Properties

Label 8281.2.a.bg.1.1
Level $8281$
Weight $2$
Character 8281.1
Self dual yes
Analytic conductor $66.124$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8281,2,Mod(1,8281)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8281, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8281.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8281 = 7^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8281.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1241179138\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 8281.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.34292 q^{2} +1.14637 q^{3} +3.48929 q^{4} -1.34292 q^{5} -2.68585 q^{6} -3.48929 q^{8} -1.68585 q^{9} +O(q^{10})\) \(q-2.34292 q^{2} +1.14637 q^{3} +3.48929 q^{4} -1.34292 q^{5} -2.68585 q^{6} -3.48929 q^{8} -1.68585 q^{9} +3.14637 q^{10} -1.14637 q^{11} +4.00000 q^{12} -1.53948 q^{15} +1.19656 q^{16} -5.83221 q^{17} +3.94981 q^{18} -3.34292 q^{19} -4.68585 q^{20} +2.68585 q^{22} -3.17513 q^{23} -4.00000 q^{24} -3.19656 q^{25} -5.37169 q^{27} +10.4893 q^{29} +3.60688 q^{30} +1.63565 q^{31} +4.17513 q^{32} -1.31415 q^{33} +13.6644 q^{34} -5.88240 q^{36} -8.51806 q^{37} +7.83221 q^{38} +4.68585 q^{40} -0.292731 q^{41} -8.15371 q^{43} -4.00000 q^{44} +2.26396 q^{45} +7.43910 q^{46} -10.6142 q^{47} +1.37169 q^{48} +7.48929 q^{50} -6.68585 q^{51} -0.782020 q^{53} +12.5855 q^{54} +1.53948 q^{55} -3.83221 q^{57} -24.5756 q^{58} +12.6430 q^{59} -5.37169 q^{60} +2.00000 q^{61} -3.83221 q^{62} -12.1751 q^{64} +3.07896 q^{66} +6.10038 q^{67} -20.3503 q^{68} -3.63986 q^{69} -1.53948 q^{71} +5.88240 q^{72} -15.3001 q^{73} +19.9572 q^{74} -3.66442 q^{75} -11.6644 q^{76} +0.882404 q^{79} -1.60688 q^{80} -1.10038 q^{81} +0.685846 q^{82} -12.1292 q^{83} +7.83221 q^{85} +19.1035 q^{86} +12.0246 q^{87} +4.00000 q^{88} +5.73604 q^{89} -5.30429 q^{90} -11.0790 q^{92} +1.87506 q^{93} +24.8683 q^{94} +4.48929 q^{95} +4.78623 q^{96} -5.34292 q^{97} +1.93260 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{3} + 3 q^{4} + 2 q^{5} + 4 q^{6} - 3 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 2 q^{3} + 3 q^{4} + 2 q^{5} + 4 q^{6} - 3 q^{8} + 7 q^{9} + 8 q^{10} - 2 q^{11} + 12 q^{12} + 6 q^{15} - q^{16} - 4 q^{17} + 15 q^{18} - 4 q^{19} - 2 q^{20} - 4 q^{22} + 10 q^{23} - 12 q^{24} - 5 q^{25} + 8 q^{27} + 24 q^{29} + 20 q^{30} - 4 q^{31} - 7 q^{32} - 16 q^{33} + 14 q^{34} - q^{36} + 10 q^{38} + 2 q^{40} + 2 q^{41} + 10 q^{43} - 12 q^{44} + 22 q^{45} + 18 q^{46} - 8 q^{47} - 20 q^{48} + 15 q^{50} - 8 q^{51} + 8 q^{53} + 32 q^{54} - 6 q^{55} + 2 q^{57} - 12 q^{58} - 4 q^{59} + 8 q^{60} + 6 q^{61} + 2 q^{62} - 17 q^{64} - 12 q^{66} + 12 q^{67} - 22 q^{68} + 6 q^{69} + 6 q^{71} + q^{72} - 10 q^{73} + 30 q^{74} + 16 q^{75} - 8 q^{76} - 14 q^{79} - 14 q^{80} + 3 q^{81} - 10 q^{82} - 12 q^{83} + 10 q^{85} + 26 q^{86} + 26 q^{87} + 12 q^{88} + 2 q^{89} + 28 q^{90} - 12 q^{92} + 22 q^{93} + 10 q^{94} + 6 q^{95} - 4 q^{96} - 10 q^{97} - 14 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.34292 −1.65670 −0.828348 0.560213i \(-0.810719\pi\)
−0.828348 + 0.560213i \(0.810719\pi\)
\(3\) 1.14637 0.661854 0.330927 0.943656i \(-0.392639\pi\)
0.330927 + 0.943656i \(0.392639\pi\)
\(4\) 3.48929 1.74464
\(5\) −1.34292 −0.600573 −0.300287 0.953849i \(-0.597082\pi\)
−0.300287 + 0.953849i \(0.597082\pi\)
\(6\) −2.68585 −1.09649
\(7\) 0 0
\(8\) −3.48929 −1.23365
\(9\) −1.68585 −0.561949
\(10\) 3.14637 0.994968
\(11\) −1.14637 −0.345642 −0.172821 0.984953i \(-0.555288\pi\)
−0.172821 + 0.984953i \(0.555288\pi\)
\(12\) 4.00000 1.15470
\(13\) 0 0
\(14\) 0 0
\(15\) −1.53948 −0.397492
\(16\) 1.19656 0.299139
\(17\) −5.83221 −1.41452 −0.707260 0.706954i \(-0.750069\pi\)
−0.707260 + 0.706954i \(0.750069\pi\)
\(18\) 3.94981 0.930979
\(19\) −3.34292 −0.766919 −0.383460 0.923558i \(-0.625267\pi\)
−0.383460 + 0.923558i \(0.625267\pi\)
\(20\) −4.68585 −1.04779
\(21\) 0 0
\(22\) 2.68585 0.572624
\(23\) −3.17513 −0.662061 −0.331031 0.943620i \(-0.607396\pi\)
−0.331031 + 0.943620i \(0.607396\pi\)
\(24\) −4.00000 −0.816497
\(25\) −3.19656 −0.639312
\(26\) 0 0
\(27\) −5.37169 −1.03378
\(28\) 0 0
\(29\) 10.4893 1.94781 0.973906 0.226952i \(-0.0728760\pi\)
0.973906 + 0.226952i \(0.0728760\pi\)
\(30\) 3.60688 0.658524
\(31\) 1.63565 0.293772 0.146886 0.989153i \(-0.453075\pi\)
0.146886 + 0.989153i \(0.453075\pi\)
\(32\) 4.17513 0.738067
\(33\) −1.31415 −0.228765
\(34\) 13.6644 2.34343
\(35\) 0 0
\(36\) −5.88240 −0.980401
\(37\) −8.51806 −1.40036 −0.700180 0.713966i \(-0.746897\pi\)
−0.700180 + 0.713966i \(0.746897\pi\)
\(38\) 7.83221 1.27055
\(39\) 0 0
\(40\) 4.68585 0.740897
\(41\) −0.292731 −0.0457169 −0.0228584 0.999739i \(-0.507277\pi\)
−0.0228584 + 0.999739i \(0.507277\pi\)
\(42\) 0 0
\(43\) −8.15371 −1.24343 −0.621715 0.783244i \(-0.713564\pi\)
−0.621715 + 0.783244i \(0.713564\pi\)
\(44\) −4.00000 −0.603023
\(45\) 2.26396 0.337491
\(46\) 7.43910 1.09683
