Properties

Label 8281.2.a.bq.1.3
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{3}, \sqrt{7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.18890\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.456850 q^{2} -2.79129 q^{3} -1.79129 q^{4} -0.456850 q^{5} -1.27520 q^{6} -1.73205 q^{8} +4.79129 q^{9} +O(q^{10})\) \(q+0.456850 q^{2} -2.79129 q^{3} -1.79129 q^{4} -0.456850 q^{5} -1.27520 q^{6} -1.73205 q^{8} +4.79129 q^{9} -0.208712 q^{10} -3.92095 q^{11} +5.00000 q^{12} +1.27520 q^{15} +2.79129 q^{16} +3.00000 q^{17} +2.18890 q^{18} -1.37055 q^{19} +0.818350 q^{20} -1.79129 q^{22} +1.58258 q^{23} +4.83465 q^{24} -4.79129 q^{25} -5.00000 q^{27} -6.79129 q^{29} +0.582576 q^{30} -8.66025 q^{31} +4.73930 q^{32} +10.9445 q^{33} +1.37055 q^{34} -8.58258 q^{36} +6.92820 q^{37} -0.626136 q^{38} +0.791288 q^{40} +7.84190 q^{41} -9.37386 q^{43} +7.02355 q^{44} -2.18890 q^{45} +0.723000 q^{46} -9.57395 q^{47} -7.79129 q^{48} -2.18890 q^{50} -8.37386 q^{51} +6.16515 q^{53} -2.28425 q^{54} +1.79129 q^{55} +3.82560 q^{57} -3.10260 q^{58} +12.3151 q^{59} -2.28425 q^{60} +14.7477 q^{61} -3.95644 q^{62} -3.41742 q^{64} +5.00000 q^{66} +4.47315 q^{67} -5.37386 q^{68} -4.41742 q^{69} +4.37780 q^{71} -8.29875 q^{72} -3.46410 q^{73} +3.16515 q^{74} +13.3739 q^{75} +2.45505 q^{76} -6.00000 q^{79} -1.27520 q^{80} -0.417424 q^{81} +3.58258 q^{82} +7.02355 q^{83} -1.37055 q^{85} -4.28245 q^{86} +18.9564 q^{87} +6.79129 q^{88} +16.1407 q^{89} -1.00000 q^{90} -2.83485 q^{92} +24.1733 q^{93} -4.37386 q^{94} +0.626136 q^{95} -13.2288 q^{96} +7.28970 q^{97} -18.7864 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} + 2 q^{4} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{3} + 2 q^{4} + 10 q^{9} - 10 q^{10} + 20 q^{12} + 2 q^{16} + 12 q^{17} + 2 q^{22} - 12 q^{23} - 10 q^{25} - 20 q^{27} - 18 q^{29} - 16 q^{30} - 16 q^{36} - 30 q^{38} - 6 q^{40} - 10 q^{43} - 22 q^{48} - 6 q^{51} - 12 q^{53} - 2 q^{55} + 4 q^{61} + 30 q^{62} - 32 q^{64} + 20 q^{66} + 6 q^{68} - 36 q^{69} - 24 q^{74} + 26 q^{75} - 24 q^{79} - 20 q^{81} - 4 q^{82} + 30 q^{87} + 18 q^{88} - 4 q^{90} - 48 q^{92} + 10 q^{94} + 30 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.456850 0.323042 0.161521 0.986869i \(-0.448360\pi\)
0.161521 + 0.986869i \(0.448360\pi\)
\(3\) −2.79129 −1.61155 −0.805775 0.592221i \(-0.798251\pi\)
−0.805775 + 0.592221i \(0.798251\pi\)
\(4\) −1.79129 −0.895644
\(5\) −0.456850 −0.204310 −0.102155 0.994769i \(-0.532574\pi\)
−0.102155 + 0.994769i \(0.532574\pi\)
\(6\) −1.27520 −0.520598
\(7\) 0 0
\(8\) −1.73205 −0.612372
\(9\) 4.79129 1.59710
\(10\) −0.208712 −0.0660006
\(11\) −3.92095 −1.18221 −0.591106 0.806594i \(-0.701308\pi\)
−0.591106 + 0.806594i \(0.701308\pi\)
\(12\) 5.00000 1.44338
\(13\) 0 0
\(14\) 0 0
\(15\) 1.27520 0.329255
\(16\) 2.79129 0.697822
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 2.18890 0.515929
\(19\) −1.37055 −0.314426 −0.157213 0.987565i \(-0.550251\pi\)
−0.157213 + 0.987565i \(0.550251\pi\)
\(20\) 0.818350 0.182989
\(21\) 0 0
\(22\) −1.79129 −0.381904
\(23\) 1.58258 0.329990 0.164995 0.986294i \(-0.447239\pi\)
0.164995 + 0.986294i \(0.447239\pi\)
\(24\) 4.83465 0.986869
\(25\) −4.79129 −0.958258
\(26\) 0 0
\(27\) −5.00000 −0.962250
\(28\) 0 0
\(29\) −6.79129 −1.26111 −0.630555 0.776144i \(-0.717173\pi\)
−0.630555 + 0.776144i \(0.717173\pi\)
\(30\) 0.582576 0.106363
\(31\) −8.66025 −1.55543 −0.777714 0.628619i \(-0.783621\pi\)
−0.777714 + 0.628619i \(0.783621\pi\)
\(32\) 4.73930 0.837798
\(33\) 10.9445 1.90519
\(34\) 1.37055 0.235048
\(35\) 0 0
\(36\) −8.58258 −1.43043
\(37\) 6.92820 1.13899 0.569495 0.821995i \(-0.307139\pi\)
0.569495 + 0.821995i \(0.307139\pi\)
\(38\) −0.626136 −0.101573
\(39\) 0 0
\(40\) 0.791288 0.125114
\(41\) 7.84190 1.22470 0.612350 0.790587i \(-0.290224\pi\)
0.612350 + 0.790587i \(0.290224\pi\)
\(42\) 0 0
\(43\) −9.37386 −1.42950 −0.714750 0.699380i \(-0.753460\pi\)
−0.714750 + 0.699380i \(0.753460\pi\)
\(44\) 7.02355 1.05884
\(45\) −2.18890 −0.326302
\(46\) 0.723000 0.106601
\(47\) −9.57395 −1.39650 −0.698252 0.715852i \(-0.746039\pi\)
−0.698252 + 0.715852i \(0.746039\pi\)
\(48\) −7.79129 −1.12458
\(49\) 0 0
\(50\) −2.18890 −0.309557
\(51\) −8.37386 −1.17258
\(52\) 0 0
\(53\) 6.16515 0.846849 0.423424 0.905931i \(-0.360828\pi\)
0.423424 + 0.905931i \(0.360828\pi\)
\(54\) −2.28425 −0.310847
\(55\) 1.79129 0.241537
\(56\) 0 0
\(57\) 3.82560 0.506713
\(58\) −3.10260 −0.407392
\(59\) 12.3151 1.60328 0.801642 0.597805i \(-0.203960\pi\)
0.801642 + 0.597805i \(0.203960\pi\)
\(60\) −2.28425 −0.294896
\(61\) 14.7477 1.88825 0.944126 0.329583i \(-0.106908\pi\)
0.944126 + 0.329583i \(0.106908\pi\)
\(62\) −3.95644 −0.502468
\(63\) 0 0
\(64\) −3.41742 −0.427178
\(65\) 0 0
\(66\) 5.00000 0.615457
\(67\) 4.47315 0.546483 0.273241 0.961946i \(-0.411904\pi\)
