(-0.671862\pi\)
−0.514068 + 0.857750i \(0.671862\pi\)
\(810\) 45.9129 1.61321
\(811\) 12.0489 0.423094 0.211547 0.977368i \(-0.432150\pi\)
0.211547 + 0.977368i \(0.432150\pi\)
\(812\) 0 0
\(813\) 51.4491 1.80440
\(814\) −19.3386 −0.677818
\(815\) −15.1652 −0.531212
\(816\) −9.62614 −0.336982
\(817\) −28.7219 −1.00485
\(818\) −0.791288 −0.0276667
\(819\) 0 0
\(820\) 15.5826 0.544167
\(821\) 49.6972 1.73444 0.867222 0.497922i \(-0.165904\pi\)
0.867222 + 0.497922i \(0.165904\pi\)
\(822\) −67.2432 −2.34538
\(823\) −32.4955 −1.13272 −0.566360 0.824158i \(-0.691649\pi\)
−0.566360 + 0.824158i \(0.691649\pi\)
\(824\) −7.93725 −0.276507
\(825\) −0.476751 −0.0165983
\(826\) 0 0
\(827\) −0.989150 −0.0343961 −0.0171981 0.999852i \(-0.505475\pi\)
−0.0171981 + 0.999852i \(0.505475\pi\)
\(828\) −4.41742 −0.153516
\(829\) −20.6261 −0.716375 −0.358188 0.933650i \(-0.616605\pi\)
−0.358188 + 0.933650i \(0.616605\pi\)
\(830\) −17.0544 −0.591965
\(831\) 28.2087 0.978549
\(832\) 0 0
\(833\) 0 0
\(834\) 3.10260 0.107434
\(835\) −43.7042 −1.51245
\(836\) −23.3739 −0.808402
\(837\) −43.3013 −1.49671
\(838\) 56.3592 1.94690
\(839\) −46.4992 −1.60533 −0.802666 0.596429i \(-0.796586\pi\)
−0.802666 + 0.596429i \(0.796586\pi\)
\(840\) 0 0
\(841\) −24.1216 −0.831779
\(842\) −43.9129 −1.51334
\(843\) −11.4569 −0.394597
\(844\) 3.95644 0.136186
\(845\) 0 0
\(846\) 1.95644 0.0672638
\(847\) 0 0
\(848\) 21.7913 0.748316
\(849\) 44.3303 1.52141
\(850\) −1.37055 −0.0470095
\(851\) 52.5336 1.80083
\(852\) 4.56850 0.156514
\(853\) 17.6066 0.602837 0.301419 0.953492i \(-0.402540\pi\)
0.301419 + 0.953492i \(0.402540\pi\)
\(854\) 0 0
\(855\) 3.00000 0.102598
\(856\) −16.9590 −0.579647
\(857\) −47.5390 −1.62390 −0.811951 0.583726i \(-0.801594\pi\)
−0.811951 + 0.583726i \(0.801594\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) −26.7237 −0.911269
\(861\) 0 0
\(862\) −34.1652 −1.16367
\(863\) −3.08270 −0.104936 −0.0524682 0.998623i \(-0.516709\pi\)
−0.0524682 + 0.998623i \(0.516709\pi\)
\(864\) 36.9253 1.25622
\(865\) 16.9590 0.576624
\(866\) −49.2403 −1.67325
\(867\) −14.3303 −0.486683
\(868\) 0 0
\(869\) −7.65120 −0.259549
\(870\) 18.9564 0.642683
\(871\) 0 0
\(872\) −13.7477 −0.465557
\(873\) −3.17805 −0.107561
\(874\) 108.991 3.68667
\(875\) 0 0
\(876\) 17.3205 0.585206
\(877\) −34.9271 −1.17940 −0.589702 0.807621i \(-0.700755\pi\)
−0.589702 + 0.807621i \(0.700755\pi\)
\(878\) −25.2578 −0.852408
\(879\) 14.0471 0.473797
\(880\) 5.00000 0.168550
\(881\) −7.41742 −0.249899 −0.124950 0.992163i \(-0.539877\pi\)
