Properties

Label 8281.2.a.bo.1.2
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.105456.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 13x^{2} + 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 637)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.16731\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278 q^{2} +2.16731 q^{3} +3.30278 q^{4} -2.16731 q^{5} -4.99082 q^{6} -3.00000 q^{8} +1.69722 q^{9} +4.99082 q^{10} -4.90833 q^{11} +7.15813 q^{12} -4.69722 q^{15} +0.302776 q^{16} +7.15813 q^{17} -3.90833 q^{18} -2.16731 q^{19} -7.15813 q^{20} +11.3028 q^{22} -0.605551 q^{23} -6.50192 q^{24} -0.302776 q^{25} -2.82352 q^{27} -2.30278 q^{29} +10.8167 q^{30} +7.15813 q^{31} +5.30278 q^{32} -10.6379 q^{33} -16.4836 q^{34} +5.60555 q^{36} -8.60555 q^{37} +4.99082 q^{38} +6.50192 q^{40} +9.98165 q^{41} -12.5139 q^{43} -16.2111 q^{44} -3.67841 q^{45} +1.39445 q^{46} +1.51110 q^{47} +0.656208 q^{48} +0.697224 q^{50} +15.5139 q^{51} +2.39445 q^{53} +6.50192 q^{54} +10.6379 q^{55} -4.69722 q^{57} +5.30278 q^{58} +2.82352 q^{59} -15.5139 q^{60} +4.33462 q^{61} -16.4836 q^{62} -12.8167 q^{64} +24.4966 q^{66} -1.00000 q^{67} +23.6417 q^{68} -1.31242 q^{69} -4.00000 q^{71} -5.09167 q^{72} +4.33462 q^{73} +19.8167 q^{74} -0.656208 q^{75} -7.15813 q^{76} -6.60555 q^{79} -0.656208 q^{80} -11.2111 q^{81} -22.9855 q^{82} -2.82352 q^{83} -15.5139 q^{85} +28.8167 q^{86} -4.99082 q^{87} +14.7250 q^{88} -6.50192 q^{89} +8.47055 q^{90} -2.00000 q^{92} +15.5139 q^{93} -3.47972 q^{94} +4.69722 q^{95} +11.4927 q^{96} +13.6601 q^{97} -8.33053 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + 6 q^{4} - 12 q^{8} + 14 q^{9} + 2 q^{11} - 26 q^{15} - 6 q^{16} + 6 q^{18} + 38 q^{22} + 12 q^{23} + 6 q^{25} - 2 q^{29} + 14 q^{32} + 8 q^{36} - 20 q^{37} - 14 q^{43} - 36 q^{44} + 20 q^{46}+ \cdots + 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.30278 −1.62831 −0.814154 0.580649i \(-0.802799\pi\)
−0.814154 + 0.580649i \(0.802799\pi\)
\(3\) 2.16731 1.25130 0.625648 0.780106i \(-0.284835\pi\)
0.625648 + 0.780106i \(0.284835\pi\)
\(4\) 3.30278 1.65139
\(5\) −2.16731 −0.969250 −0.484625 0.874722i \(-0.661044\pi\)
−0.484625 + 0.874722i \(0.661044\pi\)
\(6\) −4.99082 −2.03750
\(7\) 0 0
\(8\) −3.00000 −1.06066
\(9\) 1.69722 0.565741
\(10\) 4.99082 1.57824
\(11\) −4.90833 −1.47992 −0.739958 0.672653i \(-0.765155\pi\)
−0.739958 + 0.672653i \(0.765155\pi\)
\(12\) 7.15813 2.06637
\(13\) 0 0
\(14\) 0 0
\(15\) −4.69722 −1.21282
\(16\) 0.302776 0.0756939
\(17\) 7.15813 1.73610 0.868051 0.496475i \(-0.165373\pi\)
0.868051 + 0.496475i \(0.165373\pi\)
\(18\) −3.90833 −0.921201
\(19\) −2.16731 −0.497215 −0.248607 0.968604i \(-0.579973\pi\)
−0.248607 + 0.968604i \(0.579973\pi\)
\(20\) −7.15813 −1.60061
\(21\) 0 0
\(22\) 11.3028 2.40976
\(23\) −0.605551 −0.126266 −0.0631331 0.998005i \(-0.520109\pi\)
−0.0631331 + 0.998005i \(0.520109\pi\)
\(24\) −6.50192 −1.32720
\(25\) −0.302776 −0.0605551
\(26\) 0 0
\(27\) −2.82352 −0.543386
\(28\) 0 0
\(29\) −2.30278 −0.427615 −0.213807 0.976876i \(-0.568586\pi\)
−0.213807 + 0.976876i \(0.568586\pi\)
\(30\) 10.8167 1.97484
\(31\) 7.15813 1.28564 0.642819 0.766018i \(-0.277765\pi\)
0.642819 + 0.766018i \(0.277765\pi\)
\(32\) 5.30278 0.937407
\(33\) −10.6379 −1.85181
\(34\) −16.4836 −2.82691
\(35\) 0 0
\(36\) 5.60555 0.934259
\(37\) −8.60555 −1.41474 −0.707372 0.706842i \(-0.750119\pi\)
−0.707372 + 0.706842i \(0.750119\pi\)
\(38\) 4.99082 0.809619
\(39\) 0 0
\(40\) 6.50192 1.02804
\(41\) 9.98165 1.55887 0.779436 0.626482i \(-0.215506\pi\)
0.779436 + 0.626482i \(0.215506\pi\)
\(42\) 0 0
\(43\) −12.5139 −1.90835 −0.954174 0.299252i \(-0.903263\pi\)
−0.954174 + 0.299252i \(0.903263\pi\)
\(44\) −16.2111 −2.44392
\(45\) −3.67841 −0.548345
\(46\) 1.39445 0.205600
\(47\) 1.51110 0.220417 0.110208 0.993909i \(-0.464848\pi\)
0.110208 + 0.993909i \(0.464848\pi\)
\(48\) 0.656208 0.0947155
\(49\) 0 0
\(50\) 0.697224 0.0986024
\(51\) 15.5139 2.17238
\(52\) 0 0
\(53\) 2.39445 0.328903 0.164451 0.986385i \(-0.447415\pi\)
0.164451 + 0.986385i \(0.447415\pi\)
\(54\) 6.50192 0.884800
\(55\) 10.6379 1.43441
\(56\) 0 0
\(57\) −4.69722 −0.622163
\(58\) 5.30278 0.696289
\(59\) 2.82352 0.367590 0.183795 0.982965i \(-0.441162\pi\)
0.183795 + 0.982965i \(0.441162\pi\)
\(60\) −15.5139 −2.00283
\(61\) 4.33462 0.554991 0.277495 0.960727i \(-0.410496\pi\)
0.277495 + 0.960727i \(0.410496\pi\)
\(62\) −16.4836 −2.09342
\(63\) 0 0
\(64\) −12.8167 −1.60208
\(65\) 0 0
\(66\) 24.4966 3.01532
\(67\) −1.00000 −0.122169 −0.0610847 0.998133i \(-0.519456\pi\)
−0.0610847 + 0.998133i \(0.519456\pi\)
\(68\) 23.6417 2.86698
\(69\) −1.31242 −0.157996
\(70\) 0 0
\(71\) −4.00000 −0.474713 −0.237356 0.971423i \(-0.576281\pi\)
−0.237356 + 0.971423i \(0.576281\pi\)
\(72\) −5.09167 −0.600059
