Properties

Label 8280.2.a.x
Level $8280$
Weight $2$
Character orbit 8280.a
Self dual yes
Analytic conductor $66.116$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Defining polynomial: \(x^{2} - 2\)
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2760)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + ( -1 + 2 \beta ) q^{7} +O(q^{10})\) \( q - q^{5} + ( -1 + 2 \beta ) q^{7} + \beta q^{11} + ( 2 - \beta ) q^{13} + ( 1 + \beta ) q^{17} + ( -6 - \beta ) q^{19} + q^{23} + q^{25} + ( 5 - \beta ) q^{29} - q^{31} + ( 1 - 2 \beta ) q^{35} + ( 1 - 6 \beta ) q^{37} + ( -3 - 3 \beta ) q^{41} + ( -2 - 4 \beta ) q^{43} + ( 2 + 3 \beta ) q^{47} + ( 2 - 4 \beta ) q^{49} + ( -1 - 3 \beta ) q^{53} -\beta q^{55} + ( -1 - 9 \beta ) q^{59} + \beta q^{61} + ( -2 + \beta ) q^{65} + ( -7 - 6 \beta ) q^{67} + ( 7 + 5 \beta ) q^{71} + ( -2 + 3 \beta ) q^{73} + ( 4 - \beta ) q^{77} + 12 \beta q^{79} + ( -7 + 3 \beta ) q^{83} + ( -1 - \beta ) q^{85} + ( 12 - 2 \beta ) q^{89} + ( -6 + 5 \beta ) q^{91} + ( 6 + \beta ) q^{95} + ( 4 + 10 \beta ) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} - 2 q^{7} + O(q^{10}) \) \( 2 q - 2 q^{5} - 2 q^{7} + 4 q^{13} + 2 q^{17} - 12 q^{19} + 2 q^{23} + 2 q^{25} + 10 q^{29} - 2 q^{31} + 2 q^{35} + 2 q^{37} - 6 q^{41} - 4 q^{43} + 4 q^{47} + 4 q^{49} - 2 q^{53} - 2 q^{59} - 4 q^{65} - 14 q^{67} + 14 q^{71} - 4 q^{73} + 8 q^{77} - 14 q^{83} - 2 q^{85} + 24 q^{89} - 12 q^{91} + 12 q^{95} + 8 q^{97} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 0 0 −1.00000 0 −3.82843 0 0 0
1.2 0 0 0 −1.00000 0 1.82843 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(-1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.x 2
3.b odd 2 1 2760.2.a.n 2
12.b even 2 1 5520.2.a.bt 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2760.2.a.n 2 3.b odd 2 1
5520.2.a.bt 2 12.b even 2 1
8280.2.a.x 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\):

\( T_{7}^{2} + 2 T_{7} - 7 \)
\( T_{11}^{2} - 2 \)
\( T_{13}^{2} - 4 T_{13} + 2 \)
\( T_{17}^{2} - 2 T_{17} - 1 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \)
$3$ \( T^{2} \)
$5$ \( ( 1 + T )^{2} \)
$7$ \( -7 + 2 T + T^{2} \)
$11$ \( -2 + T^{2} \)
$13$ \( 2 - 4 T + T^{2} \)
$17$ \( -1 - 2 T + T^{2} \)
$19$ \( 34 + 12 T + T^{2} \)
$23$ \( ( -1 + T )^{2} \)
$29$ \( 23 - 10 T + T^{2} \)
$31$ \( ( 1 + T )^{2} \)
$37$ \( -71 - 2 T + T^{2} \)
$41$ \( -9 + 6 T + T^{2} \)
$43$ \( -28 + 4 T + T^{2} \)
$47$ \( -14 - 4 T + T^{2} \)
$53$ \( -17 + 2 T + T^{2} \)
$59$ \( -161 + 2 T + T^{2} \)
$61$ \( -2 + T^{2} \)
$67$ \( -23 + 14 T + T^{2} \)
$71$ \( -1 - 14 T + T^{2} \)
$73$ \( -14 + 4 T + T^{2} \)
$79$ \( -288 + T^{2} \)
$83$ \( 31 + 14 T + T^{2} \)
$89$ \( 136 - 24 T + T^{2} \)
$97$ \( -184 - 8 T + T^{2} \)
show more
show less