\(47\) −10.6142 −1.54824 −0.774122 0.633036i \(-0.781809\pi\)
−0.774122 + 0.633036i \(0.781809\pi\)
\(48\) 1.37169 0.197987
\(49\) 0 0
\(50\) 7.48929 1.05915
\(51\) −6.68585 −0.936206
\(52\) 0 0
\(53\) −0.782020 −0.107419 −0.0537093 0.998557i \(-0.517104\pi\)
−0.0537093 + 0.998557i \(0.517104\pi\)
\(54\) 12.5855 1.71266
\(55\) 1.53948 0.207584
\(56\) 0 0
\(57\) −3.83221 −0.507589
\(58\) −24.5756 −3.22693
\(59\) 12.6430 1.64598 0.822989 0.568057i \(-0.192305\pi\)
0.822989 + 0.568057i \(0.192305\pi\)
\(60\) −5.37169 −0.693482
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) −3.83221 −0.486691
\(63\) 0 0
\(64\) −12.1751 −1.52189
\(65\) 0 0
\(66\) 3.07896 0.378994
\(67\) 6.10038 0.745281 0.372640 0.927976i \(-0.378453\pi\)
0.372640 + 0.927976i \(0.378453\pi\)
\(68\) −20.3503 −2.46783
\(69\) −3.63986 −0.438188
\(70\) 0 0
\(71\) −1.53948 −0.182703 −0.0913514 0.995819i \(-0.529119\pi\)
−0.0913514 + 0.995819i \(0.529119\pi\)
\(72\) 5.88240 0.693248
\(73\) −15.3001 −1.79074 −0.895369 0.445324i \(-0.853088\pi\)
−0.895369 + 0.445324i \(0.853088\pi\)
\(74\) 19.9572 2.31997
\(75\) −3.66442 −0.423131
\(76\) −11.6644 −1.33800
\(77\) 0 0
\(78\) 0 0
\(79\) 0.882404 0.0992782 0.0496391 0.998767i \(-0.484193\pi\)
0.0496391 + 0.998767i \(0.484193\pi\)
\(80\) −1.60688 −0.179655
\(81\) −1.10038 −0.122265
\(82\) 0.685846 0.0757390
\(83\) −12.1292 −1.33135 −0.665674 0.746243i \(-0.731856\pi\)
−0.665674 + 0.746243i \(0.731856\pi\)
\(84\) 0 0
\(85\) 7.83221 0.849523
\(86\) 19.1035 2.05999
\(87\) 12.0246 1.28917
\(88\) 4.00000 0.426401
\(89\) 5.73604 0.608019 0.304009 0.952669i \(-0.401675\pi\)
0.304009 + 0.952669i \(0.401675\pi\)
\(90\) −5.30429 −0.559121
\(91\) 0 0
\(92\) −11.0790 −1.15506
\(93\) 1.87506 0.194434
\(94\) 24.8683 2.56497
\(95\) 4.48929 0.460591
\(96\) 4.78623 0.488493
\(97\) −5.34292 −0.542492 −0.271246 0.962510i \(-0.587436\pi\)
−0.271246 + 0.962510i \(0.587436\pi\)
\(98\) 0 0
\(99\) 1.93260 0.194233
\(100\) −11.1537 −1.11537
\(101\) −11.1464 −1.10910 −0.554552 0.832149i \(-0.687111\pi\)
−0.554552 + 0.832149i \(0.687111\pi\)
\(102\) 15.6644 1.55101
\(103\) 3.41454 0.336444 0.168222 0.985749i \(-0.446197\pi\)
0.168222 + 0.985749i \(0.446197\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 1.83221 0.177960
\(107\) 4.97858 0.481297 0.240649 0.970612i \(-0.422640\pi\)
0.240649 + 0.970612i \(0.422640\pi\)
\(108\) −18.7434 −1.80358
\(109\) 13.4966 1.29274 0.646372 0.763023i \(-0.276286\pi\)
0.646372 + 0.763023i \(0.276286\pi\)
\(110\) −3.60688 −0.343903
\(111\) −9.76481 −0.926835
\(112\) 0 0
\(113\) 16.4464 1.54715 0.773576 0.633704i \(-0.218466\pi\)
0.773576 + 0.633704i \(0.218466\pi\)
\(114\) 8.97858 0.840921
\(115\) 4.26396 0.397616
\(116\) 36.6002 3.39824
\(117\) 0 0
\(118\) −29.6216 −2.72689
\(119\) 0 0
\(120\) 5.37169 0.490366
\(121\) −9.68585 −0.880531
\(122\) −4.68585 −0.424237
\(123\) −0.335577 −0.0302579
\(124\) 5.70727 0.512528
\(125\) 11.0073 0.984527
\(126\) 0 0
\(127\) 12.0575 1.06993 0.534967 0.844873i \(-0.320324\pi\)
0.534967 + 0.844873i \(0.320324\pi\)
\(128\) 20.1751 1.78325
\(129\) −9.34713 −0.822969
\(130\) 0 0
\(131\) 3.66442 0.320162 0.160081 0.987104i \(-0.448824\pi\)
0.160081 + 0.987104i \(0.448824\pi\)
\(132\) −4.58546 −0.399113
\(133\) 0 0
\(134\) −14.2927 −1.23470
\(135\) 7.21377 0.620862
\(136\) 20.3503 1.74502
\(137\) 13.1035 1.11951 0.559755 0.828658i \(-0.310895\pi\)
0.559755 + 0.828658i \(0.310895\pi\)
\(138\) 8.52792 0.725945
\(139\) −7.49663 −0.635856 −0.317928 0.948115i \(-0.602987\pi\)
−0.317928 + 0.948115i \(0.602987\pi\)
\(140\) 0 0
\(141\) −12.1678 −1.02471
\(142\) 3.60688 0.302683
\(143\) 0 0
\(144\) −2.01721 −0.168101
\(145\) −14.0863 −1.16980
\(146\) 35.8469 2.96671
\(147\) 0 0
\(148\) −29.7220 −2.44313
\(149\) −2.16779 −0.177592 −0.0887961 0.996050i \(-0.528302\pi\)
−0.0887961 + 0.996050i \(0.528302\pi\)
\(150\) 8.58546 0.701000
\(151\) −14.9112 −1.21345 −0.606727 0.794910i \(-0.707518\pi\)
−0.606727 + 0.794910i \(0.707518\pi\)
\(152\) 11.6644 0.946110
\(153\) 9.83221 0.794887
\(154\) 0 0
\(155\) −2.19656 −0.176432
\(156\) 0 0
\(157\) −22.8683 −1.82509 −0.912546 0.408975i \(-0.865886\pi\)
−0.912546 + 0.408975i \(0.865886\pi\)
\(158\) −2.06740 −0.164474
\(159\) −0.896480 −0.0710955
\(160\) −5.60688 −0.443263
\(161\) 0 0
\(162\) 2.57812 0.202556
\(163\) −7.07896 −0.554467 −0.277234 0.960803i \(-0.589418\pi\)
−0.277234 + 0.960803i \(0.589418\pi\)
\(164\) −1.02142 −0.0797597
\(165\) 1.76481 0.137390
\(166\) 28.4177 2.20564
\(167\) 2.61423 0.202295 0.101148 0.994871i \(-0.467749\pi\)
0.101148 + 0.994871i \(0.467749\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) −18.3503 −1.40740
\(171\) 5.63565 0.430969
\(172\) −28.4507 −2.16934
\(173\) −11.0031 −0.836553 −0.418276 0.908320i \(-0.637366\pi\)
−0.418276 + 0.908320i \(0.637366\pi\)
\(174\) −28.1726 −2.13576
\(175\) 0 0
\(176\) −1.37169 −0.103395
\(177\) 14.4935 1.08940
\(178\) −13.4391 −1.00730