\(73\) 4.33462 0.507328 0.253664 0.967292i \(-0.418364\pi\)
0.253664 + 0.967292i \(0.418364\pi\)
\(74\) 19.8167 2.30364
\(75\) −0.656208 −0.0757724
\(76\) −7.15813 −0.821094
\(77\) 0 0
\(78\) 0 0
\(79\) −6.60555 −0.743183 −0.371591 0.928396i \(-0.621188\pi\)
−0.371591 + 0.928396i \(0.621188\pi\)
\(80\) −0.656208 −0.0733663
\(81\) −11.2111 −1.24568
\(82\) −22.9855 −2.53832
\(83\) −2.82352 −0.309921 −0.154961 0.987921i \(-0.549525\pi\)
−0.154961 + 0.987921i \(0.549525\pi\)
\(84\) 0 0
\(85\) −15.5139 −1.68272
\(86\) 28.8167 3.10738
\(87\) −4.99082 −0.535073
\(88\) 14.7250 1.56969
\(89\) −6.50192 −0.689203 −0.344601 0.938749i \(-0.611986\pi\)
−0.344601 + 0.938749i \(0.611986\pi\)
\(90\) 8.47055 0.892874
\(91\) 0 0
\(92\) −2.00000 −0.208514
\(93\) 15.5139 1.60871
\(94\) −3.47972 −0.358906
\(95\) 4.69722 0.481925
\(96\) 11.4927 1.17297
\(97\) 13.6601 1.38697 0.693484 0.720472i \(-0.256075\pi\)
0.693484 + 0.720472i \(0.256075\pi\)
\(98\) 0 0
\(99\) −8.33053 −0.837250
\(100\) −1.00000 −0.100000
\(101\) −6.50192 −0.646966 −0.323483 0.946234i \(-0.604854\pi\)
−0.323483 + 0.946234i \(0.604854\pi\)
\(102\) −35.7250 −3.53730
\(103\) 11.4927 1.13241 0.566207 0.824263i \(-0.308410\pi\)
0.566207 + 0.824263i \(0.308410\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −5.51388 −0.535555
\(107\) 5.69722 0.550771 0.275386 0.961334i \(-0.411194\pi\)
0.275386 + 0.961334i \(0.411194\pi\)
\(108\) −9.32544 −0.897341
\(109\) −8.21110 −0.786481 −0.393240 0.919436i \(-0.628646\pi\)
−0.393240 + 0.919436i \(0.628646\pi\)
\(110\) −24.4966 −2.33566
\(111\) −18.6509 −1.77026
\(112\) 0 0
\(113\) 6.81665 0.641257 0.320628 0.947205i \(-0.396106\pi\)
0.320628 + 0.947205i \(0.396106\pi\)
\(114\) 10.8167 1.01307
\(115\) 1.31242 0.122383
\(116\) −7.60555 −0.706158
\(117\) 0 0
\(118\) −6.50192 −0.598551
\(119\) 0 0
\(120\) 14.0917 1.28639
\(121\) 13.0917 1.19015
\(122\) −9.98165 −0.903696
\(123\) 21.6333 1.95061
\(124\) 23.6417 2.12309
\(125\) 11.4927 1.02794
\(126\) 0 0
\(127\) 7.90833 0.701751 0.350875 0.936422i \(-0.385884\pi\)
0.350875 + 0.936422i \(0.385884\pi\)
\(128\) 18.9083 1.67128
\(129\) −27.1214 −2.38791
\(130\) 0 0
\(131\) −10.6379 −0.929434 −0.464717 0.885459i \(-0.653844\pi\)
−0.464717 + 0.885459i \(0.653844\pi\)
\(132\) −35.1345 −3.05806
\(133\) 0 0
\(134\) 2.30278 0.198930
\(135\) 6.11943 0.526677
\(136\) −21.4744 −1.84141
\(137\) −6.30278 −0.538482 −0.269241 0.963073i \(-0.586773\pi\)
−0.269241 + 0.963073i \(0.586773\pi\)
\(138\) 3.02220 0.257267
\(139\) −10.6379 −0.902291 −0.451146 0.892450i \(-0.648984\pi\)
−0.451146 + 0.892450i \(0.648984\pi\)
\(140\) 0 0
\(141\) 3.27502 0.275806
\(142\) 9.21110 0.772979
\(143\) 0 0
\(144\) 0.513878 0.0428232
\(145\) 4.99082 0.414465
\(146\) −9.98165 −0.826087
\(147\) 0 0
\(148\) −28.4222 −2.33629
\(149\) 17.5139 1.43479 0.717396 0.696665i \(-0.245334\pi\)
0.717396 + 0.696665i \(0.245334\pi\)
\(150\) 1.51110 0.123381
\(151\) −8.21110 −0.668210 −0.334105 0.942536i \(-0.608434\pi\)
−0.334105 + 0.942536i \(0.608434\pi\)
\(152\) 6.50192 0.527376
\(153\) 12.1490 0.982185
\(154\) 0 0
\(155\) −15.5139 −1.24610
\(156\) 0 0
\(157\) −0.656208 −0.0523711 −0.0261856 0.999657i \(-0.508336\pi\)
−0.0261856 + 0.999657i \(0.508336\pi\)
\(158\) 15.2111 1.21013
\(159\) 5.18951 0.411555
\(160\) −11.4927 −0.908582
\(161\) 0 0
\(162\) 25.8167 2.02835
\(163\) 2.78890 0.218443 0.109222 0.994017i \(-0.465164\pi\)
0.109222 + 0.994017i \(0.465164\pi\)
\(164\) 32.9671 2.57430
\(165\) 23.0555 1.79487
\(166\) 6.50192 0.504647
\(167\) −11.4927 −0.889336 −0.444668 0.895696i \(-0.646678\pi\)
−0.444668 + 0.895696i \(0.646678\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 35.7250 2.73998
\(171\) −3.67841 −0.281295
\(172\) −41.3305 −3.15142
\(173\) 10.1803 0.773996 0.386998 0.922080i \(-0.373512\pi\)
0.386998 + 0.922080i \(0.373512\pi\)
\(174\) 11.4927 0.871263
\(175\) 0 0
\(176\) −1.48612 −0.112021
\(177\) 6.11943 0.459964
\(178\) 14.9725 1.12223
\(179\) 21.6056 1.61487 0.807437 0.589953i \(-0.200854\pi\)
0.807437 + 0.589953i \(0.200854\pi\)
\(180\) −12.1490 −0.905530
\(181\) −24.2979 −1.80605 −0.903025 0.429588i \(-0.858659\pi\)
−0.903025 + 0.429588i \(0.858659\pi\)
\(182\) 0 0
\(183\) 9.39445 0.694458
\(184\) 1.81665 0.133925
\(185\) 18.6509 1.37124
\(186\) −35.7250 −2.61948
\(187\) −35.1345 −2.56929
\(188\) 4.99082 0.363993
\(189\) 0 0
\(190\) −10.8167 −0.784723
\(191\) 15.6972 1.13581 0.567906 0.823094i \(-0.307754\pi\)
0.567906 + 0.823094i \(0.307754\pi\)
\(192\) −27.7776 −2.00468
\(193\) −19.8167 −1.42643 −0.713217 0.700943i \(-0.752763\pi\)
−0.713217 + 0.700943i \(0.752763\pi\)
\(194\) −31.4560 −2.25841
\(195\) 0 0
\(196\) 0 0
\(197\) 1.09167 0.0777785 0.0388892 0.999244i \(-0.487618\pi\)
0.0388892 + 0.999244i \(0.487618\pi\)
\(198\) 19.1833 1.36330