0.273241 + 0.961946i \(0.411904\pi\)
\(68\) −5.37386 −0.651677
\(69\) −4.41742 −0.531795
\(70\) 0 0
\(71\) 4.37780 0.519550 0.259775 0.965669i \(-0.416352\pi\)
0.259775 + 0.965669i \(0.416352\pi\)
\(72\) −8.29875 −0.978018
\(73\) −3.46410 −0.405442 −0.202721 0.979236i \(-0.564979\pi\)
−0.202721 + 0.979236i \(0.564979\pi\)
\(74\) 3.16515 0.367941
\(75\) 13.3739 1.54428
\(76\) 2.45505 0.281614
\(77\) 0 0
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) −1.27520 −0.142572
\(81\) −0.417424 −0.0463805
\(82\) 3.58258 0.395629
\(83\) 7.02355 0.770935 0.385468 0.922721i \(-0.374040\pi\)
0.385468 + 0.922721i \(0.374040\pi\)
\(84\) 0 0
\(85\) −1.37055 −0.148657
\(86\) −4.28245 −0.461789
\(87\) 18.9564 2.03234
\(88\) 6.79129 0.723954
\(89\) 16.1407 1.71091 0.855453 0.517880i \(-0.173279\pi\)
0.855453 + 0.517880i \(0.173279\pi\)
\(90\) −1.00000 −0.105409
\(91\) 0 0
\(92\) −2.83485 −0.295553
\(93\) 24.1733 2.50665
\(94\) −4.37386 −0.451130
\(95\) 0.626136 0.0642402
\(96\) −13.2288 −1.35015
\(97\) 7.28970 0.740157 0.370079 0.929000i \(-0.379331\pi\)
0.370079 + 0.929000i \(0.379331\pi\)
\(98\) 0 0
\(99\) −18.7864 −1.88811
\(100\) 8.58258 0.858258
\(101\) 5.20871 0.518286 0.259143 0.965839i \(-0.416560\pi\)
0.259143 + 0.965839i \(0.416560\pi\)
\(102\) −3.82560 −0.378791
\(103\) 4.58258 0.451535 0.225767 0.974181i \(-0.427511\pi\)
0.225767 + 0.974181i \(0.427511\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 2.81655 0.273568
\(107\) −5.20871 −0.503545 −0.251773 0.967786i \(-0.581014\pi\)
−0.251773 + 0.967786i \(0.581014\pi\)
\(108\) 8.95644 0.861834
\(109\) −7.93725 −0.760251 −0.380126 0.924935i \(-0.624119\pi\)
−0.380126 + 0.924935i \(0.624119\pi\)
\(110\) 0.818350 0.0780266
\(111\) −19.3386 −1.83554
\(112\) 0 0
\(113\) 10.5826 0.995525 0.497762 0.867313i \(-0.334155\pi\)
0.497762 + 0.867313i \(0.334155\pi\)
\(114\) 1.74773 0.163690
\(115\) −0.723000 −0.0674201
\(116\) 12.1652 1.12951
\(117\) 0 0
\(118\) 5.62614 0.517928
\(119\) 0 0
\(120\) −2.20871 −0.201627
\(121\) 4.37386 0.397624
\(122\) 6.73750 0.609985
\(123\) −21.8890 −1.97367
\(124\) 15.5130 1.39311
\(125\) 4.47315 0.400091
\(126\) 0 0
\(127\) −6.95644 −0.617284 −0.308642 0.951178i \(-0.599875\pi\)
−0.308642 + 0.951178i \(0.599875\pi\)
\(128\) −11.0399 −0.975795
\(129\) 26.1652 2.30371
\(130\) 0 0
\(131\) 17.3739 1.51796 0.758981 0.651113i \(-0.225698\pi\)
0.758981 + 0.651113i \(0.225698\pi\)
\(132\) −19.6048 −1.70638
\(133\) 0 0
\(134\) 2.04356 0.176537
\(135\) 2.28425 0.196597
\(136\) −5.19615 −0.445566
\(137\) −11.9536 −1.02126 −0.510631 0.859800i \(-0.670588\pi\)
−0.510631 + 0.859800i \(0.670588\pi\)
\(138\) −2.01810 −0.171792
\(139\) −3.79129 −0.321573 −0.160786 0.986989i \(-0.551403\pi\)
−0.160786 + 0.986989i \(0.551403\pi\)
\(140\) 0 0
\(141\) 26.7237 2.25054
\(142\) 2.00000 0.167836
\(143\) 0 0
\(144\) 13.3739 1.11449
\(145\) 3.10260 0.257657
\(146\) −1.58258 −0.130975
\(147\) 0 0
\(148\) −12.4104 −1.02013
\(149\) −0.456850 −0.0374266 −0.0187133 0.999825i \(-0.505957\pi\)
−0.0187133 + 0.999825i \(0.505957\pi\)
\(150\) 6.10985 0.498867
\(151\) 12.1244 0.986666 0.493333 0.869841i \(-0.335778\pi\)
0.493333 + 0.869841i \(0.335778\pi\)
\(152\) 2.37386 0.192546
\(153\) 14.3739 1.16206
\(154\) 0 0
\(155\) 3.95644 0.317789
\(156\) 0 0
\(157\) 0.956439 0.0763322 0.0381661 0.999271i \(-0.487848\pi\)
0.0381661 + 0.999271i \(0.487848\pi\)
\(158\) −2.74110 −0.218070
\(159\) −17.2087 −1.36474
\(160\) −2.16515 −0.171170
\(161\) 0 0
\(162\) −0.190700 −0.0149828
\(163\) −6.92820 −0.542659 −0.271329 0.962487i \(-0.587463\pi\)
−0.271329 + 0.962487i \(0.587463\pi\)
\(164\) −14.0471 −1.09689
\(165\) −5.00000 −0.389249
\(166\) 3.20871 0.249044
\(167\) −14.6748 −1.13557 −0.567783 0.823178i \(-0.692199\pi\)
−0.567783 + 0.823178i \(0.692199\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −0.626136 −0.0480225
\(171\) −6.56670 −0.502168
\(172\) 16.7913 1.28032
\(173\) 19.7477 1.50139 0.750696 0.660648i \(-0.229718\pi\)
0.750696 + 0.660648i \(0.229718\pi\)
\(174\) 8.66025 0.656532
\(175\) 0 0
\(176\) −10.9445 −0.824973
\(177\) −34.3749 −2.58377
\(178\) 7.37386 0.552694
\(179\) 9.00000 0.672692 0.336346 0.941739i \(-0.390809\pi\)
0.336346 + 0.941739i \(0.390809\pi\)
\(180\) 3.92095 0.292250
\(181\) −9.16515 −0.681240 −0.340620 0.940201i \(-0.610637\pi\)
−0.340620 + 0.940201i \(0.610637\pi\)
\(182\) 0 0
\(183\) −41.1652 −3.04302
\(184\) −2.74110 −0.202077
\(185\) −3.16515 −0.232707
\(186\) 11.0436 0.809753
\(187\) −11.7629 −0.860185
\(188\) 17.1497 1.25077
\(189\) 0 0
\(190\) 0.286051 0.0207523
\(191\) −14.3739 −1.04006 −0.520028 0.854149i \(-0.674079\pi\)
−0.520028 + 0.854149i \(0.674079\pi\)
\(192\) 9.53901 0.688419
\(193\) 19.3386 1.39202 0.696012 0.718030i \(-0.254956\pi\)
0.696012 + 0.718030i \(0.254956\pi\)
\(194\) 3.33030 0.239102
\(195\) 0 0
\(196\) 0 0