\(179\) 23.9614 1.79096 0.895478 0.445105i \(-0.146834\pi\)
0.895478 + 0.445105i \(0.146834\pi\)
\(180\) 7.89962 0.588803
\(181\) −6.56090 −0.487668 −0.243834 0.969817i \(-0.578405\pi\)
−0.243834 + 0.969817i \(0.578405\pi\)
\(182\) 0 0
\(183\) 2.29273 0.169484
\(184\) 11.0790 0.816752
\(185\) 11.4391 0.841019
\(186\) −4.39312 −0.322119
\(187\) 6.68585 0.488917
\(188\) −37.0361 −2.70114
\(189\) 0 0
\(190\) −10.5181 −0.763060
\(191\) −4.39312 −0.317875 −0.158937 0.987289i \(-0.550807\pi\)
−0.158937 + 0.987289i \(0.550807\pi\)
\(192\) −13.9572 −1.00727
\(193\) 8.29273 0.596924 0.298462 0.954422i \(-0.403526\pi\)
0.298462 + 0.954422i \(0.403526\pi\)
\(194\) 12.5181 0.898744
\(195\) 0 0
\(196\) 0 0
\(197\) 3.17092 0.225919 0.112959 0.993600i \(-0.463967\pi\)
0.112959 + 0.993600i \(0.463967\pi\)
\(198\) −4.52792 −0.321786
\(199\) 13.5970 0.963867 0.481934 0.876208i \(-0.339935\pi\)
0.481934 + 0.876208i \(0.339935\pi\)
\(200\) 11.1537 0.788687
\(201\) 6.99327 0.493267
\(202\) 26.1151 1.83745
\(203\) 0 0
\(204\) −23.3288 −1.63335
\(205\) 0.393115 0.0274564
\(206\) −8.00000 −0.557386
\(207\) 5.35279 0.372045
\(208\) 0 0
\(209\) 3.83221 0.265080
\(210\) 0 0
\(211\) 9.27552 0.638553 0.319277 0.947662i \(-0.396560\pi\)
0.319277 + 0.947662i \(0.396560\pi\)
\(212\) −2.72869 −0.187407
\(213\) −1.76481 −0.120923
\(214\) −11.6644 −0.797364
\(215\) 10.9498 0.746771
\(216\) 18.7434 1.27533
\(217\) 0 0
\(218\) −31.6216 −2.14168
\(219\) −17.5395 −1.18521
\(220\) 5.37169 0.362159
\(221\) 0 0
\(222\) 22.8782 1.53548
\(223\) −19.5928 −1.31203 −0.656016 0.754747i \(-0.727760\pi\)
−0.656016 + 0.754747i \(0.727760\pi\)
\(224\) 0 0
\(225\) 5.38890 0.359260
\(226\) −38.5328 −2.56316
\(227\) −19.6644 −1.30517 −0.652587 0.757714i \(-0.726316\pi\)
−0.652587 + 0.757714i \(0.726316\pi\)
\(228\) −13.3717 −0.885562
\(229\) 7.76481 0.513113 0.256556 0.966529i \(-0.417412\pi\)
0.256556 + 0.966529i \(0.417412\pi\)
\(230\) −9.99013 −0.658730
\(231\) 0 0
\(232\) −36.6002 −2.40292
\(233\) 12.1966 0.799023 0.399512 0.916728i \(-0.369180\pi\)
0.399512 + 0.916728i \(0.369180\pi\)
\(234\) 0 0
\(235\) 14.2541 0.929835
\(236\) 44.1151 2.87165
\(237\) 1.01156 0.0657077
\(238\) 0 0
\(239\) 10.2927 0.665781 0.332891 0.942965i \(-0.391976\pi\)
0.332891 + 0.942965i \(0.391976\pi\)
\(240\) −1.84208 −0.118906
\(241\) −4.02877 −0.259516 −0.129758 0.991546i \(-0.541420\pi\)
−0.129758 + 0.991546i \(0.541420\pi\)
\(242\) 22.6932 1.45877
\(243\) 14.8536 0.952861
\(244\) 6.97858 0.446758
\(245\) 0 0
\(246\) 0.786230 0.0501282
\(247\) 0 0
\(248\) −5.70727 −0.362412
\(249\) −13.9044 −0.881158
\(250\) −25.7894 −1.63106
\(251\) −2.91117 −0.183752 −0.0918758 0.995770i \(-0.529286\pi\)
−0.0918758 + 0.995770i \(0.529286\pi\)
\(252\) 0 0
\(253\) 3.63986 0.228836
\(254\) −28.2499 −1.77256
\(255\) 8.97858 0.562260
\(256\) −22.9185 −1.43241
\(257\) 19.5970 1.22243 0.611214 0.791465i \(-0.290681\pi\)
0.611214 + 0.791465i \(0.290681\pi\)
\(258\) 21.8996 1.36341
\(259\) 0 0
\(260\) 0 0
\(261\) −17.6833 −1.09457
\(262\) −8.58546 −0.530412
\(263\) 7.56825 0.466678 0.233339 0.972395i \(-0.425035\pi\)
0.233339 + 0.972395i \(0.425035\pi\)
\(264\) 4.58546 0.282216
\(265\) 1.05019 0.0645128
\(266\) 0 0
\(267\) 6.57560 0.402420
\(268\) 21.2860 1.30025
\(269\) 9.47208 0.577523 0.288761 0.957401i \(-0.406757\pi\)
0.288761 + 0.957401i \(0.406757\pi\)
\(270\) −16.9013 −1.02858
\(271\) 29.3717 1.78420 0.892102 0.451835i \(-0.149230\pi\)
0.892102 + 0.451835i \(0.149230\pi\)
\(272\) −6.97858 −0.423138
\(273\) 0 0
\(274\) −30.7005 −1.85469
\(275\) 3.66442 0.220973
\(276\) −12.7005 −0.764483
\(277\) −1.90383 −0.114390 −0.0571949 0.998363i \(-0.518216\pi\)
−0.0571949 + 0.998363i \(0.518216\pi\)
\(278\) 17.5640 1.05342
\(279\) −2.75746 −0.165085
\(280\) 0 0
\(281\) 20.5756 1.22744 0.613719 0.789525i \(-0.289673\pi\)
0.613719 + 0.789525i \(0.289673\pi\)
\(282\) 28.5082 1.69764
\(283\) 26.9933 1.60458 0.802292 0.596932i \(-0.203614\pi\)
0.802292 + 0.596932i \(0.203614\pi\)
\(284\) −5.37169 −0.318751
\(285\) 5.14637 0.304844
\(286\) 0 0
\(287\) 0 0
\(288\) −7.03863 −0.414756
\(289\) 17.0147 1.00086
\(290\) 33.0031 1.93801
\(291\) −6.12494 −0.359050
\(292\) −53.3864 −3.12420
\(293\) −14.9070 −0.870874 −0.435437 0.900219i \(-0.643406\pi\)
−0.435437 + 0.900219i \(0.643406\pi\)
\(294\) 0 0
\(295\) −16.9786 −0.988531
\(296\) 29.7220 1.72755
\(297\) 6.15792 0.357319
\(298\) 5.07896 0.294216
\(299\) 0 0
\(300\) −12.7862 −0.738213
\(301\) 0 0
\(302\) 34.9357 2.01033
\(303\) −12.7778 −0.734066
\(304\) −4.00000 −0.229416
\(305\) −2.68585 −0.153791
\(306\) −23.0361 −1.31689
\(307\) 26.0288 1.48554 0.742770 0.669546i \(-0.233512\pi\)
0.742770 + 0.669546i \(0.233512\pi\)
\(308\) 0 0
\(309\) 3.91431 0.222677
\(310\) 5.14637 0.292294
\(311\) −19.4966 −1.10555 −0.552776 0.833330i \(-0.686432\pi\)
−0.552776 + 0.833330i \(0.686432\pi\)
\(312\) 0 0
\(313\) 3.48194 0.196811 0.0984055 0.995146i \(-0.468626\pi\)
0.0984055 + 0.995146i \(0.468626\pi\)