\(199\) −7.15813 −0.507427 −0.253713 0.967279i \(-0.581652\pi\)
−0.253713 + 0.967279i \(0.581652\pi\)
\(200\) 0.908327 0.0642284
\(201\) −2.16731 −0.152870
\(202\) 14.9725 1.05346
\(203\) 0 0
\(204\) 51.2389 3.58744
\(205\) −21.6333 −1.51094
\(206\) −26.4652 −1.84392
\(207\) −1.02776 −0.0714340
\(208\) 0 0
\(209\) 10.6379 0.735836
\(210\) 0 0
\(211\) 15.0000 1.03264 0.516321 0.856395i \(-0.327301\pi\)
0.516321 + 0.856395i \(0.327301\pi\)
\(212\) 7.90833 0.543146
\(213\) −8.66923 −0.594006
\(214\) −13.1194 −0.896826
\(215\) 27.1214 1.84967
\(216\) 8.47055 0.576348
\(217\) 0 0
\(218\) 18.9083 1.28063
\(219\) 9.39445 0.634818
\(220\) 35.1345 2.36876
\(221\) 0 0
\(222\) 42.9488 2.88253
\(223\) 17.9947 1.20501 0.602506 0.798114i \(-0.294169\pi\)
0.602506 + 0.798114i \(0.294169\pi\)
\(224\) 0 0
\(225\) −0.513878 −0.0342585
\(226\) −15.6972 −1.04416
\(227\) 18.4522 1.22472 0.612358 0.790581i \(-0.290221\pi\)
0.612358 + 0.790581i \(0.290221\pi\)
\(228\) −15.5139 −1.02743
\(229\) 15.6287 1.03277 0.516386 0.856356i \(-0.327277\pi\)
0.516386 + 0.856356i \(0.327277\pi\)
\(230\) −3.02220 −0.199278
\(231\) 0 0
\(232\) 6.90833 0.453554
\(233\) −13.0917 −0.857664 −0.428832 0.903384i \(-0.641075\pi\)
−0.428832 + 0.903384i \(0.641075\pi\)
\(234\) 0 0
\(235\) −3.27502 −0.213639
\(236\) 9.32544 0.607034
\(237\) −14.3163 −0.929941
\(238\) 0 0
\(239\) −4.39445 −0.284253 −0.142127 0.989848i \(-0.545394\pi\)
−0.142127 + 0.989848i \(0.545394\pi\)
\(240\) −1.42221 −0.0918029
\(241\) 9.32544 0.600704 0.300352 0.953828i \(-0.402896\pi\)
0.300352 + 0.953828i \(0.402896\pi\)
\(242\) −30.1472 −1.93793
\(243\) −15.8274 −1.01533
\(244\) 14.3163 0.916505
\(245\) 0 0
\(246\) −49.8167 −3.17619
\(247\) 0 0
\(248\) −21.4744 −1.36363
\(249\) −6.11943 −0.387803
\(250\) −26.4652 −1.67381
\(251\) 29.9449 1.89011 0.945054 0.326914i \(-0.106009\pi\)
0.945054 + 0.326914i \(0.106009\pi\)
\(252\) 0 0
\(253\) 2.97224 0.186863
\(254\) −18.2111 −1.14267
\(255\) −33.6234 −2.10558
\(256\) −17.9083 −1.11927
\(257\) 6.30324 0.393185 0.196593 0.980485i \(-0.437012\pi\)
0.196593 + 0.980485i \(0.437012\pi\)
\(258\) 62.4546 3.88825
\(259\) 0 0
\(260\) 0 0
\(261\) −3.90833 −0.241919
\(262\) 24.4966 1.51340
\(263\) 15.4222 0.950974 0.475487 0.879723i \(-0.342272\pi\)
0.475487 + 0.879723i \(0.342272\pi\)
\(264\) 31.9136 1.96414
\(265\) −5.18951 −0.318789
\(266\) 0 0
\(267\) −14.0917 −0.862396
\(268\) −3.30278 −0.201749
\(269\) −0.656208 −0.0400097 −0.0200049 0.999800i \(-0.506368\pi\)
−0.0200049 + 0.999800i \(0.506368\pi\)
\(270\) −14.0917 −0.857592
\(271\) −14.5149 −0.881720 −0.440860 0.897576i \(-0.645327\pi\)
−0.440860 + 0.897576i \(0.645327\pi\)
\(272\) 2.16731 0.131412
\(273\) 0 0
\(274\) 14.5139 0.876815
\(275\) 1.48612 0.0896165
\(276\) −4.33462 −0.260913
\(277\) −0.211103 −0.0126839 −0.00634196 0.999980i \(-0.502019\pi\)
−0.00634196 + 0.999980i \(0.502019\pi\)
\(278\) 24.4966 1.46921
\(279\) 12.1490 0.727339
\(280\) 0 0
\(281\) −23.8167 −1.42078 −0.710391 0.703807i \(-0.751482\pi\)
−0.710391 + 0.703807i \(0.751482\pi\)
\(282\) −7.54163 −0.449098
\(283\) 18.6509 1.10868 0.554340 0.832290i \(-0.312971\pi\)
0.554340 + 0.832290i \(0.312971\pi\)
\(284\) −13.2111 −0.783935
\(285\) 10.1803 0.603031
\(286\) 0 0
\(287\) 0 0
\(288\) 9.00000 0.530330
\(289\) 34.2389 2.01405
\(290\) −11.4927 −0.674877
\(291\) 29.6056 1.73551
\(292\) 14.3163 0.837796
\(293\) 28.6325 1.67273 0.836365 0.548173i \(-0.184676\pi\)
0.836365 + 0.548173i \(0.184676\pi\)
\(294\) 0 0
\(295\) −6.11943 −0.356287
\(296\) 25.8167 1.50056
\(297\) 13.8587 0.804166
\(298\) −40.3305 −2.33628
\(299\) 0 0
\(300\) −2.16731 −0.125130
\(301\) 0 0
\(302\) 18.9083 1.08805
\(303\) −14.0917 −0.809545
\(304\) −0.656208 −0.0376361
\(305\) −9.39445 −0.537925
\(306\) −27.9763 −1.59930
\(307\) −3.67841 −0.209938 −0.104969 0.994476i \(-0.533474\pi\)
−0.104969 + 0.994476i \(0.533474\pi\)
\(308\) 0 0
\(309\) 24.9083 1.41699
\(310\) 35.7250 2.02904
\(311\) 10.6379 0.603218 0.301609 0.953432i \(-0.402476\pi\)
0.301609 + 0.953432i \(0.402476\pi\)
\(312\) 0 0
\(313\) −5.64703 −0.319189 −0.159595 0.987183i \(-0.551019\pi\)
−0.159595 + 0.987183i \(0.551019\pi\)
\(314\) 1.51110 0.0852763
\(315\) 0 0
\(316\) −21.8167 −1.22728
\(317\) 6.21110 0.348850 0.174425 0.984670i \(-0.444193\pi\)
0.174425 + 0.984670i \(0.444193\pi\)
\(318\) −11.9503 −0.670138
\(319\) 11.3028 0.632834
\(320\) 27.7776 1.55282
\(321\) 12.3476 0.689178
\(322\) 0 0
\(323\) −15.5139 −0.863215
\(324\) −37.0278 −2.05710
\(325\) 0 0
\(326\) −6.42221 −0.355693
\(327\) −17.7960 −0.984120
\(328\) −29.9449 −1.65343
\(329\) 0 0
\(330\) −53.0917 −2.92260
\(331\) −4.30278 −0.236502 −0.118251 0.992984i \(-0.537729\pi\)
−0.118251 + 0.992984i \(0.537729\pi\)
\(332\) −9.32544 −0.511800
\(333\) −14.6056 −0.800379
\(334\) 26.4652 1.44811
\(335\) 2.16731 0.118413