\(197\) −2.28425 −0.162746 −0.0813731 0.996684i \(-0.525931\pi\)
−0.0813731 + 0.996684i \(0.525931\pi\)
\(198\) −8.58258 −0.609937
\(199\) −11.0000 −0.779769 −0.389885 0.920864i \(-0.627485\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) 8.29875 0.586811
\(201\) −12.4859 −0.880684
\(202\) 2.37960 0.167428
\(203\) 0 0
\(204\) 15.0000 1.05021
\(205\) −3.58258 −0.250218
\(206\) 2.09355 0.145865
\(207\) 7.58258 0.527025
\(208\) 0 0
\(209\) 5.37386 0.371718
\(210\) 0 0
\(211\) 10.5826 0.728535 0.364267 0.931294i \(-0.381319\pi\)
0.364267 + 0.931294i \(0.381319\pi\)
\(212\) −11.0436 −0.758475
\(213\) −12.2197 −0.837280
\(214\) −2.37960 −0.162666
\(215\) 4.28245 0.292061
\(216\) 8.66025 0.589256
\(217\) 0 0
\(218\) −3.62614 −0.245593
\(219\) 9.66930 0.653391
\(220\) −3.20871 −0.216331
\(221\) 0 0
\(222\) −8.83485 −0.592956
\(223\) 18.9771 1.27080 0.635401 0.772183i \(-0.280835\pi\)
0.635401 + 0.772183i \(0.280835\pi\)
\(224\) 0 0
\(225\) −22.9564 −1.53043
\(226\) 4.83465 0.321596
\(227\) 8.85095 0.587458 0.293729 0.955889i \(-0.405104\pi\)
0.293729 + 0.955889i \(0.405104\pi\)
\(228\) −6.85275 −0.453835
\(229\) −6.92820 −0.457829 −0.228914 0.973447i \(-0.573518\pi\)
−0.228914 + 0.973447i \(0.573518\pi\)
\(230\) −0.330303 −0.0217795
\(231\) 0 0
\(232\) 11.7629 0.772269
\(233\) −15.9564 −1.04534 −0.522671 0.852535i \(-0.675064\pi\)
−0.522671 + 0.852535i \(0.675064\pi\)
\(234\) 0 0
\(235\) 4.37386 0.285319
\(236\) −22.0598 −1.43597
\(237\) 16.7477 1.08788
\(238\) 0 0
\(239\) 13.2288 0.855697 0.427849 0.903850i \(-0.359272\pi\)
0.427849 + 0.903850i \(0.359272\pi\)
\(240\) 3.55945 0.229762
\(241\) 19.7001 1.26900 0.634498 0.772925i \(-0.281207\pi\)
0.634498 + 0.772925i \(0.281207\pi\)
\(242\) 1.99820 0.128449
\(243\) 16.1652 1.03699
\(244\) −26.4174 −1.69120
\(245\) 0 0
\(246\) −10.0000 −0.637577
\(247\) 0 0
\(248\) 15.0000 0.952501
\(249\) −19.6048 −1.24240
\(250\) 2.04356 0.129246
\(251\) 2.83485 0.178934 0.0894670 0.995990i \(-0.471484\pi\)
0.0894670 + 0.995990i \(0.471484\pi\)
\(252\) 0 0
\(253\) −6.20520 −0.390118
\(254\) −3.17805 −0.199409
\(255\) 3.82560 0.239568
\(256\) 1.79129 0.111955
\(257\) −5.04356 −0.314609 −0.157304 0.987550i \(-0.550280\pi\)
−0.157304 + 0.987550i \(0.550280\pi\)
\(258\) 11.9536 0.744196
\(259\) 0 0
\(260\) 0 0
\(261\) −32.5390 −2.01411
\(262\) 7.93725 0.490365
\(263\) 9.33030 0.575331 0.287666 0.957731i \(-0.407121\pi\)
0.287666 + 0.957731i \(0.407121\pi\)
\(264\) −18.9564 −1.16669
\(265\) −2.81655 −0.173019
\(266\) 0 0
\(267\) −45.0532 −2.75721
\(268\) −8.01270 −0.489454
\(269\) −15.7913 −0.962812 −0.481406 0.876498i \(-0.659874\pi\)
−0.481406 + 0.876498i \(0.659874\pi\)
\(270\) 1.04356 0.0635091
\(271\) −12.8474 −0.780421 −0.390211 0.920726i \(-0.627598\pi\)
−0.390211 + 0.920726i \(0.627598\pi\)
\(272\) 8.37386 0.507740
\(273\) 0 0
\(274\) −5.46099 −0.329910
\(275\) 18.7864 1.13286
\(276\) 7.91288 0.476299
\(277\) −11.7477 −0.705853 −0.352926 0.935651i \(-0.614813\pi\)
−0.352926 + 0.935651i \(0.614813\pi\)
\(278\) −1.73205 −0.103882
\(279\) −41.4938 −2.48417
\(280\) 0 0
\(281\) −30.6446 −1.82810 −0.914052 0.405597i \(-0.867064\pi\)
−0.914052 + 0.405597i \(0.867064\pi\)
\(282\) 12.2087 0.727018
\(283\) −2.74773 −0.163335 −0.0816677 0.996660i \(-0.526025\pi\)
−0.0816677 + 0.996660i \(0.526025\pi\)
\(284\) −7.84190 −0.465331
\(285\) −1.74773 −0.103526
\(286\) 0 0
\(287\) 0 0
\(288\) 22.7074 1.33804
\(289\) −8.00000 −0.470588
\(290\) 1.41742 0.0832340
\(291\) −20.3477 −1.19280
\(292\) 6.20520 0.363132
\(293\) −2.55040 −0.148996 −0.0744980 0.997221i \(-0.523735\pi\)
−0.0744980 + 0.997221i \(0.523735\pi\)
\(294\) 0 0
\(295\) −5.62614 −0.327566
\(296\) −12.0000 −0.697486
\(297\) 19.6048 1.13758
\(298\) −0.208712 −0.0120904
\(299\) 0 0
\(300\) −23.9564 −1.38313
\(301\) 0 0
\(302\) 5.53901 0.318734
\(303\) −14.5390 −0.835245
\(304\) −3.82560 −0.219413
\(305\) −6.73750 −0.385788
\(306\) 6.56670 0.375393
\(307\) −15.5130 −0.885374 −0.442687 0.896676i \(-0.645975\pi\)
−0.442687 + 0.896676i \(0.645975\pi\)
\(308\) 0 0
\(309\) −12.7913 −0.727671
\(310\) 1.80750 0.102659
\(311\) −26.5390 −1.50489 −0.752445 0.658655i \(-0.771126\pi\)
−0.752445 + 0.658655i \(0.771126\pi\)
\(312\) 0 0
\(313\) −6.74773 −0.381404 −0.190702 0.981648i \(-0.561076\pi\)
−0.190702 + 0.981648i \(0.561076\pi\)
\(314\) 0.436950 0.0246585
\(315\) 0 0
\(316\) 10.7477 0.604607
\(317\) −18.5203 −1.04020 −0.520101 0.854105i \(-0.674106\pi\)
−0.520101 + 0.854105i \(0.674106\pi\)
\(318\) −7.86180 −0.440868
\(319\) 26.6283 1.49090
\(320\) 1.56125 0.0872766
\(321\) 14.5390 0.811489
\(322\) 0 0
\(323\) −4.11165 −0.228778
\(324\) 0.747727 0.0415404
\(325\) 0 0
\(326\) −3.16515 −0.175302
\(327\) 22.1552 1.22518
\(328\) −13.5826 −0.749972
\(329\) 0 0
\(330\) −2.28425 −0.125744
\(331\) 24.8963 1.36842 0.684211 0.729284i \(-0.260147\pi\)
