Properties

Label 8280.2.a.y
Level $8280$
Weight $2$
Character orbit 8280.a
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} - q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} - q^{7} + ( - 3 \beta + 2) q^{11} + ( - \beta - 4) q^{13} + (\beta + 3) q^{17} - 5 \beta q^{19} + q^{23} + q^{25} + ( - 3 \beta + 3) q^{29} + ( - 4 \beta - 5) q^{31} + q^{35} - 3 q^{37} + ( - \beta + 3) q^{41} + 2 q^{43} + ( - \beta - 4) q^{47} - 6 q^{49} + (\beta + 5) q^{53} + (3 \beta - 2) q^{55} + (5 \beta + 5) q^{59} + (5 \beta - 6) q^{61} + (\beta + 4) q^{65} + (4 \beta + 5) q^{67} + ( - 5 \beta + 5) q^{71} + 11 \beta q^{73} + (3 \beta - 2) q^{77} + 4 \beta q^{79} + ( - 5 \beta - 9) q^{83} + ( - \beta - 3) q^{85} + (2 \beta + 8) q^{89} + (\beta + 4) q^{91} + 5 \beta q^{95} + (2 \beta - 4) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{5} - 2 q^{7} + 4 q^{11} - 8 q^{13} + 6 q^{17} + 2 q^{23} + 2 q^{25} + 6 q^{29} - 10 q^{31} + 2 q^{35} - 6 q^{37} + 6 q^{41} + 4 q^{43} - 8 q^{47} - 12 q^{49} + 10 q^{53} - 4 q^{55} + 10 q^{59} - 12 q^{61} + 8 q^{65} + 10 q^{67} + 10 q^{71} - 4 q^{77} - 18 q^{83} - 6 q^{85} + 16 q^{89} + 8 q^{91} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.41421
−1.41421
0 0 0 −1.00000 0 −1.00000 0 0 0
1.2 0 0 0 −1.00000 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.y 2
3.b odd 2 1 2760.2.a.q 2
12.b even 2 1 5520.2.a.bk 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2760.2.a.q 2 3.b odd 2 1
5520.2.a.bk 2 12.b even 2 1
8280.2.a.y 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\):

\( T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - 4T_{11} - 14 \) Copy content Toggle raw display
\( T_{13}^{2} + 8T_{13} + 14 \) Copy content Toggle raw display
\( T_{17}^{2} - 6T_{17} + 7 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 4T - 14 \) Copy content Toggle raw display
$13$ \( T^{2} + 8T + 14 \) Copy content Toggle raw display
$17$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$19$ \( T^{2} - 50 \) Copy content Toggle raw display
$23$ \( (T - 1)^{2} \) Copy content Toggle raw display
$29$ \( T^{2} - 6T - 9 \) Copy content Toggle raw display
$31$ \( T^{2} + 10T - 7 \) Copy content Toggle raw display
$37$ \( (T + 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 6T + 7 \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 8T + 14 \) Copy content Toggle raw display
$53$ \( T^{2} - 10T + 23 \) Copy content Toggle raw display
$59$ \( T^{2} - 10T - 25 \) Copy content Toggle raw display
$61$ \( T^{2} + 12T - 14 \) Copy content Toggle raw display
$67$ \( T^{2} - 10T - 7 \) Copy content Toggle raw display
$71$ \( T^{2} - 10T - 25 \) Copy content Toggle raw display
$73$ \( T^{2} - 242 \) Copy content Toggle raw display
$79$ \( T^{2} - 32 \) Copy content Toggle raw display
$83$ \( T^{2} + 18T + 31 \) Copy content Toggle raw display
$89$ \( T^{2} - 16T + 56 \) Copy content Toggle raw display
$97$ \( T^{2} + 8T + 8 \) Copy content Toggle raw display
show more
show less