\(314\) 53.5787 3.02362
\(315\) 0 0
\(316\) 3.07896 0.173205
\(317\) −5.02142 −0.282031 −0.141016 0.990007i \(-0.545037\pi\)
−0.141016 + 0.990007i \(0.545037\pi\)
\(318\) 2.10038 0.117784
\(319\) −12.0246 −0.673246
\(320\) 16.3503 0.914008
\(321\) 5.70727 0.318549
\(322\) 0 0
\(323\) 19.4966 1.08482
\(324\) −3.83956 −0.213309
\(325\) 0 0
\(326\) 16.5855 0.918584
\(327\) 15.4721 0.855608
\(328\) 1.02142 0.0563986
\(329\) 0 0
\(330\) −4.13481 −0.227614
\(331\) 6.14950 0.338007 0.169004 0.985615i \(-0.445945\pi\)
0.169004 + 0.985615i \(0.445945\pi\)
\(332\) −42.3221 −2.32273
\(333\) 14.3601 0.786931
\(334\) −6.12494 −0.335142
\(335\) −8.19235 −0.447596
\(336\) 0 0
\(337\) −25.6258 −1.39593 −0.697963 0.716134i \(-0.745910\pi\)
−0.697963 + 0.716134i \(0.745910\pi\)
\(338\) 0 0
\(339\) 18.8536 1.02399
\(340\) 27.3288 1.48211
\(341\) −1.87506 −0.101540
\(342\) −13.2039 −0.713985
\(343\) 0 0
\(344\) 28.4507 1.53396
\(345\) 4.88806 0.263164
\(346\) 25.7795 1.38591
\(347\) −16.7005 −0.896532 −0.448266 0.893900i \(-0.647958\pi\)
−0.448266 + 0.893900i \(0.647958\pi\)
\(348\) 41.9572 2.24914
\(349\) −23.5500 −1.26060 −0.630300 0.776351i \(-0.717068\pi\)
−0.630300 + 0.776351i \(0.717068\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −4.78623 −0.255107
\(353\) −7.64973 −0.407154 −0.203577 0.979059i \(-0.565257\pi\)
−0.203577 + 0.979059i \(0.565257\pi\)
\(354\) −33.9572 −1.80480
\(355\) 2.06740 0.109726
\(356\) 20.0147 1.06078
\(357\) 0 0
\(358\) −56.1396 −2.96707
\(359\) −18.3748 −0.969786 −0.484893 0.874573i \(-0.661142\pi\)
−0.484893 + 0.874573i \(0.661142\pi\)
\(360\) −7.89962 −0.416346
\(361\) −7.82487 −0.411835
\(362\) 15.3717 0.807918
\(363\) −11.1035 −0.582784
\(364\) 0 0
\(365\) 20.5468 1.07547
\(366\) −5.37169 −0.280783
\(367\) −5.33871 −0.278679 −0.139339 0.990245i \(-0.544498\pi\)
−0.139339 + 0.990245i \(0.544498\pi\)
\(368\) −3.79923 −0.198049
\(369\) 0.493499 0.0256906
\(370\) −26.8009 −1.39331
\(371\) 0 0
\(372\) 6.54262 0.339219
\(373\) 21.5212 1.11433 0.557163 0.830403i \(-0.311890\pi\)
0.557163 + 0.830403i \(0.311890\pi\)
\(374\) −15.6644 −0.809988
\(375\) 12.6184 0.651614
\(376\) 37.0361 1.90999
\(377\) 0 0
\(378\) 0 0
\(379\) −4.61002 −0.236801 −0.118400 0.992966i \(-0.537777\pi\)
−0.118400 + 0.992966i \(0.537777\pi\)
\(380\) 15.6644 0.803568
\(381\) 13.8223 0.708140
\(382\) 10.2927 0.526622
\(383\) −8.33558 −0.425928 −0.212964 0.977060i \(-0.568312\pi\)
−0.212964 + 0.977060i \(0.568312\pi\)
\(384\) 23.1281 1.18025
\(385\) 0 0
\(386\) −19.4292 −0.988922
\(387\) 13.7459 0.698744
\(388\) −18.6430 −0.946455
\(389\) −6.44223 −0.326634 −0.163317 0.986574i \(-0.552219\pi\)
−0.163317 + 0.986574i \(0.552219\pi\)
\(390\) 0 0
\(391\) 18.5181 0.936498
\(392\) 0 0
\(393\) 4.20077 0.211901
\(394\) −7.42923 −0.374279
\(395\) −1.18500 −0.0596238
\(396\) 6.74338 0.338868
\(397\) 1.40046 0.0702872 0.0351436 0.999382i \(-0.488811\pi\)
0.0351436 + 0.999382i \(0.488811\pi\)
\(398\) −31.8568 −1.59684
\(399\) 0 0
\(400\) −3.82487 −0.191243
\(401\) 6.97858 0.348494 0.174247 0.984702i \(-0.444251\pi\)
0.174247 + 0.984702i \(0.444251\pi\)
\(402\) −16.3847 −0.817194
\(403\) 0 0
\(404\) −38.8929 −1.93499
\(405\) 1.47773 0.0734291
\(406\) 0 0
\(407\) 9.76481 0.484024
\(408\) 23.3288 1.15495
\(409\) −18.3790 −0.908785 −0.454392 0.890802i \(-0.650144\pi\)
−0.454392 + 0.890802i \(0.650144\pi\)
\(410\) −0.921039 −0.0454869
\(411\) 15.0214 0.740952
\(412\) 11.9143 0.586976
\(413\) 0 0
\(414\) −12.5412 −0.616365
\(415\) 16.2885 0.799572
\(416\) 0 0
\(417\) −8.59388 −0.420844
\(418\) −8.97858 −0.439157
\(419\) 30.0393 1.46751 0.733757 0.679412i \(-0.237765\pi\)
0.733757 + 0.679412i \(0.237765\pi\)
\(420\) 0 0
\(421\) 8.31729 0.405360 0.202680 0.979245i \(-0.435035\pi\)
0.202680 + 0.979245i \(0.435035\pi\)
\(422\) −21.7318 −1.05789
\(423\) 17.8940 0.870034
\(424\) 2.72869 0.132517
\(425\) 18.6430 0.904318
\(426\) 4.13481 0.200332
\(427\) 0 0
\(428\) 17.3717 0.839692
\(429\) 0 0
\(430\) −25.6546 −1.23717
\(431\) −9.64973 −0.464811 −0.232406 0.972619i \(-0.574660\pi\)
−0.232406 + 0.972619i \(0.574660\pi\)
\(432\) −6.42754 −0.309245
\(433\) −26.3074 −1.26425 −0.632127 0.774865i \(-0.717818\pi\)
−0.632127 + 0.774865i \(0.717818\pi\)
\(434\) 0 0
\(435\) −16.1481 −0.774240
\(436\) 47.0937 2.25538
\(437\) 10.6142 0.507748
\(438\) 41.0937 1.96353
\(439\) −33.8139 −1.61385 −0.806925 0.590654i \(-0.798870\pi\)
−0.806925 + 0.590654i \(0.798870\pi\)
\(440\) −5.37169 −0.256085
\(441\) 0 0
\(442\) 0 0
\(443\) 26.4464 1.25651 0.628254 0.778008i \(-0.283770\pi\)
0.628254 + 0.778008i \(0.283770\pi\)
\(444\) −34.0722 −1.61700
\(445\) −7.70306 −0.365160
\(446\) 45.9044 2.17364
\(447\) −2.48508 −0.117540
\(448\) 0 0
\(449\) −2.64300 −0.124731 −0.0623655 0.998053i \(-0.519864\pi\)
−0.0623655 + 0.998053i \(0.519864\pi\)
\(450\) −12.6258 −0.595185
\(451\) 0.335577 0.0158017
\(452\) 57.3864 2.69923
\(453\) −17.0937 −0.803130
\(454\) 46.0722 2.16228