\(336\) 0 0
\(337\) 18.1194 0.987028 0.493514 0.869738i \(-0.335712\pi\)
0.493514 + 0.869738i \(0.335712\pi\)
\(338\) 0 0
\(339\) 14.7738 0.802402
\(340\) −51.2389 −2.77882
\(341\) −35.1345 −1.90264
\(342\) 8.47055 0.458035
\(343\) 0 0
\(344\) 37.5416 2.02411
\(345\) 2.84441 0.153138
\(346\) −23.4430 −1.26030
\(347\) 15.2111 0.816575 0.408287 0.912853i \(-0.366126\pi\)
0.408287 + 0.912853i \(0.366126\pi\)
\(348\) −16.4836 −0.883612
\(349\) −10.1803 −0.544941 −0.272470 0.962164i \(-0.587841\pi\)
−0.272470 + 0.962164i \(0.587841\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −26.0278 −1.38728
\(353\) 26.4652 1.40860 0.704301 0.709902i \(-0.251261\pi\)
0.704301 + 0.709902i \(0.251261\pi\)
\(354\) −14.0917 −0.748964
\(355\) 8.66923 0.460115
\(356\) −21.4744 −1.13814
\(357\) 0 0
\(358\) −49.7527 −2.62951
\(359\) 12.0917 0.638174 0.319087 0.947725i \(-0.396624\pi\)
0.319087 + 0.947725i \(0.396624\pi\)
\(360\) 11.0352 0.581607
\(361\) −14.3028 −0.752778
\(362\) 55.9526 2.94081
\(363\) 28.3737 1.48923
\(364\) 0 0
\(365\) −9.39445 −0.491728
\(366\) −21.6333 −1.13079
\(367\) 25.6103 1.33685 0.668424 0.743780i \(-0.266969\pi\)
0.668424 + 0.743780i \(0.266969\pi\)
\(368\) −0.183346 −0.00955758
\(369\) 16.9411 0.881918
\(370\) −42.9488 −2.23280
\(371\) 0 0
\(372\) 51.2389 2.65661
\(373\) −12.6972 −0.657437 −0.328719 0.944428i \(-0.606617\pi\)
−0.328719 + 0.944428i \(0.606617\pi\)
\(374\) 80.9068 4.18359
\(375\) 24.9083 1.28626
\(376\) −4.53330 −0.233787
\(377\) 0 0
\(378\) 0 0
\(379\) 12.1194 0.622533 0.311267 0.950323i \(-0.399247\pi\)
0.311267 + 0.950323i \(0.399247\pi\)
\(380\) 15.5139 0.795845
\(381\) 17.1398 0.878098
\(382\) −36.1472 −1.84945
\(383\) 22.3293 1.14097 0.570487 0.821307i \(-0.306755\pi\)
0.570487 + 0.821307i \(0.306755\pi\)
\(384\) 40.9802 2.09126
\(385\) 0 0
\(386\) 45.6333 2.32267
\(387\) −21.2389 −1.07963
\(388\) 45.1161 2.29042
\(389\) 29.0278 1.47177 0.735883 0.677109i \(-0.236767\pi\)
0.735883 + 0.677109i \(0.236767\pi\)
\(390\) 0 0
\(391\) −4.33462 −0.219211
\(392\) 0 0
\(393\) −23.0555 −1.16300
\(394\) −2.51388 −0.126647
\(395\) 14.3163 0.720329
\(396\) −27.5139 −1.38262
\(397\) −4.33462 −0.217548 −0.108774 0.994066i \(-0.534693\pi\)
−0.108774 + 0.994066i \(0.534693\pi\)
\(398\) 16.4836 0.826247
\(399\) 0 0
\(400\) −0.0916731 −0.00458365
\(401\) 10.1194 0.505340 0.252670 0.967552i \(-0.418691\pi\)
0.252670 + 0.967552i \(0.418691\pi\)
\(402\) 4.99082 0.248920
\(403\) 0 0
\(404\) −21.4744 −1.06839
\(405\) 24.2979 1.20737
\(406\) 0 0
\(407\) 42.2389 2.09370
\(408\) −46.5416 −2.30415
\(409\) −3.47972 −0.172061 −0.0860306 0.996292i \(-0.527418\pi\)
−0.0860306 + 0.996292i \(0.527418\pi\)
\(410\) 49.8167 2.46027
\(411\) −13.6601 −0.673801
\(412\) 37.9580 1.87005
\(413\) 0 0
\(414\) 2.36669 0.116317
\(415\) 6.11943 0.300391
\(416\) 0 0
\(417\) −23.0555 −1.12903
\(418\) −24.4966 −1.19817
\(419\) −17.1398 −0.837333 −0.418667 0.908140i \(-0.637502\pi\)
−0.418667 + 0.908140i \(0.637502\pi\)
\(420\) 0 0
\(421\) −5.02776 −0.245038 −0.122519 0.992466i \(-0.539097\pi\)
−0.122519 + 0.992466i \(0.539097\pi\)
\(422\) −34.5416 −1.68146
\(423\) 2.56468 0.124699
\(424\) −7.18335 −0.348854
\(425\) −2.16731 −0.105130
\(426\) 19.9633 0.967225
\(427\) 0 0
\(428\) 18.8167 0.909537
\(429\) 0 0
\(430\) −62.4546 −3.01183
\(431\) 20.9361 1.00846 0.504228 0.863571i \(-0.331777\pi\)
0.504228 + 0.863571i \(0.331777\pi\)
\(432\) −0.854892 −0.0411310
\(433\) 17.1398 0.823685 0.411843 0.911255i \(-0.364885\pi\)
0.411843 + 0.911255i \(0.364885\pi\)
\(434\) 0 0
\(435\) 10.8167 0.518619
\(436\) −27.1194 −1.29879
\(437\) 1.31242 0.0627814
\(438\) −21.6333 −1.03368
\(439\) −3.67841 −0.175561 −0.0877804 0.996140i \(-0.527977\pi\)
−0.0877804 + 0.996140i \(0.527977\pi\)
\(440\) −31.9136 −1.52142
\(441\) 0 0
\(442\) 0 0
\(443\) −20.2389 −0.961577 −0.480789 0.876837i \(-0.659650\pi\)
−0.480789 + 0.876837i \(0.659650\pi\)
\(444\) −61.5997 −2.92339
\(445\) 14.0917 0.668009
\(446\) −41.4377 −1.96213
\(447\) 37.9580 1.79535
\(448\) 0 0
\(449\) 20.4222 0.963783 0.481892 0.876231i \(-0.339950\pi\)
0.481892 + 0.876231i \(0.339950\pi\)
\(450\) 1.18335 0.0557835
\(451\) −48.9932 −2.30700
\(452\) 22.5139 1.05896
\(453\) −17.7960 −0.836129
\(454\) −42.4913 −1.99421
\(455\) 0 0
\(456\) 14.0917 0.659903
\(457\) −20.6056 −0.963887 −0.481944 0.876202i \(-0.660069\pi\)
−0.481944 + 0.876202i \(0.660069\pi\)
\(458\) −35.9893 −1.68167
\(459\) −20.2111 −0.943373
\(460\) 4.33462 0.202103
\(461\) 25.1528 1.17148 0.585741 0.810498i \(-0.300803\pi\)
0.585741 + 0.810498i \(0.300803\pi\)
\(462\) 0 0
\(463\) 13.7889 0.640824 0.320412 0.947278i \(-0.396179\pi\)
0.320412 + 0.947278i \(0.396179\pi\)
\(464\) −0.697224 −0.0323678
\(465\) −33.6234 −1.55925
\(466\) 30.1472 1.39654
\(467\) 12.8052 0.592552 0.296276 0.955102i \(-0.404255\pi\)