0.684211 + 0.729284i \(0.260147\pi\)
\(332\) −12.5812 −0.690483
\(333\) 33.1950 1.81908
\(334\) −6.70417 −0.366836
\(335\) −2.04356 −0.111652
\(336\) 0 0
\(337\) −9.95644 −0.542362 −0.271181 0.962528i \(-0.587414\pi\)
−0.271181 + 0.962528i \(0.587414\pi\)
\(338\) 0 0
\(339\) −29.5390 −1.60434
\(340\) 2.45505 0.133144
\(341\) 33.9564 1.83884
\(342\) −3.00000 −0.162221
\(343\) 0 0
\(344\) 16.2360 0.875387
\(345\) 2.01810 0.108651
\(346\) 9.02175 0.485013
\(347\) −13.5826 −0.729151 −0.364575 0.931174i \(-0.618786\pi\)
−0.364575 + 0.931174i \(0.618786\pi\)
\(348\) −33.9564 −1.82026
\(349\) −21.0707 −1.12789 −0.563943 0.825814i \(-0.690716\pi\)
−0.563943 + 0.825814i \(0.690716\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −18.5826 −0.990455
\(353\) −18.1588 −0.966493 −0.483247 0.875484i \(-0.660543\pi\)
−0.483247 + 0.875484i \(0.660543\pi\)
\(354\) −15.7042 −0.834667
\(355\) −2.00000 −0.106149
\(356\) −28.9126 −1.53236
\(357\) 0 0
\(358\) 4.11165 0.217308
\(359\) 0.552200 0.0291440 0.0145720 0.999894i \(-0.495361\pi\)
0.0145720 + 0.999894i \(0.495361\pi\)
\(360\) 3.79129 0.199818
\(361\) −17.1216 −0.901136
\(362\) −4.18710 −0.220069
\(363\) −12.2087 −0.640791
\(364\) 0 0
\(365\) 1.58258 0.0828358
\(366\) −18.8063 −0.983022
\(367\) −18.0000 −0.939592 −0.469796 0.882775i \(-0.655673\pi\)
−0.469796 + 0.882775i \(0.655673\pi\)
\(368\) 4.41742 0.230274
\(369\) 37.5728 1.95596
\(370\) −1.44600 −0.0751740
\(371\) 0 0
\(372\) −43.3013 −2.24507
\(373\) 32.2087 1.66770 0.833852 0.551988i \(-0.186131\pi\)
0.833852 + 0.551988i \(0.186131\pi\)
\(374\) −5.37386 −0.277876
\(375\) −12.4859 −0.644767
\(376\) 16.5826 0.855181
\(377\) 0 0
\(378\) 0 0
\(379\) 28.3604 1.45677 0.728387 0.685166i \(-0.240270\pi\)
0.728387 + 0.685166i \(0.240270\pi\)
\(380\) −1.12159 −0.0575364
\(381\) 19.4174 0.994785
\(382\) −6.56670 −0.335982
\(383\) 1.27520 0.0651597 0.0325799 0.999469i \(-0.489628\pi\)
0.0325799 + 0.999469i \(0.489628\pi\)
\(384\) 30.8154 1.57254
\(385\) 0 0
\(386\) 8.83485 0.449682
\(387\) −44.9129 −2.28305
\(388\) −13.0580 −0.662917
\(389\) 0.330303 0.0167470 0.00837351 0.999965i \(-0.497335\pi\)
0.00837351 + 0.999965i \(0.497335\pi\)
\(390\) 0 0
\(391\) 4.74773 0.240103
\(392\) 0 0
\(393\) −48.4955 −2.44627
\(394\) −1.04356 −0.0525738
\(395\) 2.74110 0.137920
\(396\) 33.6519 1.69107
\(397\) −32.4720 −1.62972 −0.814862 0.579655i \(-0.803187\pi\)
−0.814862 + 0.579655i \(0.803187\pi\)
\(398\) −5.02535 −0.251898
\(399\) 0 0
\(400\) −13.3739 −0.668693
\(401\) 31.2922 1.56266 0.781328 0.624121i \(-0.214543\pi\)
0.781328 + 0.624121i \(0.214543\pi\)
\(402\) −5.70417 −0.284498
\(403\) 0 0
\(404\) −9.33030 −0.464200
\(405\) 0.190700 0.00947598
\(406\) 0 0
\(407\) −27.1652 −1.34653
\(408\) 14.5040 0.718053
\(409\) 8.29875 0.410347 0.205173 0.978726i \(-0.434224\pi\)
0.205173 + 0.978726i \(0.434224\pi\)
\(410\) −1.63670 −0.0808309
\(411\) 33.3658 1.64581
\(412\) −8.20871 −0.404414
\(413\) 0 0
\(414\) 3.46410 0.170251
\(415\) −3.20871 −0.157509
\(416\) 0 0
\(417\) 10.5826 0.518231
\(418\) 2.45505 0.120080
\(419\) −1.74773 −0.0853821 −0.0426910 0.999088i \(-0.513593\pi\)
−0.0426910 + 0.999088i \(0.513593\pi\)
\(420\) 0 0
\(421\) 4.18710 0.204067 0.102033 0.994781i \(-0.467465\pi\)
0.102033 + 0.994781i \(0.467465\pi\)
\(422\) 4.83465 0.235347
\(423\) −45.8716 −2.23035
\(424\) −10.6784 −0.518587
\(425\) −14.3739 −0.697235
\(426\) −5.58258 −0.270477
\(427\) 0 0
\(428\) 9.33030 0.450997
\(429\) 0 0
\(430\) 1.95644 0.0943479
\(431\) −34.6609 −1.66956 −0.834779 0.550585i \(-0.814405\pi\)
−0.834779 + 0.550585i \(0.814405\pi\)
\(432\) −13.9564 −0.671479
\(433\) 32.4955 1.56163 0.780816 0.624761i \(-0.214804\pi\)
0.780816 + 0.624761i \(0.214804\pi\)
\(434\) 0 0
\(435\) −8.66025 −0.415227
\(436\) 14.2179 0.680914
\(437\) −2.16900 −0.103757
\(438\) 4.41742 0.211073
\(439\) 20.5390 0.980274 0.490137 0.871645i \(-0.336947\pi\)
0.490137 + 0.871645i \(0.336947\pi\)
\(440\) −3.10260 −0.147911
\(441\) 0 0
\(442\) 0 0
\(443\) −15.1652 −0.720518 −0.360259 0.932852i \(-0.617312\pi\)
−0.360259 + 0.932852i \(0.617312\pi\)
\(444\) 34.6410 1.64399
\(445\) −7.37386 −0.349555
\(446\) 8.66970 0.410522
\(447\) 1.27520 0.0603149
\(448\) 0 0
\(449\) 25.1624 1.18749 0.593744 0.804654i \(-0.297649\pi\)
0.593744 + 0.804654i \(0.297649\pi\)
\(450\) −10.4877 −0.494393
\(451\) −30.7477 −1.44785
\(452\) −18.9564 −0.891636
\(453\) −33.8426 −1.59006
\(454\) 4.04356 0.189774
\(455\) 0 0
\(456\) −6.62614 −0.310297
\(457\) −22.8027 −1.06667 −0.533333 0.845905i \(-0.679061\pi\)
−0.533333 + 0.845905i \(0.679061\pi\)
\(458\) −3.16515 −0.147898
\(459\) −15.0000 −0.700140
\(460\) 1.29510 0.0603844
\(461\) 4.64395 0.216290 0.108145 0.994135i \(-0.465509\pi\)
0.108145 + 0.994135i \(0.465509\pi\)
\(462\) 0 0
\(463\) −7.93725 −0.368875 −0.184438 0.982844i \(-0.559046\pi\)