\(455\) 0 0
\(456\) 13.3717 0.626187
\(457\) 33.6890 1.57590 0.787952 0.615737i \(-0.211141\pi\)
0.787952 + 0.615737i \(0.211141\pi\)
\(458\) −18.1923 −0.850073
\(459\) 31.3288 1.46231
\(460\) 14.8782 0.693699
\(461\) 33.0790 1.54064 0.770320 0.637657i \(-0.220096\pi\)
0.770320 + 0.637657i \(0.220096\pi\)
\(462\) 0 0
\(463\) 2.51806 0.117024 0.0585120 0.998287i \(-0.481364\pi\)
0.0585120 + 0.998287i \(0.481364\pi\)
\(464\) 12.5510 0.582667
\(465\) −2.51806 −0.116772
\(466\) −28.5756 −1.32374
\(467\) −2.57560 −0.119184 −0.0595922 0.998223i \(-0.518980\pi\)
−0.0595922 + 0.998223i \(0.518980\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −33.3963 −1.54045
\(471\) −26.2155 −1.20794
\(472\) −44.1151 −2.03056
\(473\) 9.34713 0.429782
\(474\) −2.37000 −0.108858
\(475\) 10.6858 0.490300
\(476\) 0 0
\(477\) 1.31836 0.0603638
\(478\) −24.1151 −1.10300
\(479\) 0.513847 0.0234783 0.0117391 0.999931i \(-0.496263\pi\)
0.0117391 + 0.999931i \(0.496263\pi\)
\(480\) −6.42754 −0.293376
\(481\) 0 0
\(482\) 9.43910 0.429939
\(483\) 0 0
\(484\) −33.7967 −1.53621
\(485\) 7.17513 0.325806
\(486\) −34.8009 −1.57860
\(487\) −36.0575 −1.63392 −0.816962 0.576692i \(-0.804343\pi\)
−0.816962 + 0.576692i \(0.804343\pi\)
\(488\) −6.97858 −0.315905
\(489\) −8.11508 −0.366976
\(490\) 0 0
\(491\) −9.22846 −0.416475 −0.208237 0.978078i \(-0.566773\pi\)
−0.208237 + 0.978078i \(0.566773\pi\)
\(492\) −1.17092 −0.0527893
\(493\) −61.1758 −2.75522
\(494\) 0 0
\(495\) −2.59533 −0.116651
\(496\) 1.95715 0.0878788
\(497\) 0 0
\(498\) 32.5770 1.45981
\(499\) −1.00314 −0.0449065 −0.0224533 0.999748i \(-0.507148\pi\)
−0.0224533 + 0.999748i \(0.507148\pi\)
\(500\) 38.4078 1.71765
\(501\) 2.99686 0.133890
\(502\) 6.82065 0.304421
\(503\) 30.3503 1.35325 0.676626 0.736327i \(-0.263441\pi\)
0.676626 + 0.736327i \(0.263441\pi\)
\(504\) 0 0
\(505\) 14.9687 0.666099
\(506\) −8.52792 −0.379112
\(507\) 0 0
\(508\) 42.0722 1.86665
\(509\) 10.5995 0.469816 0.234908 0.972018i \(-0.424521\pi\)
0.234908 + 0.972018i \(0.424521\pi\)
\(510\) −21.0361 −0.931495
\(511\) 0 0
\(512\) 13.3461 0.589818
\(513\) 17.9572 0.792828
\(514\) −45.9143 −2.02519
\(515\) −4.58546 −0.202060
\(516\) −32.6148 −1.43579
\(517\) 12.1678 0.535139
\(518\) 0 0
\(519\) −12.6136 −0.553676
\(520\) 0 0
\(521\) 16.2646 0.712564 0.356282 0.934378i \(-0.384044\pi\)
0.356282 + 0.934378i \(0.384044\pi\)
\(522\) 41.4307 1.81337
\(523\) −7.22219 −0.315804 −0.157902 0.987455i \(-0.550473\pi\)
−0.157902 + 0.987455i \(0.550473\pi\)
\(524\) 12.7862 0.558569
\(525\) 0 0
\(526\) −17.7318 −0.773144
\(527\) −9.53948 −0.415546
\(528\) −1.57246 −0.0684326
\(529\) −12.9185 −0.561675
\(530\) −2.46052 −0.106878
\(531\) −21.3142 −0.924955
\(532\) 0 0
\(533\) 0 0
\(534\) −15.4061 −0.666688
\(535\) −6.68585 −0.289054
\(536\) −21.2860 −0.919415
\(537\) 27.4685 1.18535
\(538\) −22.1923 −0.956780
\(539\) 0 0
\(540\) 25.1709 1.08318
\(541\) −17.3534 −0.746081 −0.373041 0.927815i \(-0.621685\pi\)
−0.373041 + 0.927815i \(0.621685\pi\)
\(542\) −68.8156 −2.95588
\(543\) −7.52119 −0.322765
\(544\) −24.3503 −1.04401
\(545\) −18.1249 −0.776387
\(546\) 0 0
\(547\) −34.1109 −1.45848 −0.729238 0.684261i \(-0.760125\pi\)
−0.729238 + 0.684261i \(0.760125\pi\)
\(548\) 45.7220 1.95315
\(549\) −3.37169 −0.143900
\(550\) −8.58546 −0.366085
\(551\) −35.0649 −1.49381
\(552\) 12.7005 0.540571
\(553\) 0 0
\(554\) 4.46052 0.189509
\(555\) 13.1134 0.556632
\(556\) −26.1579 −1.10934
\(557\) 13.2222 0.560242 0.280121 0.959965i \(-0.409625\pi\)
0.280121 + 0.959965i \(0.409625\pi\)
\(558\) 6.46052 0.273496
\(559\) 0 0
\(560\) 0 0
\(561\) 7.66442 0.323592
\(562\) −48.2070 −2.03349
\(563\) 41.3717 1.74361 0.871804 0.489854i \(-0.162950\pi\)
0.871804 + 0.489854i \(0.162950\pi\)
\(564\) −42.4569 −1.78776
\(565\) −22.0863 −0.929178
\(566\) −63.2432 −2.65831
\(567\) 0 0
\(568\) 5.37169 0.225391
\(569\) −2.68164 −0.112420 −0.0562100 0.998419i \(-0.517902\pi\)
−0.0562100 + 0.998419i \(0.517902\pi\)
\(570\) −12.0575 −0.505035
\(571\) −28.9315 −1.21075 −0.605373 0.795942i \(-0.706976\pi\)
−0.605373 + 0.795942i \(0.706976\pi\)
\(572\) 0 0
\(573\) −5.03612 −0.210387
\(574\) 0 0
\(575\) 10.1495 0.423263
\(576\) 20.5254 0.855225
\(577\) 37.5296 1.56238 0.781189 0.624294i \(-0.214613\pi\)
0.781189 + 0.624294i \(0.214613\pi\)
\(578\) −39.8641 −1.65813
\(579\) 9.50650 0.395077
\(580\) −49.1512 −2.04089
\(581\) 0 0
\(582\) 14.3503 0.594838
\(583\) 0.896480 0.0371284
\(584\) 53.3864 2.20914
\(585\) 0 0
\(586\) 34.9259 1.44277
\(587\) 23.0649 0.951990 0.475995 0.879448i \(-0.342088\pi\)
0.475995 + 0.879448i \(0.342088\pi\)
\(588\) 0 0
\(589\) −5.46787 −0.225299
\(590\) 39.7795 1.63770
\(591\) 3.63504 0.149525
\(592\) −10.1923 −0.418903
\(593\) −11.0502 −0.453777 −0.226889 0.973921i \(-0.572855\pi\)
−0.226889 + 0.973921i \(0.572855\pi\)
\(594\) −14.4275 −0.591969
\(595\) 0 0
\(596\) −7.56404 −0.309835
\(597\) 15.5872 0.637940
\(598\) 0 0