−0.124950 + 0.992163i \(0.539877\pi\)
\(882\) 0 0
\(883\) 53.2432 1.79178 0.895888 0.444280i \(-0.146541\pi\)
0.895888 + 0.444280i \(0.146541\pi\)
\(884\) 0 0
\(885\) −34.7042 −1.16657
\(886\) 6.92820 0.232758
\(887\) 31.5826 1.06044 0.530220 0.847860i \(-0.322109\pi\)
0.530220 + 0.847860i \(0.322109\pi\)
\(888\) −21.4955 −0.721340
\(889\) 0 0
\(890\) 13.9518 0.467664
\(891\) −12.2197 −0.409376
\(892\) 57.8052 1.93546
\(893\) −28.1216 −0.941053
\(894\) −8.58258 −0.287044
\(895\) −19.7001 −0.658502
\(896\) 0 0
\(897\) 0 0
\(898\) −43.4955 −1.45146
\(899\) −19.1280 −0.637955
\(900\) −0.121591 −0.00405302
\(901\) −36.4955 −1.21584
\(902\) −7.11890 −0.237034
\(903\) 0 0
\(904\) 2.45505 0.0816538
\(905\) −20.0616 −0.666870
\(906\) −47.5390 −1.57938
\(907\) −23.0780 −0.766293 −0.383147 0.923688i \(-0.625160\pi\)
−0.383147 + 0.923688i \(0.625160\pi\)
\(908\) 34.3749 1.14077
\(909\) 2.04356 0.0677806
\(910\) 0 0
\(911\) −1.87841 −0.0622345 −0.0311172 0.999516i \(-0.509907\pi\)
−0.0311172 + 0.999516i \(0.509907\pi\)
\(912\) 21.0707 0.697719
\(913\) 4.53901 0.150219
\(914\) −19.5826 −0.647734
\(915\) 49.9832 1.65239
\(916\) 19.3386 0.638966
\(917\) 0 0
\(918\) −32.8335 −1.08367
\(919\) −19.9129 −0.656865 −0.328433 0.944527i \(-0.606520\pi\)
−0.328433 + 0.944527i \(0.606520\pi\)
\(920\) 28.7477 0.947784
\(921\) −43.3013 −1.42683
\(922\) −39.1216 −1.28840
\(923\) 0 0
\(924\) 0 0
\(925\) 1.44600 0.0475442
\(926\) −17.3739 −0.570941
\(927\) −0.956439 −0.0314136
\(928\) 16.3115 0.535450
\(929\) −26.7436 −0.877428 −0.438714 0.898627i \(-0.644566\pi\)
−0.438714 + 0.898627i \(0.644566\pi\)
\(930\) −74.3273 −2.43729
\(931\) 0 0
\(932\) 19.4174 0.636039
\(933\) 9.92197 0.324831
\(934\) −25.9053 −0.847648
\(935\) −8.37386 −0.273855
\(936\) 0 0
\(937\) −34.4955 −1.12692 −0.563459 0.826144i \(-0.690530\pi\)
−0.563459 + 0.826144i \(0.690530\pi\)
\(938\) 0 0
\(939\) 37.1652 1.21284
\(940\) −26.1652 −0.853413
\(941\) 2.26435 0.0738157 0.0369079 0.999319i \(-0.488249\pi\)
0.0369079 + 0.999319i \(0.488249\pi\)
\(942\) −86.0901 −2.80497
\(943\) 19.3386 0.629752
\(944\) −15.8546 −0.516024
\(945\) 0 0
\(946\) 12.2087 0.396939
\(947\) 56.8915 1.84873 0.924363 0.381514i \(-0.124597\pi\)
0.924363 + 0.381514i \(0.124597\pi\)
\(948\) −30.0000 −0.974355
\(949\) 0 0
\(950\) 3.00000 0.0973329
\(951\) −33.1751 −1.07578
\(952\) 0 0
\(953\) 15.0000 0.485898 0.242949 0.970039i \(-0.421885\pi\)
0.242949 + 0.970039i \(0.421885\pi\)
\(954\) −5.55765 −0.179936
\(955\) 1.37055 0.0443500
\(956\) 36.9253 1.19425