−0.184438 + 0.982844i \(0.559046\pi\)
\(464\) −18.9564 −0.880031
\(465\) −11.0436 −0.512133
\(466\) −7.28970 −0.337689
\(467\) −30.1652 −1.39588 −0.697938 0.716158i \(-0.745899\pi\)
−0.697938 + 0.716158i \(0.745899\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.99820 0.0921701
\(471\) −2.66970 −0.123013
\(472\) −21.3303 −0.981807
\(473\) 36.7545 1.68997
\(474\) 7.65120 0.351431
\(475\) 6.56670 0.301301
\(476\) 0 0
\(477\) 29.5390 1.35250
\(478\) 6.04356 0.276426
\(479\) −18.8818 −0.862730 −0.431365 0.902178i \(-0.641968\pi\)
−0.431365 + 0.902178i \(0.641968\pi\)
\(480\) 6.04356 0.275850
\(481\) 0 0
\(482\) 9.00000 0.409939
\(483\) 0 0
\(484\) −7.83485 −0.356129
\(485\) −3.33030 −0.151221
\(486\) 7.38505 0.334993
\(487\) 29.3694 1.33086 0.665428 0.746462i \(-0.268249\pi\)
0.665428 + 0.746462i \(0.268249\pi\)
\(488\) −25.5438 −1.15631
\(489\) 19.3386 0.874522
\(490\) 0 0
\(491\) 4.12159 0.186005 0.0930024 0.995666i \(-0.470354\pi\)
0.0930024 + 0.995666i \(0.470354\pi\)
\(492\) 39.2095 1.76770
\(493\) −20.3739 −0.917593
\(494\) 0 0
\(495\) 8.58258 0.385758
\(496\) −24.1733 −1.08541
\(497\) 0 0
\(498\) −8.95644 −0.401348
\(499\) 18.4050 0.823921 0.411961 0.911202i \(-0.364844\pi\)
0.411961 + 0.911202i \(0.364844\pi\)
\(500\) −8.01270 −0.358339
\(501\) 40.9615 1.83002
\(502\) 1.29510 0.0578032
\(503\) 19.1216 0.852590 0.426295 0.904584i \(-0.359819\pi\)
0.426295 + 0.904584i \(0.359819\pi\)
\(504\) 0 0
\(505\) −2.37960 −0.105891
\(506\) −2.83485 −0.126024
\(507\) 0 0
\(508\) 12.4610 0.552867
\(509\) 15.0562 0.667352 0.333676 0.942688i \(-0.391711\pi\)
0.333676 + 0.942688i \(0.391711\pi\)
\(510\) 1.74773 0.0773907
\(511\) 0 0
\(512\) 22.8981 1.01196
\(513\) 6.85275 0.302556
\(514\) −2.30415 −0.101632
\(515\) −2.09355 −0.0922529
\(516\) −46.8693 −2.06331
\(517\) 37.5390 1.65096
\(518\) 0 0
\(519\) −55.1216 −2.41957
\(520\) 0 0
\(521\) 16.4174 0.719260 0.359630 0.933095i \(-0.382903\pi\)
0.359630 + 0.933095i \(0.382903\pi\)
\(522\) −14.8655 −0.650643
\(523\) 24.3303 1.06389 0.531945 0.846779i \(-0.321461\pi\)
0.531945 + 0.846779i \(0.321461\pi\)
\(524\) −31.1216 −1.35955
\(525\) 0 0
\(526\) 4.26255 0.185856
\(527\) −25.9808 −1.13174
\(528\) 30.5493 1.32949
\(529\) −20.4955 −0.891107
\(530\) −1.28674 −0.0558925
\(531\) 59.0050 2.56060
\(532\) 0 0
\(533\) 0 0
\(534\) −20.5826 −0.890695
\(535\) 2.37960 0.102879
\(536\) −7.74773 −0.334651
\(537\) −25.1216 −1.08408
\(538\) −7.21425 −0.311029
\(539\) 0 0
\(540\) −4.09175 −0.176081
\(541\) −6.28065 −0.270026 −0.135013 0.990844i \(-0.543108\pi\)
−0.135013 + 0.990844i \(0.543108\pi\)
\(542\) −5.86932 −0.252109
\(543\) 25.5826 1.09785
\(544\) 14.2179 0.609588
\(545\) 3.62614 0.155327
\(546\) 0 0
\(547\) −11.7477 −0.502297 −0.251148 0.967949i \(-0.580808\pi\)
−0.251148 + 0.967949i \(0.580808\pi\)
\(548\) 21.4123 0.914686
\(549\) 70.6606 3.01572
\(550\) 8.58258 0.365962
\(551\) 9.30780 0.396526
\(552\) 7.65120 0.325657
\(553\) 0 0
\(554\) −5.36695 −0.228020
\(555\) 8.83485 0.375018
\(556\) 6.79129 0.288015
\(557\) −33.0242 −1.39928 −0.699640 0.714495i \(-0.746656\pi\)
−0.699640 + 0.714495i \(0.746656\pi\)
\(558\) −18.9564 −0.802490
\(559\) 0 0
\(560\) 0 0
\(561\) 32.8335 1.38623
\(562\) −14.0000 −0.590554
\(563\) −36.3303 −1.53114 −0.765570 0.643353i \(-0.777543\pi\)
−0.765570 + 0.643353i \(0.777543\pi\)
\(564\) −47.8698 −2.01568
\(565\) −4.83465 −0.203395
\(566\) −1.25530 −0.0527642
\(567\) 0 0
\(568\) −7.58258 −0.318158
\(569\) −16.7477 −0.702101 −0.351051 0.936356i \(-0.614175\pi\)
−0.351051 + 0.936356i \(0.614175\pi\)
\(570\) −0.798450 −0.0334434
\(571\) 2.04356 0.0855204 0.0427602 0.999085i \(-0.486385\pi\)
0.0427602 + 0.999085i \(0.486385\pi\)
\(572\) 0 0
\(573\) 40.1216 1.67610
\(574\) 0 0
\(575\) −7.58258 −0.316215
\(576\) −16.3739 −0.682244
\(577\) 35.6501 1.48413 0.742066 0.670327i \(-0.233846\pi\)
0.742066 + 0.670327i \(0.233846\pi\)
\(578\) −3.65480 −0.152020
\(579\) −53.9796 −2.24332
\(580\) −5.55765 −0.230769
\(581\) 0 0
\(582\) −9.29583 −0.385325
\(583\) −24.1733 −1.00115
\(584\) 6.00000 0.248282
\(585\) 0 0
\(586\) −1.16515 −0.0481320
\(587\) 9.49851 0.392045 0.196023 0.980599i \(-0.437197\pi\)
0.196023 + 0.980599i \(0.437197\pi\)
\(588\) 0 0
\(589\) 11.8693 0.489067
\(590\) −2.57030 −0.105818
\(591\) 6.37600 0.262274
\(592\) 19.3386 0.794812
\(593\) −6.37600 −0.261831 −0.130916 0.991394i \(-0.541792\pi\)
−0.130916 + 0.991394i \(0.541792\pi\)
\(594\) 8.95644 0.367487
\(595\) 0 0
\(596\) 0.818350 0.0335209
\(597\) 30.7042 1.25664
\(598\) 0 0
\(599\) −6.62614 −0.270737 −0.135368 0.990795i \(-0.543222\pi\)
−0.135368 + 0.990795i \(0.543222\pi\)
\(600\) −23.1642 −0.945675
\(601\) −12.3739 −0.504740 −0.252370 0.967631i \(-0.581210\pi\)
−0.252370 + 0.967631i \(0.581210\pi\)
\(602\) 0 0
\(603\) 21.4322 0.872785
\(604\) −21.7182 −0.883701