\(599\) −44.6044 −1.82248 −0.911242 0.411870i \(-0.864876\pi\)
−0.911242 + 0.411870i \(0.864876\pi\)
\(600\) 12.7862 0.521996
\(601\) −47.8715 −1.95272 −0.976359 0.216156i \(-0.930648\pi\)
−0.976359 + 0.216156i \(0.930648\pi\)
\(602\) 0 0
\(603\) −10.2843 −0.418809
\(604\) −52.0294 −2.11705
\(605\) 13.0073 0.528824
\(606\) 29.9374 1.21612
\(607\) −45.0691 −1.82930 −0.914649 0.404249i \(-0.867533\pi\)
−0.914649 + 0.404249i \(0.867533\pi\)
\(608\) −13.9572 −0.566037
\(609\) 0 0
\(610\) 6.29273 0.254785
\(611\) 0 0
\(612\) 34.3074 1.38680
\(613\) 25.5212 1.03079 0.515396 0.856952i \(-0.327645\pi\)
0.515396 + 0.856952i \(0.327645\pi\)
\(614\) −60.9834 −2.46109
\(615\) 0.450654 0.0181721
\(616\) 0 0
\(617\) −29.2432 −1.17729 −0.588643 0.808393i \(-0.700337\pi\)
−0.588643 + 0.808393i \(0.700337\pi\)
\(618\) −9.17092 −0.368909
\(619\) 4.78623 0.192375 0.0961874 0.995363i \(-0.469335\pi\)
0.0961874 + 0.995363i \(0.469335\pi\)
\(620\) −7.66442 −0.307811
\(621\) 17.0558 0.684428
\(622\) 45.6791 1.83157
\(623\) 0 0
\(624\) 0 0
\(625\) 1.20077 0.0480307
\(626\) −8.15792 −0.326056
\(627\) 4.39312 0.175444
\(628\) −79.7942 −3.18413
\(629\) 49.6791 1.98084
\(630\) 0 0
\(631\) 28.3931 1.13031 0.565156 0.824984i \(-0.308816\pi\)
0.565156 + 0.824984i \(0.308816\pi\)
\(632\) −3.07896 −0.122475
\(633\) 10.6331 0.422629
\(634\) 11.7648 0.467240
\(635\) −16.1923 −0.642574
\(636\) −3.12808 −0.124036
\(637\) 0 0
\(638\) 28.1726 1.11536
\(639\) 2.59533 0.102670
\(640\) −27.0937 −1.07097
\(641\) 5.96137 0.235460 0.117730 0.993046i \(-0.462438\pi\)
0.117730 + 0.993046i \(0.462438\pi\)
\(642\) −13.3717 −0.527739
\(643\) 31.1940 1.23017 0.615086 0.788460i \(-0.289121\pi\)
0.615086 + 0.788460i \(0.289121\pi\)
\(644\) 0 0
\(645\) 12.5525 0.494253
\(646\) −45.6791 −1.79722
\(647\) −14.9112 −0.586219 −0.293109 0.956079i \(-0.594690\pi\)
−0.293109 + 0.956079i \(0.594690\pi\)
\(648\) 3.83956 0.150832
\(649\) −14.4935 −0.568920
\(650\) 0 0
\(651\) 0 0
\(652\) −24.7005 −0.967348
\(653\) −3.57246 −0.139801 −0.0699006 0.997554i \(-0.522268\pi\)
−0.0699006 + 0.997554i \(0.522268\pi\)
\(654\) −36.2499 −1.41748
\(655\) −4.92104 −0.192281
\(656\) −0.350269 −0.0136757
\(657\) 25.7936 1.00630
\(658\) 0 0
\(659\) −3.90383 −0.152071 −0.0760357 0.997105i \(-0.524226\pi\)
−0.0760357 + 0.997105i \(0.524226\pi\)
\(660\) 6.15792 0.239697
\(661\) 13.7936 0.536508 0.268254 0.963348i \(-0.413553\pi\)
0.268254 + 0.963348i \(0.413553\pi\)
\(662\) −14.4078 −0.559975
\(663\) 0 0
\(664\) 42.3221 1.64242
\(665\) 0 0
\(666\) −33.6447 −1.30371
\(667\) −33.3049 −1.28957
\(668\) 9.12181 0.352933
\(669\) −22.4605 −0.868374
\(670\) 19.1940 0.741530
\(671\) −2.29273 −0.0885099
\(672\) 0 0
\(673\) 5.70306 0.219837 0.109918 0.993941i \(-0.464941\pi\)
0.109918 + 0.993941i \(0.464941\pi\)
\(674\) 60.0393 2.31263
\(675\) 17.1709 0.660909
\(676\) 0 0
\(677\) −35.2614 −1.35521 −0.677604 0.735427i \(-0.736981\pi\)
−0.677604 + 0.735427i \(0.736981\pi\)
\(678\) −44.1726 −1.69644
\(679\) 0 0
\(680\) −27.3288 −1.04801
\(681\) −22.5426 −0.863835
\(682\) 4.39312 0.168221
\(683\) −1.03612 −0.0396459 −0.0198229 0.999804i \(-0.506310\pi\)
−0.0198229 + 0.999804i \(0.506310\pi\)
\(684\) 19.6644 0.751888
\(685\) −17.5970 −0.672348
\(686\) 0 0
\(687\) 8.90131 0.339606
\(688\) −9.75639 −0.371959
\(689\) 0 0
\(690\) −11.4523 −0.435983
\(691\) 3.67850 0.139937 0.0699684 0.997549i \(-0.477710\pi\)
0.0699684 + 0.997549i \(0.477710\pi\)
\(692\) −38.3931 −1.45949
\(693\) 0 0
\(694\) 39.1281 1.48528
\(695\) 10.0674 0.381878
\(696\) −41.9572 −1.59038
\(697\) 1.70727 0.0646674
\(698\) 55.1758 2.08843
\(699\) 13.9817 0.528837
\(700\) 0 0
\(701\) −0.0617493 −0.00233224 −0.00116612 0.999999i \(-0.500371\pi\)
−0.00116612 + 0.999999i \(0.500371\pi\)
\(702\) 0 0
\(703\) 28.4752 1.07396
\(704\) 13.9572 0.526030
\(705\) 16.3404 0.615415
\(706\) 17.9227 0.674531
\(707\) 0 0
\(708\) 50.5720 1.90061
\(709\) 42.9834 1.61428 0.807138 0.590363i \(-0.201015\pi\)
0.807138 + 0.590363i \(0.201015\pi\)
\(710\) −4.84377 −0.181783
\(711\) −1.48760 −0.0557892
\(712\) −20.0147 −0.750082
\(713\) −5.19342 −0.194495
\(714\) 0 0
\(715\) 0 0
\(716\) 83.6081 3.12458
\(717\) 11.7992 0.440650
\(718\) 43.0508 1.60664
\(719\) −17.6546 −0.658404 −0.329202 0.944260i \(-0.606780\pi\)
−0.329202 + 0.944260i \(0.606780\pi\)
\(720\) 2.70896 0.100957
\(721\) 0 0
\(722\) 18.3331 0.682286
\(723\) −4.61844 −0.171762
\(724\) −22.8929 −0.850807
\(725\) −33.5296 −1.24526
\(726\) 26.0147 0.965496
\(727\) 23.8077 0.882977 0.441488 0.897267i \(-0.354451\pi\)
0.441488 + 0.897267i \(0.354451\pi\)
\(728\) 0 0
\(729\) 20.3288 0.752920
\(730\) −48.1396 −1.78173
\(731\) 47.5542 1.75885
\(732\) 8.00000 0.295689
\(733\) 31.3492 1.15791 0.578954 0.815360i \(-0.303461\pi\)
0.578954 + 0.815360i \(0.303461\pi\)
\(734\) 12.5082 0.461686
\(735\) 0 0
\(736\) −13.2566 −0.488645
\(737\) −6.99327 −0.257600
\(738\) −1.15623 −0.0425615
\(739\) 24.8108 0.912680 0.456340 0.889806i \(-0.349160\pi\)