\(957\) −5.04525 −0.163090
\(958\) −22.3739 −0.722867
\(959\) 0 0
\(960\) 49.3357 1.59230
\(961\) 44.0000 1.41935
\(962\) 0 0
\(963\) −2.04356 −0.0658528
\(964\) 11.4768 0.369643
\(965\) −27.1652 −0.874477
\(966\) 0 0
\(967\) −23.8118 −0.765735 −0.382867 0.923803i \(-0.625063\pi\)
−0.382867 + 0.923803i \(0.625063\pi\)
\(968\) −16.2360 −0.521845
\(969\) −35.2886 −1.13363
\(970\) 72.9567 2.34250
\(971\) 49.7477 1.59648 0.798240 0.602339i \(-0.205765\pi\)
0.798240 + 0.602339i \(0.205765\pi\)
\(972\) −6.04356 −0.193847
\(973\) 0 0
\(974\) 22.5826 0.723592
\(975\) 0 0
\(976\) 22.8348 0.730926
\(977\) 56.8161 1.81771 0.908854 0.417115i \(-0.136959\pi\)
0.908854 + 0.417115i \(0.136959\pi\)
\(978\) 27.1652 0.868646
\(979\) −3.71326 −0.118676
\(980\) 0 0
\(981\) −1.65660 −0.0528912
\(982\) −81.2555 −2.59297
\(983\) −25.0870 −0.800150 −0.400075 0.916482i \(-0.631016\pi\)
−0.400075 + 0.916482i \(0.631016\pi\)
\(984\) −7.91288 −0.252253
\(985\) 23.9564 0.763316
\(986\) −14.5040 −0.461900
\(987\) 0 0
\(988\) 0 0
\(989\) −33.1652 −1.05459
\(990\) −1.27520 −0.0405285
\(991\) −26.6261 −0.845807 −0.422904 0.906175i \(-0.638989\pi\)
−0.422904 + 0.906175i \(0.638989\pi\)
\(992\) −63.9564 −2.03062
\(993\) −1.94265 −0.0616482
\(994\) 0 0
\(995\) 24.0779 0.763321
\(996\) 17.7973 0.563928
\(997\) 50.0780 1.58599 0.792994 0.609230i \(-0.208521\pi\)
0.792994 + 0.609230i \(0.208521\pi\)
\(998\) −92.4083 −2.92513
\(999\) 34.6410 1.09599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bq.1.4 4
7.6 odd 2 8281.2.a.bs.1.4 4
13.2 odd 12 637.2.q.f.589.2 yes 4
13.7 odd 12 637.2.q.f.491.2 yes 4
13.12 even 2 inner 8281.2.a.bq.1.1 4
91.2 odd 12 637.2.k.f.459.1 4
91.20 even 12 637.2.q.e.491.2 4
91.33 even 12 637.2.u.e.361.1 4
91.41 even 12 637.2.q.e.589.2 yes 4
91.46 odd 12 637.2.k.f.569.2 4
91.54 even 12 637.2.k.d.459.1 4
91.59 even 12 637.2.k.d.569.2 4
91.67 odd 12 637.2.u.d.30.1 4
91.72 odd 12 637.2.u.d.361.1 4
91.80 even 12 637.2.u.e.30.1 4
91.90 odd 2 8281.2.a.bs.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.k.d.459.1 4 91.54 even 12
637.2.k.d.569.2 4 91.59 even 12
637.2.k.f.459.1 4 91.2 odd 12
637.2.k.f.569.2 4 91.46 odd 12
637.2.q.e.491.2 4 91.20 even 12
637.2.q.e.589.2 yes 4 91.41 even 12
637.2.q.f.491.2 yes 4 13.7 odd 12
637.2.q.f.589.2 yes 4 13.2 odd 12
637.2.u.d.30.1 4 91.67 odd 12
637.2.u.d.361.1 4 91.72 odd 12
637.2.u.e.30.1 4 91.80 even 12
637.2.u.e.361.1 4 91.33 even 12
8281.2.a.bq.1.1 4 13.12 even 2 inner
8281.2.a.bq.1.4 4 1.1 even 1 trivial
8281.2.a.bs.1.1 4 91.90 odd 2
8281.2.a.bs.1.4 4 7.6 odd 2