\(605\) −1.99820 −0.0812384
\(606\) −6.64215 −0.269819
\(607\) −19.7477 −0.801536 −0.400768 0.916180i \(-0.631257\pi\)
−0.400768 + 0.916180i \(0.631257\pi\)
\(608\) −6.49545 −0.263425
\(609\) 0 0
\(610\) −3.07803 −0.124626
\(611\) 0 0
\(612\) −25.7477 −1.04079
\(613\) 18.2541 0.737277 0.368638 0.929573i \(-0.379824\pi\)
0.368638 + 0.929573i \(0.379824\pi\)
\(614\) −7.08712 −0.286013
\(615\) 10.0000 0.403239
\(616\) 0 0
\(617\) −17.2252 −0.693459 −0.346729 0.937965i \(-0.612708\pi\)
−0.346729 + 0.937965i \(0.612708\pi\)
\(618\) −5.84370 −0.235068
\(619\) −19.3386 −0.777284 −0.388642 0.921389i \(-0.627056\pi\)
−0.388642 + 0.921389i \(0.627056\pi\)
\(620\) −7.08712 −0.284626
\(621\) −7.91288 −0.317533
\(622\) −12.1244 −0.486142
\(623\) 0 0
\(624\) 0 0
\(625\) 21.9129 0.876515
\(626\) −3.08270 −0.123210
\(627\) −15.0000 −0.599042
\(628\) −1.71326 −0.0683664
\(629\) 20.7846 0.828737
\(630\) 0 0
\(631\) −27.6374 −1.10023 −0.550113 0.835090i \(-0.685415\pi\)
−0.550113 + 0.835090i \(0.685415\pi\)
\(632\) 10.3923 0.413384
\(633\) −29.5390 −1.17407
\(634\) −8.46099 −0.336029
\(635\) 3.17805 0.126117
\(636\) 30.8258 1.22232
\(637\) 0 0
\(638\) 12.1652 0.481623
\(639\) 20.9753 0.829770
\(640\) 5.04356 0.199364
\(641\) −29.3739 −1.16020 −0.580099 0.814546i \(-0.696986\pi\)
−0.580099 + 0.814546i \(0.696986\pi\)
\(642\) 6.64215 0.262145
\(643\) 45.3194 1.78722 0.893611 0.448843i \(-0.148164\pi\)
0.893611 + 0.448843i \(0.148164\pi\)
\(644\) 0 0
\(645\) −11.9536 −0.470671
\(646\) −1.87841 −0.0739050
\(647\) −35.0780 −1.37906 −0.689530 0.724257i \(-0.742183\pi\)
−0.689530 + 0.724257i \(0.742183\pi\)
\(648\) 0.723000 0.0284021
\(649\) −48.2867 −1.89542
\(650\) 0 0
\(651\) 0 0
\(652\) 12.4104 0.486029
\(653\) 15.7913 0.617961 0.308980 0.951068i \(-0.400012\pi\)
0.308980 + 0.951068i \(0.400012\pi\)
\(654\) 10.1216 0.395786
\(655\) −7.93725 −0.310134
\(656\) 21.8890 0.854622
\(657\) −16.5975 −0.647530
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 8.95644 0.348629
\(661\) −50.5155 −1.96483 −0.982413 0.186720i \(-0.940214\pi\)
−0.982413 + 0.186720i \(0.940214\pi\)
\(662\) 11.3739 0.442058
\(663\) 0 0
\(664\) −12.1652 −0.472099
\(665\) 0 0
\(666\) 15.1652 0.587638
\(667\) −10.7477 −0.416154
\(668\) 26.2867 1.01706
\(669\) −52.9706 −2.04796
\(670\) −0.933601 −0.0360682
\(671\) −57.8251 −2.23231
\(672\) 0 0
\(673\) −26.4955 −1.02132 −0.510662 0.859781i \(-0.670600\pi\)
−0.510662 + 0.859781i \(0.670600\pi\)
\(674\) −4.54860 −0.175206
\(675\) 23.9564 0.922084
\(676\) 0 0
\(677\) −29.2087 −1.12258 −0.561291 0.827619i \(-0.689695\pi\)
−0.561291 + 0.827619i \(0.689695\pi\)
\(678\) −13.4949 −0.518269
\(679\) 0 0
\(680\) 2.37386 0.0910335
\(681\) −24.7056 −0.946719
\(682\) 15.5130 0.594024
\(683\) −30.3586 −1.16164 −0.580819 0.814033i \(-0.697268\pi\)
−0.580819 + 0.814033i \(0.697268\pi\)
\(684\) 11.7629 0.449764
\(685\) 5.46099 0.208654
\(686\) 0 0
\(687\) 19.3386 0.737814
\(688\) −26.1652 −0.997537
\(689\) 0 0
\(690\) 0.921970 0.0350988
\(691\) 10.3169 0.392472 0.196236 0.980557i \(-0.437128\pi\)
0.196236 + 0.980557i \(0.437128\pi\)
\(692\) −35.3739 −1.34471
\(693\) 0 0
\(694\) −6.20520 −0.235546
\(695\) 1.73205 0.0657004
\(696\) −32.8335 −1.24455
\(697\) 23.5257 0.891100
\(698\) −9.62614 −0.364355
\(699\) 44.5390 1.68462
\(700\) 0 0
\(701\) 13.9129 0.525482 0.262741 0.964866i \(-0.415373\pi\)
0.262741 + 0.964866i \(0.415373\pi\)
\(702\) 0 0
\(703\) −9.49545 −0.358128
\(704\) 13.3996 0.505015
\(705\) −12.2087 −0.459807
\(706\) −8.29583 −0.312218
\(707\) 0 0
\(708\) 61.5753 2.31414
\(709\) 15.2270 0.571860 0.285930 0.958250i \(-0.407697\pi\)
0.285930 + 0.958250i \(0.407697\pi\)
\(710\) −0.913701 −0.0342906
\(711\) −28.7477 −1.07812
\(712\) −27.9564 −1.04771
\(713\) −13.7055 −0.513275
\(714\) 0 0
\(715\) 0 0
\(716\) −16.1216 −0.602492
\(717\) −36.9253 −1.37900
\(718\) 0.252273 0.00941474
\(719\) −24.1652 −0.901208 −0.450604 0.892724i \(-0.648791\pi\)
−0.450604 + 0.892724i \(0.648791\pi\)
\(720\) −6.10985 −0.227701
\(721\) 0 0
\(722\) −7.82200 −0.291105
\(723\) −54.9887 −2.04505
\(724\) 16.4174 0.610149
\(725\) 32.5390 1.20847
\(726\) −5.57755 −0.207002
\(727\) 0.252273 0.00935628 0.00467814 0.999989i \(-0.498511\pi\)
0.00467814 + 0.999989i \(0.498511\pi\)
\(728\) 0 0
\(729\) −43.8693 −1.62479
\(730\) 0.723000 0.0267594
\(731\) −28.1216 −1.04011
\(732\) 73.7386 2.72546
\(733\) 16.9590 0.626395 0.313198 0.949688i \(-0.398600\pi\)
0.313198 + 0.949688i \(0.398600\pi\)
\(734\) −8.22330 −0.303528
\(735\) 0 0
\(736\) 7.50030 0.276465
\(737\) −17.5390 −0.646058
\(738\) 17.1652 0.631858
\(739\) 19.3386 0.711382 0.355691 0.934604i \(-0.384246\pi\)
0.355691 + 0.934604i \(0.384246\pi\)
\(740\) 5.66970 0.208422
\(741\) 0 0
\(742\) 0 0
\(743\) −34.4702 −1.26459 −0.632295 0.774728i \(-0.717887\pi\)
−0.632295 + 0.774728i \(0.717887\pi\)