0.296276 + 0.955102i \(0.404255\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 7.54163 0.347870
\(471\) −1.42221 −0.0655318
\(472\) −8.47055 −0.389889
\(473\) 61.4222 2.82420
\(474\) 32.9671 1.51423
\(475\) 0.656208 0.0301089
\(476\) 0 0
\(477\) 4.06392 0.186074
\(478\) 10.1194 0.462852
\(479\) 16.4836 0.753154 0.376577 0.926385i \(-0.377101\pi\)
0.376577 + 0.926385i \(0.377101\pi\)
\(480\) −24.9083 −1.13690
\(481\) 0 0
\(482\) −21.4744 −0.978132
\(483\) 0 0
\(484\) 43.2389 1.96540
\(485\) −29.6056 −1.34432
\(486\) 36.4469 1.65326
\(487\) 31.3028 1.41846 0.709232 0.704975i \(-0.249042\pi\)
0.709232 + 0.704975i \(0.249042\pi\)
\(488\) −13.0038 −0.588657
\(489\) 6.04440 0.273337
\(490\) 0 0
\(491\) 19.7250 0.890176 0.445088 0.895487i \(-0.353172\pi\)
0.445088 + 0.895487i \(0.353172\pi\)
\(492\) 71.4500 3.22121
\(493\) −16.4836 −0.742383
\(494\) 0 0
\(495\) 18.0548 0.811504
\(496\) 2.16731 0.0973150
\(497\) 0 0
\(498\) 14.0917 0.631463
\(499\) 8.33053 0.372926 0.186463 0.982462i \(-0.440298\pi\)
0.186463 + 0.982462i \(0.440298\pi\)
\(500\) 37.9580 1.69753
\(501\) −24.9083 −1.11282
\(502\) −68.9565 −3.07768
\(503\) −19.5058 −0.869719 −0.434860 0.900498i \(-0.643202\pi\)
−0.434860 + 0.900498i \(0.643202\pi\)
\(504\) 0 0
\(505\) 14.0917 0.627071
\(506\) −6.84441 −0.304271
\(507\) 0 0
\(508\) 26.1194 1.15886
\(509\) −21.4744 −0.951836 −0.475918 0.879490i \(-0.657884\pi\)
−0.475918 + 0.879490i \(0.657884\pi\)
\(510\) 77.4270 3.42853
\(511\) 0 0
\(512\) 3.42221 0.151242
\(513\) 6.11943 0.270179
\(514\) −14.5149 −0.640227
\(515\) −24.9083 −1.09759
\(516\) −89.5760 −3.94336
\(517\) −7.41697 −0.326198
\(518\) 0 0
\(519\) 22.0639 0.968498
\(520\) 0 0
\(521\) −21.6731 −0.949515 −0.474757 0.880117i \(-0.657464\pi\)
−0.474757 + 0.880117i \(0.657464\pi\)
\(522\) 9.00000 0.393919
\(523\) 24.2979 1.06247 0.531237 0.847223i \(-0.321727\pi\)
0.531237 + 0.847223i \(0.321727\pi\)
\(524\) −35.1345 −1.53486
\(525\) 0 0
\(526\) −35.5139 −1.54848
\(527\) 51.2389 2.23200
\(528\) −3.22088 −0.140171
\(529\) −22.6333 −0.984057
\(530\) 11.9503 0.519087
\(531\) 4.79214 0.207961
\(532\) 0 0
\(533\) 0 0
\(534\) 32.4500 1.40425
\(535\) −12.3476 −0.533835
\(536\) 3.00000 0.129580
\(537\) 46.8259 2.02069
\(538\) 1.51110 0.0651481
\(539\) 0 0
\(540\) 20.2111 0.869747
\(541\) −27.9361 −1.20107 −0.600533 0.799600i \(-0.705045\pi\)
−0.600533 + 0.799600i \(0.705045\pi\)
\(542\) 33.4247 1.43571
\(543\) −52.6611 −2.25990
\(544\) 37.9580 1.62743
\(545\) 17.7960 0.762296
\(546\) 0 0
\(547\) 29.0000 1.23995 0.619975 0.784621i \(-0.287143\pi\)
0.619975 + 0.784621i \(0.287143\pi\)
\(548\) −20.8167 −0.889243
\(549\) 7.35682 0.313981
\(550\) −3.42221 −0.145923
\(551\) 4.99082 0.212616
\(552\) 3.93725 0.167580
\(553\) 0 0
\(554\) 0.486122 0.0206533
\(555\) 40.4222 1.71583
\(556\) −35.1345 −1.49003
\(557\) −6.09167 −0.258112 −0.129056 0.991637i \(-0.541195\pi\)
−0.129056 + 0.991637i \(0.541195\pi\)
\(558\) −27.9763 −1.18433
\(559\) 0 0
\(560\) 0 0
\(561\) −76.1472 −3.21494
\(562\) 54.8444 2.31347
\(563\) 1.31242 0.0553117 0.0276559 0.999618i \(-0.491196\pi\)
0.0276559 + 0.999618i \(0.491196\pi\)
\(564\) 10.8167 0.455463
\(565\) −14.7738 −0.621538
\(566\) −42.9488 −1.80527
\(567\) 0 0
\(568\) 12.0000 0.503509
\(569\) −34.6056 −1.45074 −0.725370 0.688359i \(-0.758331\pi\)
−0.725370 + 0.688359i \(0.758331\pi\)
\(570\) −23.4430 −0.981920
\(571\) −10.7250 −0.448826 −0.224413 0.974494i \(-0.572047\pi\)
−0.224413 + 0.974494i \(0.572047\pi\)
\(572\) 0 0
\(573\) 34.0207 1.42124
\(574\) 0 0
\(575\) 0.183346 0.00764606
\(576\) −21.7527 −0.906364
\(577\) −33.1658 −1.38071 −0.690356 0.723470i \(-0.742546\pi\)
−0.690356 + 0.723470i \(0.742546\pi\)
\(578\) −78.8444 −3.27950
\(579\) −42.9488 −1.78489
\(580\) 16.4836 0.684443
\(581\) 0 0
\(582\) −68.1749 −2.82594
\(583\) −11.7527 −0.486749
\(584\) −13.0038 −0.538103
\(585\) 0 0
\(586\) −65.9343 −2.72372
\(587\) −1.96862 −0.0812538 −0.0406269 0.999174i \(-0.512936\pi\)
−0.0406269 + 0.999174i \(0.512936\pi\)
\(588\) 0 0
\(589\) −15.5139 −0.639238
\(590\) 14.0917 0.580145
\(591\) 2.36599 0.0973239
\(592\) −2.60555 −0.107087
\(593\) −6.30324 −0.258843 −0.129422 0.991590i \(-0.541312\pi\)
−0.129422 + 0.991590i \(0.541312\pi\)
\(594\) −31.9136 −1.30943
\(595\) 0 0
\(596\) 57.8444 2.36940
\(597\) −15.5139 −0.634941
\(598\) 0 0
\(599\) −10.5139 −0.429585 −0.214793 0.976660i \(-0.568908\pi\)
−0.214793 + 0.976660i \(0.568908\pi\)
\(600\) 1.96862 0.0803687
\(601\) 9.12676 0.372288 0.186144 0.982522i \(-0.440401\pi\)
0.186144 + 0.982522i \(0.440401\pi\)
\(602\) 0 0
\(603\) −1.69722 −0.0691163
\(604\) −27.1194 −1.10347
\(605\) −28.3737 −1.15355
\(606\) 32.4500 1.31819
\(607\) 38.8129 1.57537 0.787683 0.616081i \(-0.211281\pi\)
0.787683 + 0.616081i \(0.211281\pi\)