0.456340 + 0.889806i \(0.349160\pi\)
\(740\) 39.9143 1.46728
\(741\) 0 0
\(742\) 0 0
\(743\) −21.3717 −0.784051 −0.392026 0.919954i \(-0.628226\pi\)
−0.392026 + 0.919954i \(0.628226\pi\)
\(744\) −6.54262 −0.239864
\(745\) 2.91117 0.106657
\(746\) −50.4225 −1.84610
\(747\) 20.4479 0.748149
\(748\) 23.3288 0.852987
\(749\) 0 0
\(750\) −29.5640 −1.07953
\(751\) 19.2243 0.701503 0.350751 0.936469i \(-0.385926\pi\)
0.350751 + 0.936469i \(0.385926\pi\)
\(752\) −12.7005 −0.463141
\(753\) −3.33727 −0.121617
\(754\) 0 0
\(755\) 20.0246 0.728768
\(756\) 0 0
\(757\) −19.8610 −0.721860 −0.360930 0.932593i \(-0.617541\pi\)
−0.360930 + 0.932593i \(0.617541\pi\)
\(758\) 10.8009 0.392307
\(759\) 4.17262 0.151456
\(760\) −15.6644 −0.568208
\(761\) 6.12073 0.221876 0.110938 0.993827i \(-0.464614\pi\)
0.110938 + 0.993827i \(0.464614\pi\)
\(762\) −32.3847 −1.17317
\(763\) 0 0
\(764\) −15.3288 −0.554578
\(765\) −13.2039 −0.477388
\(766\) 19.5296 0.705634
\(767\) 0 0
\(768\) −26.2730 −0.948045
\(769\) 3.82800 0.138041 0.0690206 0.997615i \(-0.478013\pi\)
0.0690206 + 0.997615i \(0.478013\pi\)
\(770\) 0 0
\(771\) 22.4653 0.809070
\(772\) 28.9357 1.04142
\(773\) −6.53635 −0.235096 −0.117548 0.993067i \(-0.537503\pi\)
−0.117548 + 0.993067i \(0.537503\pi\)
\(774\) −32.2056 −1.15761
\(775\) −5.22846 −0.187812
\(776\) 18.6430 0.669245
\(777\) 0 0
\(778\) 15.0937 0.541134
\(779\) 0.978577 0.0350612
\(780\) 0 0
\(781\) 1.76481 0.0631498
\(782\) −43.3864 −1.55149
\(783\) −56.3452 −2.01361
\(784\) 0 0
\(785\) 30.7104 1.09610
\(786\) −9.84208 −0.351055
\(787\) 30.8066 1.09814 0.549068 0.835778i \(-0.314983\pi\)
0.549068 + 0.835778i \(0.314983\pi\)
\(788\) 11.0643 0.394148
\(789\) 8.67598 0.308873
\(790\) 2.77636 0.0987786
\(791\) 0 0
\(792\) −6.74338 −0.239616
\(793\) 0 0
\(794\) −3.28117 −0.116444
\(795\) 1.20390 0.0426981
\(796\) 47.4439 1.68161
\(797\) 38.8156 1.37492 0.687460 0.726222i \(-0.258726\pi\)
0.687460 + 0.726222i \(0.258726\pi\)
\(798\) 0 0
\(799\) 61.9044 2.19002
\(800\) −13.3461 −0.471854
\(801\) −9.67008 −0.341675
\(802\) −16.3503 −0.577348
\(803\) 17.5395 0.618955
\(804\) 24.4015 0.860576
\(805\) 0 0
\(806\) 0 0
\(807\) 10.8585 0.382236
\(808\) 38.8929 1.36825
\(809\) 1.04033 0.0365759 0.0182880 0.999833i \(-0.494178\pi\)
0.0182880 + 0.999833i \(0.494178\pi\)
\(810\) −3.46221 −0.121650
\(811\) 12.6712 0.444944 0.222472 0.974939i \(-0.428587\pi\)
0.222472 + 0.974939i \(0.428587\pi\)
\(812\) 0 0
\(813\) 33.6707 1.18088
\(814\) −22.8782 −0.801880
\(815\) 9.50650 0.332998
\(816\) −8.00000 −0.280056
\(817\) 27.2572 0.953610
\(818\) 43.0607 1.50558
\(819\) 0 0
\(820\) 1.37169 0.0479016
\(821\) −27.0361 −0.943567 −0.471783 0.881714i \(-0.656390\pi\)
−0.471783 + 0.881714i \(0.656390\pi\)
\(822\) −35.1940 −1.22753
\(823\) −31.6363 −1.10277 −0.551386 0.834251i \(-0.685901\pi\)
−0.551386 + 0.834251i \(0.685901\pi\)
\(824\) −11.9143 −0.415055
\(825\) 4.20077 0.146252
\(826\) 0 0
\(827\) −56.4800 −1.96400 −0.982002 0.188872i \(-0.939517\pi\)
−0.982002 + 0.188872i \(0.939517\pi\)
\(828\) 18.6774 0.649085
\(829\) 42.6760 1.48220 0.741099 0.671396i \(-0.234305\pi\)
0.741099 + 0.671396i \(0.234305\pi\)
\(830\) −38.1627 −1.32465
\(831\) −2.18248 −0.0757094
\(832\) 0 0
\(833\) 0 0
\(834\) 20.1348 0.697211
\(835\) −3.51071 −0.121493
\(836\) 13.3717 0.462470
\(837\) −8.78623 −0.303697
\(838\) −70.3797 −2.43122
\(839\) −40.1642 −1.38662 −0.693311 0.720639i \(-0.743849\pi\)
−0.693311 + 0.720639i \(0.743849\pi\)
\(840\) 0 0
\(841\) 81.0252 2.79397
\(842\) −19.4868 −0.671558
\(843\) 23.5872 0.812385
\(844\) 32.3650 1.11405
\(845\) 0 0
\(846\) −41.9242 −1.44138
\(847\) 0 0
\(848\) −0.935731 −0.0321331
\(849\) 30.9442 1.06200
\(850\) −43.6791 −1.49818
\(851\) 27.0460 0.927124
\(852\) −6.15792 −0.210967
\(853\) 19.6932 0.674282 0.337141 0.941454i \(-0.390540\pi\)
0.337141 + 0.941454i \(0.390540\pi\)
\(854\) 0 0
\(855\) −7.56825 −0.258829
\(856\) −17.3717 −0.593752
\(857\) −1.66442 −0.0568556 −0.0284278 0.999596i \(-0.509050\pi\)
−0.0284278 + 0.999596i \(0.509050\pi\)
\(858\) 0 0
\(859\) 41.2944 1.40895 0.704474 0.709730i \(-0.251183\pi\)
0.704474 + 0.709730i \(0.251183\pi\)
\(860\) 38.2070 1.30285
\(861\) 0 0
\(862\) 22.6086 0.770051
\(863\) 31.3288 1.06645 0.533223 0.845975i \(-0.320981\pi\)
0.533223 + 0.845975i \(0.320981\pi\)
\(864\) −22.4275 −0.763000
\(865\) 14.7764 0.502411
\(866\) 61.6363 2.09449
\(867\) 19.5051 0.662426
\(868\) 0 0
\(869\) −1.01156 −0.0343147
\(870\) 37.8337 1.28268
\(871\) 0 0
\(872\) −47.0937 −1.59479
\(873\) 9.00735 0.304852
\(874\) −24.8683 −0.841184
\(875\) 0 0
\(876\) −61.2003 −2.06777
\(877\) 53.8041 1.81683 0.908417 0.418065i \(-0.137292\pi\)
0.908417 + 0.418065i \(0.137292\pi\)
\(878\) 79.2234 2.67366
\(879\) −17.0888 −0.576392
\(880\) 1.84208 0.0620964
\(881\) −8.09196 −0.272625 −0.136313 0.990666i \(-0.543525\pi\)
−0.136313 + 0.990666i \(0.543525\pi\)
\(882\) 0 0