\(744\) −41.8693 −1.53500
\(745\) 0.208712 0.00764662
\(746\) 14.7146 0.538738
\(747\) 33.6519 1.23126
\(748\) 21.0707 0.770420
\(749\) 0 0
\(750\) −5.70417 −0.208287
\(751\) −23.7477 −0.866567 −0.433283 0.901258i \(-0.642645\pi\)
−0.433283 + 0.901258i \(0.642645\pi\)
\(752\) −26.7237 −0.974512
\(753\) −7.91288 −0.288361
\(754\) 0 0
\(755\) −5.53901 −0.201585
\(756\) 0 0
\(757\) 6.00000 0.218074 0.109037 0.994038i \(-0.465223\pi\)
0.109037 + 0.994038i \(0.465223\pi\)
\(758\) 12.9564 0.470599
\(759\) 17.3205 0.628695
\(760\) −1.08450 −0.0393390
\(761\) −12.9626 −0.469894 −0.234947 0.972008i \(-0.575492\pi\)
−0.234947 + 0.972008i \(0.575492\pi\)
\(762\) 8.87086 0.321357
\(763\) 0 0
\(764\) 25.7477 0.931520
\(765\) −6.56670 −0.237420
\(766\) 0.582576 0.0210493
\(767\) 0 0
\(768\) −5.00000 −0.180422
\(769\) 9.38325 0.338369 0.169184 0.985584i \(-0.445887\pi\)
0.169184 + 0.985584i \(0.445887\pi\)
\(770\) 0 0
\(771\) 14.0780 0.507008
\(772\) −34.6410 −1.24676
\(773\) 19.4340 0.698991 0.349495 0.936938i \(-0.386353\pi\)
0.349495 + 0.936938i \(0.386353\pi\)
\(774\) −20.5185 −0.737521
\(775\) 41.4938 1.49050
\(776\) −12.6261 −0.453252
\(777\) 0 0
\(778\) 0.150899 0.00540999
\(779\) −10.7477 −0.385077
\(780\) 0 0
\(781\) −17.1652 −0.614217
\(782\) 2.16900 0.0775633
\(783\) 33.9564 1.21350
\(784\) 0 0
\(785\) −0.436950 −0.0155954
\(786\) −22.1552 −0.790248
\(787\) −26.2668 −0.936311 −0.468155 0.883646i \(-0.655081\pi\)
−0.468155 + 0.883646i \(0.655081\pi\)
\(788\) 4.09175 0.145763
\(789\) −26.0436 −0.927175
\(790\) 1.25227 0.0445539
\(791\) 0 0
\(792\) 32.5390 1.15622
\(793\) 0 0
\(794\) −14.8348 −0.526469
\(795\) 7.86180 0.278829
\(796\) 19.7042 0.698396
\(797\) 12.0000 0.425062 0.212531 0.977154i \(-0.431829\pi\)
0.212531 + 0.977154i \(0.431829\pi\)
\(798\) 0 0
\(799\) −28.7219 −1.01611
\(800\) −22.7074 −0.802826
\(801\) 77.3345 2.73248
\(802\) 14.2958 0.504803
\(803\) 13.5826 0.479319
\(804\) 22.3658 0.788780
\(805\) 0 0
\(806\) 0 0
\(807\) 44.0780 1.55162
\(808\) −9.02175 −0.317384
\(809\) 53.2432 1.87193 0.935965 0.352092i \(-0.114530\pi\)
0.935965 + 0.352092i \(0.114530\pi\)
\(810\) 0.0871215 0.00306114
\(811\) 27.6374 0.970479 0.485240 0.874381i \(-0.338732\pi\)
0.485240 + 0.874381i \(0.338732\pi\)
\(812\) 0 0
\(813\) 35.8607 1.25769
\(814\) −12.4104 −0.434985
\(815\) 3.16515 0.110870
\(816\) −23.3739 −0.818249
\(817\) 12.8474 0.449472
\(818\) 3.79129 0.132559
\(819\) 0 0
\(820\) 6.41742 0.224106
\(821\) −12.6567 −0.441720 −0.220860 0.975305i \(-0.570886\pi\)
−0.220860 + 0.975305i \(0.570886\pi\)
\(822\) 15.2432 0.531667
\(823\) 22.4955 0.784142 0.392071 0.919935i \(-0.371759\pi\)
0.392071 + 0.919935i \(0.371759\pi\)
\(824\) −7.93725 −0.276507
\(825\) −52.4383 −1.82567
\(826\) 0 0
\(827\) 35.3839 1.23042 0.615210 0.788364i \(-0.289071\pi\)
0.615210 + 0.788364i \(0.289071\pi\)
\(828\) −13.5826 −0.472027
\(829\) −34.3739 −1.19385 −0.596927 0.802296i \(-0.703612\pi\)
−0.596927 + 0.802296i \(0.703612\pi\)
\(830\) −1.46590 −0.0508822
\(831\) 32.7913 1.13752
\(832\) 0 0
\(833\) 0 0
\(834\) 4.83465 0.167410
\(835\) 6.70417 0.232007
\(836\) −9.62614 −0.332927
\(837\) 43.3013 1.49671
\(838\) −0.798450 −0.0275820
\(839\) 27.9790 0.965941 0.482971 0.875637i \(-0.339558\pi\)
0.482971 + 0.875637i \(0.339558\pi\)
\(840\) 0 0
\(841\) 17.1216 0.590400
\(842\) 1.91288 0.0659221
\(843\) 85.5379 2.94608
\(844\) −18.9564 −0.652508
\(845\) 0 0
\(846\) −20.9564 −0.720497
\(847\) 0 0
\(848\) 17.2087 0.590950
\(849\) 7.66970 0.263223
\(850\) −6.56670 −0.225236
\(851\) 10.9644 0.375855
\(852\) 21.8890 0.749905
\(853\) 14.1425 0.484229 0.242114 0.970248i \(-0.422159\pi\)
0.242114 + 0.970248i \(0.422159\pi\)
\(854\) 0 0
\(855\) 3.00000 0.102598
\(856\) 9.02175 0.308357
\(857\) −15.4610 −0.528137 −0.264069 0.964504i \(-0.585065\pi\)
−0.264069 + 0.964504i \(0.585065\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) −7.67110 −0.261582
\(861\) 0 0
\(862\) −15.8348 −0.539337
\(863\) 45.4147 1.54594 0.772968 0.634446i \(-0.218772\pi\)
0.772968 + 0.634446i \(0.218772\pi\)
\(864\) −23.6965 −0.806172
\(865\) −9.02175 −0.306749
\(866\) 14.8456 0.504473
\(867\) 22.3303 0.758377
\(868\) 0 0
\(869\) 23.5257 0.798055
\(870\) −3.95644 −0.134136
\(871\) 0 0
\(872\) 13.7477 0.465557
\(873\) 34.9271 1.18210
\(874\) −0.990908 −0.0335180
\(875\) 0 0
\(876\) −17.3205 −0.585206
\(877\) 3.17805 0.107315 0.0536576 0.998559i \(-0.482912\pi\)
0.0536576 + 0.998559i \(0.482912\pi\)
\(878\) 9.38325 0.316669
\(879\) 7.11890 0.240115
\(880\) 5.00000 0.168550
\(881\) −16.5826 −0.558681 −0.279341 0.960192i \(-0.590116\pi\)
−0.279341 + 0.960192i \(0.590116\pi\)
\(882\) 0 0
\(883\) −29.2432 −0.984111 −0.492056 0.870564i \(-0.663754\pi\)
−0.492056 + 0.870564i \(0.663754\pi\)
\(884\) 0 0
\(885\) 15.7042 0.527890
\(886\) −6.92820 −0.232758