\(608\) −11.4927 −0.466093
\(609\) 0 0
\(610\) 21.6333 0.875907
\(611\) 0 0
\(612\) 40.1253 1.62197
\(613\) −31.9083 −1.28877 −0.644383 0.764703i \(-0.722886\pi\)
−0.644383 + 0.764703i \(0.722886\pi\)
\(614\) 8.47055 0.341844
\(615\) −46.8860 −1.89063
\(616\) 0 0
\(617\) −15.8444 −0.637872 −0.318936 0.947776i \(-0.603325\pi\)
−0.318936 + 0.947776i \(0.603325\pi\)
\(618\) −57.3583 −2.30729
\(619\) 29.9449 1.20359 0.601794 0.798651i \(-0.294453\pi\)
0.601794 + 0.798651i \(0.294453\pi\)
\(620\) −51.2389 −2.05780
\(621\) 1.70978 0.0686113
\(622\) −24.4966 −0.982224
\(623\) 0 0
\(624\) 0 0
\(625\) −23.3944 −0.935778
\(626\) 13.0038 0.519738
\(627\) 23.0555 0.920748
\(628\) −2.16731 −0.0864850
\(629\) −61.5997 −2.45614
\(630\) 0 0
\(631\) −22.9083 −0.911966 −0.455983 0.889988i \(-0.650712\pi\)
−0.455983 + 0.889988i \(0.650712\pi\)
\(632\) 19.8167 0.788264
\(633\) 32.5096 1.29214
\(634\) −14.3028 −0.568036
\(635\) −17.1398 −0.680171
\(636\) 17.1398 0.679637
\(637\) 0 0
\(638\) −26.0278 −1.03045
\(639\) −6.78890 −0.268565
\(640\) −40.9802 −1.61988
\(641\) −14.5139 −0.573264 −0.286632 0.958041i \(-0.592536\pi\)
−0.286632 + 0.958041i \(0.592536\pi\)
\(642\) −28.4338 −1.12219
\(643\) −17.1398 −0.675927 −0.337963 0.941159i \(-0.609738\pi\)
−0.337963 + 0.941159i \(0.609738\pi\)
\(644\) 0 0
\(645\) 58.7805 2.31448
\(646\) 35.7250 1.40558
\(647\) −32.9671 −1.29607 −0.648036 0.761610i \(-0.724409\pi\)
−0.648036 + 0.761610i \(0.724409\pi\)
\(648\) 33.6333 1.32124
\(649\) −13.8587 −0.544003
\(650\) 0 0
\(651\) 0 0
\(652\) 9.21110 0.360735
\(653\) −46.7527 −1.82958 −0.914788 0.403934i \(-0.867642\pi\)
−0.914788 + 0.403934i \(0.867642\pi\)
\(654\) 40.9802 1.60245
\(655\) 23.0555 0.900853
\(656\) 3.02220 0.117997
\(657\) 7.35682 0.287017
\(658\) 0 0
\(659\) −19.6333 −0.764805 −0.382403 0.923996i \(-0.624903\pi\)
−0.382403 + 0.923996i \(0.624903\pi\)
\(660\) 76.1472 2.96403
\(661\) 22.9855 0.894032 0.447016 0.894526i \(-0.352487\pi\)
0.447016 + 0.894526i \(0.352487\pi\)
\(662\) 9.90833 0.385098
\(663\) 0 0
\(664\) 8.47055 0.328721
\(665\) 0 0
\(666\) 33.6333 1.30326
\(667\) 1.39445 0.0539933
\(668\) −37.9580 −1.46864
\(669\) 39.0000 1.50783
\(670\) −4.99082 −0.192812
\(671\) −21.2757 −0.821340
\(672\) 0 0
\(673\) −2.21110 −0.0852317 −0.0426159 0.999092i \(-0.513569\pi\)
−0.0426159 + 0.999092i \(0.513569\pi\)
\(674\) −41.7250 −1.60719
\(675\) 0.854892 0.0329048
\(676\) 0 0
\(677\) −26.4652 −1.01714 −0.508571 0.861020i \(-0.669826\pi\)
−0.508571 + 0.861020i \(0.669826\pi\)
\(678\) −34.0207 −1.30656
\(679\) 0 0
\(680\) 46.5416 1.78479
\(681\) 39.9916 1.53248
\(682\) 80.9068 3.09808
\(683\) 3.60555 0.137963 0.0689813 0.997618i \(-0.478025\pi\)
0.0689813 + 0.997618i \(0.478025\pi\)
\(684\) −12.1490 −0.464527
\(685\) 13.6601 0.521924
\(686\) 0 0
\(687\) 33.8722 1.29230
\(688\) −3.78890 −0.144450
\(689\) 0 0
\(690\) −6.55004 −0.249356
\(691\) 37.7593 1.43643 0.718215 0.695821i \(-0.244959\pi\)
0.718215 + 0.695821i \(0.244959\pi\)
\(692\) 33.6234 1.27817
\(693\) 0 0
\(694\) −35.0278 −1.32964
\(695\) 23.0555 0.874545
\(696\) 14.9725 0.567530
\(697\) 71.4500 2.70636
\(698\) 23.4430 0.887331
\(699\) −28.3737 −1.07319
\(700\) 0 0
\(701\) 9.02776 0.340974 0.170487 0.985360i \(-0.445466\pi\)
0.170487 + 0.985360i \(0.445466\pi\)
\(702\) 0 0
\(703\) 18.6509 0.703431
\(704\) 62.9083 2.37095
\(705\) −7.09798 −0.267325
\(706\) −60.9435 −2.29364
\(707\) 0 0
\(708\) 20.2111 0.759580
\(709\) −32.7250 −1.22901 −0.614506 0.788912i \(-0.710645\pi\)
−0.614506 + 0.788912i \(0.710645\pi\)
\(710\) −19.9633 −0.749209
\(711\) −11.2111 −0.420449
\(712\) 19.5058 0.731010
\(713\) −4.33462 −0.162333
\(714\) 0 0
\(715\) 0 0
\(716\) 71.3583 2.66678
\(717\) −9.52412 −0.355685
\(718\) −27.8444 −1.03914
\(719\) −22.7868 −0.849805 −0.424902 0.905239i \(-0.639692\pi\)
−0.424902 + 0.905239i \(0.639692\pi\)
\(720\) −1.11373 −0.0415064
\(721\) 0 0
\(722\) 32.9361 1.22575
\(723\) 20.2111 0.751659
\(724\) −80.2506 −2.98249
\(725\) 0.697224 0.0258943
\(726\) −65.3382 −2.42493
\(727\) 37.1031 1.37608 0.688038 0.725674i \(-0.258472\pi\)
0.688038 + 0.725674i \(0.258472\pi\)
\(728\) 0 0
\(729\) −0.669468 −0.0247951
\(730\) 21.6333 0.800685
\(731\) −89.5760 −3.31309
\(732\) 31.0278 1.14682
\(733\) 6.70061 0.247493 0.123746 0.992314i \(-0.460509\pi\)
0.123746 + 0.992314i \(0.460509\pi\)
\(734\) −58.9748 −2.17680
\(735\) 0 0
\(736\) −3.21110 −0.118363
\(737\) 4.90833 0.180801
\(738\) −39.0115 −1.43603
\(739\) 33.2111 1.22169 0.610845 0.791750i \(-0.290830\pi\)
0.610845 + 0.791750i \(0.290830\pi\)
\(740\) 61.5997 2.26445
\(741\) 0 0
\(742\) 0 0
\(743\) 41.3028 1.51525 0.757626 0.652689i \(-0.226359\pi\)
0.757626 + 0.652689i \(0.226359\pi\)
\(744\) −46.5416 −1.70630
\(745\) −37.9580 −1.39067
\(746\) 29.2389 1.07051
\(747\) −4.79214 −0.175335