\(883\) −27.0705 −0.910996 −0.455498 0.890237i \(-0.650539\pi\)
−0.455498 + 0.890237i \(0.650539\pi\)
\(884\) 0 0
\(885\) −19.4637 −0.654264
\(886\) −61.9620 −2.08165
\(887\) 38.4935 1.29249 0.646243 0.763132i \(-0.276339\pi\)
0.646243 + 0.763132i \(0.276339\pi\)
\(888\) 34.0722 1.14339
\(889\) 0 0
\(890\) 18.0477 0.604959
\(891\) 1.26144 0.0422599
\(892\) −68.3650 −2.28903
\(893\) 35.4826 1.18738
\(894\) 5.82235 0.194728
\(895\) −32.1783 −1.07560
\(896\) 0 0
\(897\) 0 0
\(898\) 6.19235 0.206641
\(899\) 17.1568 0.572213
\(900\) 18.8034 0.626781
\(901\) 4.56090 0.151946
\(902\) −0.786230 −0.0261786
\(903\) 0 0
\(904\) −57.3864 −1.90864
\(905\) 8.81079 0.292881
\(906\) 40.0491 1.33054
\(907\) 15.7031 0.521411 0.260706 0.965418i \(-0.416045\pi\)
0.260706 + 0.965418i \(0.416045\pi\)
\(908\) −68.6148 −2.27706
\(909\) 18.7911 0.623260
\(910\) 0 0
\(911\) 44.9399 1.48893 0.744463 0.667663i \(-0.232705\pi\)
0.744463 + 0.667663i \(0.232705\pi\)
\(912\) −4.58546 −0.151840
\(913\) 13.9044 0.460170
\(914\) −78.9307 −2.61080
\(915\) −3.07896 −0.101787
\(916\) 27.0937 0.895200
\(917\) 0 0
\(918\) −73.4011 −2.42260
\(919\) −27.2432 −0.898669 −0.449334 0.893364i \(-0.648339\pi\)
−0.449334 + 0.893364i \(0.648339\pi\)
\(920\) −14.8782 −0.490519
\(921\) 29.8385 0.983211
\(922\) −77.5015 −2.55237
\(923\) 0 0
\(924\) 0 0
\(925\) 27.2285 0.895266
\(926\) −5.89962 −0.193873
\(927\) −5.75639 −0.189065
\(928\) 43.7942 1.43761
\(929\) −17.1422 −0.562416 −0.281208 0.959647i \(-0.590735\pi\)
−0.281208 + 0.959647i \(0.590735\pi\)
\(930\) 5.89962 0.193456
\(931\) 0 0
\(932\) 42.5573 1.39401
\(933\) −22.3503 −0.731715
\(934\) 6.03442 0.197452
\(935\) −8.97858 −0.293631
\(936\) 0 0
\(937\) 51.5197 1.68308 0.841538 0.540197i \(-0.181650\pi\)
0.841538 + 0.540197i \(0.181650\pi\)
\(938\) 0 0
\(939\) 3.99158 0.130260
\(940\) 49.7367 1.62223
\(941\) 32.7575 1.06786 0.533931 0.845528i \(-0.320714\pi\)
0.533931 + 0.845528i \(0.320714\pi\)
\(942\) 61.4208 2.00120
\(943\) 0.929460 0.0302674
\(944\) 15.1281 0.492377
\(945\) 0 0
\(946\) −21.8996 −0.712018
\(947\) −20.9295 −0.680116 −0.340058 0.940404i \(-0.610447\pi\)
−0.340058 + 0.940404i \(0.610447\pi\)
\(948\) 3.52962 0.114637
\(949\) 0 0
\(950\) −25.0361 −0.812279
\(951\) −5.75639 −0.186664
\(952\) 0 0
\(953\) 46.4120 1.50343 0.751716 0.659487i \(-0.229226\pi\)
0.751716 + 0.659487i \(0.229226\pi\)
\(954\) −3.08883 −0.100004
\(955\) 5.89962 0.190907
\(956\) 35.9143 1.16155
\(957\) −13.7845 −0.445591
\(958\) −1.20390 −0.0388964
\(959\) 0 0
\(960\) 18.7434 0.604940
\(961\) −28.3246 −0.913698
\(962\) 0 0
\(963\) −8.39312 −0.270464
\(964\) −14.0575 −0.452763
\(965\) −11.1365 −0.358497
\(966\) 0 0
\(967\) 23.2186 0.746660 0.373330 0.927699i \(-0.378216\pi\)
0.373330 + 0.927699i \(0.378216\pi\)
\(968\) 33.7967 1.08627
\(969\) 22.3503 0.717994
\(970\) −16.8108 −0.539762
\(971\) 14.1004 0.452503 0.226251 0.974069i \(-0.427353\pi\)
0.226251 + 0.974069i \(0.427353\pi\)
\(972\) 51.8286 1.66240
\(973\) 0 0
\(974\) 84.4800 2.70692
\(975\) 0 0
\(976\) 2.39312 0.0766018
\(977\) 2.95402 0.0945074 0.0472537 0.998883i \(-0.484953\pi\)
0.0472537 + 0.998883i \(0.484953\pi\)
\(978\) 19.0130 0.607969
\(979\) −6.57560 −0.210157
\(980\) 0 0
\(981\) −22.7533 −0.726455
\(982\) 21.6216 0.689972
\(983\) −35.0367 −1.11750 −0.558749 0.829337i \(-0.688719\pi\)
−0.558749 + 0.829337i \(0.688719\pi\)
\(984\) 1.17092 0.0373277
\(985\) −4.25831 −0.135681
\(986\) 143.330 4.56456
\(987\) 0 0
\(988\) 0 0
\(989\) 25.8891 0.823227
\(990\) 6.08065 0.193256
\(991\) 47.9718 1.52388 0.761938 0.647650i \(-0.224248\pi\)
0.761938 + 0.647650i \(0.224248\pi\)
\(992\) 6.82908 0.216823
\(993\) 7.04958 0.223712
\(994\) 0 0
\(995\) −18.2598 −0.578873
\(996\) −48.5166 −1.53731
\(997\) 38.4422 1.21748 0.608739 0.793371i \(-0.291676\pi\)
0.608739 + 0.793371i \(0.291676\pi\)
\(998\) 2.35027 0.0743965
\(999\) 45.7564 1.44767
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8281.2.a.bg.1.1 3
7.6 odd 2 1183.2.a.i.1.1 3
13.12 even 2 637.2.a.j.1.3 3
39.38 odd 2 5733.2.a.x.1.1 3
91.12 odd 6 637.2.e.j.508.1 6
91.25 even 6 637.2.e.i.79.1 6
91.34 even 4 1183.2.c.f.337.1 6
91.38 odd 6 637.2.e.j.79.1 6
91.51 even 6 637.2.e.i.508.1 6
91.83 even 4 1183.2.c.f.337.6 6
91.90 odd 2 91.2.a.d.1.3 3
273.272 even 2 819.2.a.i.1.1 3
364.363 even 2 1456.2.a.t.1.2 3
455.454 odd 2 2275.2.a.m.1.1 3
728.181 odd 2 5824.2.a.by.1.2 3
728.363 even 2 5824.2.a.bs.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.a.d.1.3 3 91.90 odd 2
637.2.a.j.1.3 3 13.12 even 2
637.2.e.i.79.1 6 91.25 even 6
637.2.e.i.508.1 6 91.51 even 6
637.2.e.j.79.1 6 91.38 odd 6
637.2.e.j.508.1 6 91.12 odd 6
819.2.a.i.1.1 3 273.272 even 2
1183.2.a.i.1.1 3 7.6 odd 2
1183.2.c.f.337.1 6 91.34 even 4
1183.2.c.f.337.6 6 91.83 even 4
1456.2.a.t.1.2 3 364.363 even 2
2275.2.a.m.1.1 3 455.454 odd 2
5733.2.a.x.1.1 3 39.38 odd 2
5824.2.a.bs.1.2 3 728.363 even 2
5824.2.a.by.1.2 3 728.181 odd 2
8281.2.a.bg.1.1 3 1.1 even 1 trivial