\(887\) 22.4174 0.752703 0.376352 0.926477i \(-0.377178\pi\)
0.376352 + 0.926477i \(0.377178\pi\)
\(888\) 33.4955 1.12403
\(889\) 0 0
\(890\) −3.36875 −0.112921
\(891\) 1.63670 0.0548315
\(892\) −33.9935 −1.13819
\(893\) 13.1216 0.439097
\(894\) 0.582576 0.0194842
\(895\) −4.11165 −0.137437
\(896\) 0 0
\(897\) 0 0
\(898\) 11.4955 0.383608
\(899\) 58.8143 1.96157
\(900\) 41.1216 1.37072
\(901\) 18.4955 0.616173
\(902\) −14.0471 −0.467717
\(903\) 0 0
\(904\) −18.3296 −0.609632
\(905\) 4.18710 0.139184
\(906\) −15.4610 −0.513657
\(907\) 41.0780 1.36397 0.681987 0.731364i \(-0.261116\pi\)
0.681987 + 0.731364i \(0.261116\pi\)
\(908\) −15.8546 −0.526154
\(909\) 24.9564 0.827753
\(910\) 0 0
\(911\) −43.1216 −1.42868 −0.714341 0.699798i \(-0.753273\pi\)
−0.714341 + 0.699798i \(0.753273\pi\)
\(912\) 10.6784 0.353596
\(913\) −27.5390 −0.911408
\(914\) −10.4174 −0.344578
\(915\) 18.8063 0.621717
\(916\) 12.4104 0.410051
\(917\) 0 0
\(918\) −6.85275 −0.226175
\(919\) 25.9129 0.854787 0.427393 0.904066i \(-0.359432\pi\)
0.427393 + 0.904066i \(0.359432\pi\)
\(920\) 1.25227 0.0412862
\(921\) 43.3013 1.42683
\(922\) 2.12159 0.0698709
\(923\) 0 0
\(924\) 0 0
\(925\) −33.1950 −1.09145
\(926\) −3.62614 −0.119162
\(927\) 21.9564 0.721144
\(928\) −32.1860 −1.05656
\(929\) −57.9205 −1.90031 −0.950155 0.311779i \(-0.899075\pi\)
−0.950155 + 0.311779i \(0.899075\pi\)
\(930\) −5.04525 −0.165440
\(931\) 0 0
\(932\) 28.5826 0.936253
\(933\) 74.0780 2.42521
\(934\) −13.7810 −0.450927
\(935\) 5.37386 0.175744
\(936\) 0 0
\(937\) 20.4955 0.669557 0.334779 0.942297i \(-0.391338\pi\)
0.334779 + 0.942297i \(0.391338\pi\)
\(938\) 0 0
\(939\) 18.8348 0.614652
\(940\) −7.83485 −0.255545
\(941\) −39.3049 −1.28130 −0.640651 0.767832i \(-0.721335\pi\)
−0.640651 + 0.767832i \(0.721335\pi\)
\(942\) −1.21965 −0.0397384
\(943\) 12.4104 0.404138
\(944\) 34.3749 1.11881
\(945\) 0 0
\(946\) 16.7913 0.545932
\(947\) −38.3713 −1.24690 −0.623449 0.781864i \(-0.714269\pi\)
−0.623449 + 0.781864i \(0.714269\pi\)
\(948\) −30.0000 −0.974355
\(949\) 0 0
\(950\) 3.00000 0.0973329
\(951\) 51.6954 1.67634
\(952\) 0 0
\(953\) 15.0000 0.485898 0.242949 0.970039i \(-0.421885\pi\)
0.242949 + 0.970039i \(0.421885\pi\)
\(954\) 13.4949 0.436914
\(955\) 6.56670 0.212494
\(956\) −23.6965 −0.766400
\(957\) −74.3273 −2.40266
\(958\) −8.62614 −0.278698
\(959\) 0 0
\(960\) −4.35790 −0.140651
\(961\) 44.0000 1.41935
\(962\) 0 0
\(963\) −24.9564 −0.804210
\(964\) −35.2886 −1.13657
\(965\) −8.83485 −0.284404
\(966\) 0 0
\(967\) −23.8118 −0.765735 −0.382867 0.923803i \(-0.625063\pi\)
−0.382867 + 0.923803i \(0.625063\pi\)
\(968\) −7.57575 −0.243494
\(969\) 11.4768 0.368688
\(970\) −1.52145 −0.0488508
\(971\) 22.2523 0.714109 0.357055 0.934083i \(-0.383781\pi\)
0.357055 + 0.934083i \(0.383781\pi\)
\(972\) −28.9564 −0.928778
\(973\) 0 0
\(974\) 13.4174 0.429922
\(975\) 0 0
\(976\) 41.1652 1.31766
\(977\) 1.39045 0.0444845 0.0222422 0.999753i \(-0.492919\pi\)
0.0222422 + 0.999753i \(0.492919\pi\)
\(978\) 8.83485 0.282507
\(979\) −63.2867 −2.02265
\(980\) 0 0
\(981\) −38.0297 −1.21419
\(982\) 1.88295 0.0600873
\(983\) −19.8908 −0.634418 −0.317209 0.948356i \(-0.602746\pi\)
−0.317209 + 0.948356i \(0.602746\pi\)
\(984\) 37.9129 1.20862
\(985\) 1.04356 0.0332506
\(986\) −9.30780 −0.296421
\(987\) 0 0
\(988\) 0 0
\(989\) −14.8348 −0.471721
\(990\) 3.92095 0.124616
\(991\) −40.3739 −1.28252 −0.641259 0.767324i \(-0.721588\pi\)
−0.641259 + 0.767324i \(0.721588\pi\)
\(992\) −41.0436 −1.30313
\(993\) −69.4926 −2.20528
\(994\) 0 0
\(995\) 5.02535 0.159314
\(996\) 35.1178 1.11275
\(997\) −14.0780 −0.445856 −0.222928 0.974835i \(-0.571561\pi\)
−0.222928 + 0.974835i \(0.571561\pi\)
\(998\) 8.40833 0.266161
\(999\) −34.6410 −1.09599
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bq.1.3 4
7.6 odd 2 8281.2.a.bs.1.3 4
13.6 odd 12 637.2.q.f.491.1 yes 4
13.11 odd 12 637.2.q.f.589.1 yes 4
13.12 even 2 inner 8281.2.a.bq.1.2 4
91.6 even 12 637.2.q.e.491.1 4
91.11 odd 12 637.2.u.d.30.2 4
91.19 even 12 637.2.u.e.361.2 4
91.24 even 12 637.2.u.e.30.2 4
91.32 odd 12 637.2.k.f.569.1 4
91.37 odd 12 637.2.k.f.459.2 4
91.45 even 12 637.2.k.d.569.1 4
91.58 odd 12 637.2.u.d.361.2 4
91.76 even 12 637.2.q.e.589.1 yes 4
91.89 even 12 637.2.k.d.459.2 4
91.90 odd 2 8281.2.a.bs.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.k.d.459.2 4 91.89 even 12
637.2.k.d.569.1 4 91.45 even 12
637.2.k.f.459.2 4 91.37 odd 12
637.2.k.f.569.1 4 91.32 odd 12
637.2.q.e.491.1 4 91.6 even 12
637.2.q.e.589.1 yes 4 91.76 even 12
637.2.q.f.491.1 yes 4 13.6 odd 12
637.2.q.f.589.1 yes 4 13.11 odd 12
637.2.u.d.30.2 4 91.11 odd 12
637.2.u.d.361.2 4 91.58 odd 12
637.2.u.e.30.2 4 91.24 even 12
637.2.u.e.361.2 4 91.19 even 12
8281.2.a.bq.1.2 4 13.12 even 2 inner
8281.2.a.bq.1.3 4 1.1 even 1 trivial
8281.2.a.bs.1.2 4 91.90 odd 2
8281.2.a.bs.1.3 4 7.6 odd 2