\(748\) −116.041 −4.24289
\(749\) 0 0
\(750\) −57.3583 −2.09443
\(751\) −11.6056 −0.423493 −0.211746 0.977325i \(-0.567915\pi\)
−0.211746 + 0.977325i \(0.567915\pi\)
\(752\) 0.457524 0.0166842
\(753\) 64.8999 2.36508
\(754\) 0 0
\(755\) 17.7960 0.647662
\(756\) 0 0
\(757\) 6.23886 0.226755 0.113378 0.993552i \(-0.463833\pi\)
0.113378 + 0.993552i \(0.463833\pi\)
\(758\) −27.9083 −1.01368
\(759\) 6.44177 0.233821
\(760\) −14.0917 −0.511159
\(761\) 42.2926 1.53311 0.766553 0.642182i \(-0.221971\pi\)
0.766553 + 0.642182i \(0.221971\pi\)
\(762\) −39.4691 −1.42981
\(763\) 0 0
\(764\) 51.8444 1.87566
\(765\) −26.3305 −0.951982
\(766\) −51.4193 −1.85786
\(767\) 0 0
\(768\) −38.8129 −1.40054
\(769\) −47.0847 −1.69792 −0.848959 0.528458i \(-0.822770\pi\)
−0.848959 + 0.528458i \(0.822770\pi\)
\(770\) 0 0
\(771\) 13.6611 0.491991
\(772\) −65.4500 −2.35560
\(773\) −28.4338 −1.02269 −0.511347 0.859374i \(-0.670853\pi\)
−0.511347 + 0.859374i \(0.670853\pi\)
\(774\) 48.9083 1.75797
\(775\) −2.16731 −0.0778520
\(776\) −40.9802 −1.47110
\(777\) 0 0
\(778\) −66.8444 −2.39649
\(779\) −21.6333 −0.775094
\(780\) 0 0
\(781\) 19.6333 0.702535
\(782\) 9.98165 0.356943
\(783\) 6.50192 0.232360
\(784\) 0 0
\(785\) 1.42221 0.0507607
\(786\) 53.0917 1.89372
\(787\) 31.2574 1.11420 0.557102 0.830444i \(-0.311913\pi\)
0.557102 + 0.830444i \(0.311913\pi\)
\(788\) 3.60555 0.128442
\(789\) 33.4247 1.18995
\(790\) −32.9671 −1.17292
\(791\) 0 0
\(792\) 24.9916 0.888038
\(793\) 0 0
\(794\) 9.98165 0.354235
\(795\) −11.2473 −0.398899
\(796\) −23.6417 −0.837958
\(797\) 26.0077 0.921240 0.460620 0.887597i \(-0.347627\pi\)
0.460620 + 0.887597i \(0.347627\pi\)
\(798\) 0 0
\(799\) 10.8167 0.382666
\(800\) −1.60555 −0.0567648
\(801\) −11.0352 −0.389910
\(802\) −23.3028 −0.822850
\(803\) −21.2757 −0.750804
\(804\) −7.15813 −0.252448
\(805\) 0 0
\(806\) 0 0
\(807\) −1.42221 −0.0500640
\(808\) 19.5058 0.686211
\(809\) 20.0278 0.704138 0.352069 0.935974i \(-0.385478\pi\)
0.352069 + 0.935974i \(0.385478\pi\)
\(810\) −55.9526 −1.96598
\(811\) −0.854892 −0.0300193 −0.0150097 0.999887i \(-0.504778\pi\)
−0.0150097 + 0.999887i \(0.504778\pi\)
\(812\) 0 0
\(813\) −31.4584 −1.10329
\(814\) −97.2666 −3.40919
\(815\) −6.04440 −0.211726
\(816\) 4.69722 0.164436
\(817\) 27.1214 0.948859
\(818\) 8.01302 0.280169
\(819\) 0 0
\(820\) −71.4500 −2.49514
\(821\) 55.8444 1.94898 0.974492 0.224424i \(-0.0720499\pi\)
0.974492 + 0.224424i \(0.0720499\pi\)
\(822\) 31.4560 1.09716
\(823\) 42.2666 1.47332 0.736661 0.676262i \(-0.236401\pi\)
0.736661 + 0.676262i \(0.236401\pi\)
\(824\) −34.4782 −1.20111
\(825\) 3.22088 0.112137
\(826\) 0 0
\(827\) 16.7527 0.582550 0.291275 0.956639i \(-0.405921\pi\)
0.291275 + 0.956639i \(0.405921\pi\)
\(828\) −3.39445 −0.117965
\(829\) 50.7631 1.76308 0.881538 0.472113i \(-0.156508\pi\)
0.881538 + 0.472113i \(0.156508\pi\)
\(830\) −14.0917 −0.489129
\(831\) −0.457524 −0.0158713
\(832\) 0 0
\(833\) 0 0
\(834\) 53.0917 1.83841
\(835\) 24.9083 0.861988
\(836\) 35.1345 1.21515
\(837\) −20.2111 −0.698598
\(838\) 39.4691 1.36344
\(839\) −13.4614 −0.464738 −0.232369 0.972628i \(-0.574648\pi\)
−0.232369 + 0.972628i \(0.574648\pi\)
\(840\) 0 0
\(841\) −23.6972 −0.817146
\(842\) 11.5778 0.398997
\(843\) −51.6180 −1.77782
\(844\) 49.5416 1.70529
\(845\) 0 0
\(846\) −5.90587 −0.203048
\(847\) 0 0
\(848\) 0.724981 0.0248959
\(849\) 40.4222 1.38729
\(850\) 4.99082 0.171184
\(851\) 5.21110 0.178634
\(852\) −28.6325 −0.980934
\(853\) −12.8052 −0.438440 −0.219220 0.975675i \(-0.570351\pi\)
−0.219220 + 0.975675i \(0.570351\pi\)
\(854\) 0 0
\(855\) 7.97224 0.272645
\(856\) −17.0917 −0.584181
\(857\) 3.28104 0.112078 0.0560391 0.998429i \(-0.482153\pi\)
0.0560391 + 0.998429i \(0.482153\pi\)
\(858\) 0 0
\(859\) 3.02220 0.103116 0.0515581 0.998670i \(-0.483581\pi\)
0.0515581 + 0.998670i \(0.483581\pi\)
\(860\) 89.5760 3.05452
\(861\) 0 0
\(862\) −48.2111 −1.64208
\(863\) −9.81665 −0.334163 −0.167081 0.985943i \(-0.553434\pi\)
−0.167081 + 0.985943i \(0.553434\pi\)
\(864\) −14.9725 −0.509374
\(865\) −22.0639 −0.750196
\(866\) −39.4691 −1.34121
\(867\) 74.2062 2.52017
\(868\) 0 0
\(869\) 32.4222 1.09985
\(870\) −24.9083 −0.844471
\(871\) 0 0
\(872\) 24.6333 0.834189
\(873\) 23.1842 0.784666
\(874\) −3.02220 −0.102227
\(875\) 0 0
\(876\) 31.0278 1.04833
\(877\) 45.6056 1.53999 0.769995 0.638050i \(-0.220259\pi\)
0.769995 + 0.638050i \(0.220259\pi\)
\(878\) 8.47055 0.285867
\(879\) 62.0555 2.09308
\(880\) 3.22088 0.108576
\(881\) 18.8496 0.635058 0.317529 0.948249i \(-0.397147\pi\)
0.317529 + 0.948249i \(0.397147\pi\)
\(882\) 0 0
\(883\) −24.3944 −0.820939 −0.410469 0.911874i \(-0.634635\pi\)
−0.410469 + 0.911874i \(0.634635\pi\)
\(884\) 0 0
\(885\) −13.2627 −0.445820
\(886\) 46.6056 1.56574
\(887\) 34.6769 1.16434 0.582169 0.813068i \(-0.302204\pi\)
0.582169 + 0.813068i \(0.302204\pi\)
\(888\) 55.9526 1.87765
\(889\) 0 0
\(890\) −32.4500 −1.08773
\(891\) 55.0278 1.84350
\(892\) 59.4324 1.98994
\(893\) −3.27502 −0.109594
\(894\) −87.4087 −2.92338
\(895\) −46.8259 −1.56522
\(896\) 0 0
\(897\) 0 0
\(898\) −47.0278 −1.56934
\(899\) −16.4836 −0.549758
\(900\) −1.69722 −0.0565741
\(901\) 17.1398 0.571009
\(902\) 112.820 3.75651
\(903\) 0 0
\(904\) −20.4500 −0.680156
\(905\) 52.6611 1.75051
\(906\) 40.9802 1.36147
\(907\) −38.8444 −1.28981 −0.644904 0.764264i \(-0.723103\pi\)
−0.644904 + 0.764264i \(0.723103\pi\)
\(908\) 60.9435 2.02248
\(909\) −11.0352 −0.366015
\(910\) 0 0
\(911\) 35.9361 1.19062 0.595308 0.803498i \(-0.297030\pi\)
0.595308 + 0.803498i \(0.297030\pi\)
\(912\) −1.42221 −0.0470939
\(913\) 13.8587 0.458657
\(914\) 47.4500 1.56951
\(915\) −20.3607 −0.673103
\(916\) 51.6180 1.70551
\(917\) 0 0
\(918\) 46.5416 1.53610
\(919\) 53.4500 1.76315 0.881576 0.472043i \(-0.156483\pi\)
0.881576 + 0.472043i \(0.156483\pi\)
\(920\) −3.93725 −0.129807
\(921\) −7.97224 −0.262694
\(922\) −57.9213 −1.90754
\(923\) 0 0
\(924\) 0 0
\(925\) 2.60555 0.0856700
\(926\) −31.7527 −1.04346
\(927\) 19.5058 0.640654
\(928\) −12.2111 −0.400849
\(929\) 17.1398 0.562338 0.281169 0.959658i \(-0.409278\pi\)
0.281169 + 0.959658i \(0.409278\pi\)
\(930\) 77.4270 2.53893
\(931\) 0 0
\(932\) −43.2389 −1.41634
\(933\) 23.0555 0.754804
\(934\) −29.4874 −0.964858
\(935\) 76.1472 2.49028
\(936\) 0 0
\(937\) −19.7646 −0.645682 −0.322841 0.946453i \(-0.604638\pi\)
−0.322841 + 0.946453i \(0.604638\pi\)
\(938\) 0 0
\(939\) −12.2389 −0.399400
\(940\) −10.8167 −0.352800
\(941\) 5.44835 0.177611 0.0888055 0.996049i \(-0.471695\pi\)
0.0888055 + 0.996049i \(0.471695\pi\)
\(942\) 3.27502 0.106706
\(943\) −6.04440 −0.196833
\(944\) 0.854892 0.0278244
\(945\) 0 0
\(946\) −141.442 −4.59866
\(947\) −27.8806 −0.905997 −0.452998 0.891511i \(-0.649646\pi\)
−0.452998 + 0.891511i \(0.649646\pi\)
\(948\) −47.2834 −1.53569
\(949\) 0 0
\(950\) −1.51110 −0.0490266
\(951\) 13.4614 0.436515
\(952\) 0 0
\(953\) 34.3944 1.11415 0.557073 0.830464i \(-0.311924\pi\)
0.557073 + 0.830464i \(0.311924\pi\)
\(954\) −9.35829 −0.302986
\(955\) −34.0207 −1.10088
\(956\) −14.5139 −0.469412
\(957\) 24.4966 0.791863
\(958\) −37.9580 −1.22637
\(959\) 0 0
\(960\) 60.2027 1.94303
\(961\) 20.2389 0.652866
\(962\) 0 0
\(963\) 9.66947 0.311594
\(964\) 30.7998 0.991996
\(965\) 42.9488 1.38257
\(966\) 0 0
\(967\) 42.4500 1.36510 0.682549 0.730839i \(-0.260871\pi\)
0.682549 + 0.730839i \(0.260871\pi\)
\(968\) −39.2750 −1.26235
\(969\) −33.6234 −1.08014
\(970\) 68.1749 2.18897
\(971\) −31.4560 −1.00947 −0.504736 0.863274i \(-0.668410\pi\)
−0.504736 + 0.863274i \(0.668410\pi\)
\(972\) −52.2742 −1.67670
\(973\) 0 0
\(974\) −72.0833 −2.30970
\(975\) 0 0
\(976\) 1.31242 0.0420094
\(977\) 3.97224 0.127083 0.0635417 0.997979i \(-0.479760\pi\)
0.0635417 + 0.997979i \(0.479760\pi\)
\(978\) −13.9189 −0.445077
\(979\) 31.9136 1.01996
\(980\) 0 0
\(981\) −13.9361 −0.444945
\(982\) −45.4222 −1.44948
\(983\) −29.2887 −0.934166 −0.467083 0.884214i \(-0.654695\pi\)
−0.467083 + 0.884214i \(0.654695\pi\)
\(984\) −64.8999 −2.06893
\(985\) −2.36599 −0.0753868
\(986\) 37.9580 1.20883
\(987\) 0 0
\(988\) 0 0
\(989\) 7.57779 0.240960
\(990\) −41.5762 −1.32138
\(991\) −6.66947 −0.211863 −0.105931 0.994373i \(-0.533782\pi\)
−0.105931 + 0.994373i \(0.533782\pi\)
\(992\) 37.9580 1.20517
\(993\) −9.32544 −0.295934
\(994\) 0 0
\(995\) 15.5139 0.491823
\(996\) −20.2111 −0.640413
\(997\) 52.7318 1.67003 0.835016 0.550226i \(-0.185458\pi\)
0.835016 + 0.550226i \(0.185458\pi\)
\(998\) −19.1833 −0.607238
\(999\) 24.2979 0.768752
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bo.1.2 4
7.6 odd 2 inner 8281.2.a.bo.1.1 4
13.4 even 6 637.2.f.h.393.1 yes 8
13.10 even 6 637.2.f.h.295.1 8
13.12 even 2 8281.2.a.bu.1.4 4
91.4 even 6 637.2.h.j.471.3 8
91.10 odd 6 637.2.g.i.373.1 8
91.17 odd 6 637.2.h.j.471.4 8
91.23 even 6 637.2.h.j.165.3 8
91.30 even 6 637.2.g.i.263.2 8
91.62 odd 6 637.2.f.h.295.2 yes 8
91.69 odd 6 637.2.f.h.393.2 yes 8
91.75 odd 6 637.2.h.j.165.4 8
91.82 odd 6 637.2.g.i.263.1 8
91.88 even 6 637.2.g.i.373.2 8
91.90 odd 2 8281.2.a.bu.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
637.2.f.h.295.1 8 13.10 even 6
637.2.f.h.295.2 yes 8 91.62 odd 6
637.2.f.h.393.1 yes 8 13.4 even 6
637.2.f.h.393.2 yes 8 91.69 odd 6
637.2.g.i.263.1 8 91.82 odd 6
637.2.g.i.263.2 8 91.30 even 6
637.2.g.i.373.1 8 91.10 odd 6
637.2.g.i.373.2 8 91.88 even 6
637.2.h.j.165.3 8 91.23 even 6
637.2.h.j.165.4 8 91.75 odd 6
637.2.h.j.471.3 8 91.4 even 6
637.2.h.j.471.4 8 91.17 odd 6
8281.2.a.bo.1.1 4 7.6 odd 2 inner
8281.2.a.bo.1.2 4 1.1 even 1 trivial
8281.2.a.bu.1.3 4 91.90 odd 2
8281.2.a.bu.1.4 4 13.12 even 2