Properties

Label 8280.2.a.bs.1.3
Level $8280$
Weight $2$
Character 8280.1
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.13955077.1
Defining polynomial: \(x^{5} - 14 x^{3} - x^{2} + 32 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.36002\) of defining polynomial
Character \(\chi\) \(=\) 8280.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{5} -1.90754 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -1.90754 q^{7} +5.48021 q^{11} -1.04937 q^{13} +6.74222 q^{17} -1.55049 q^{19} +1.00000 q^{23} +1.00000 q^{25} +3.38219 q^{29} +10.9327 q^{31} -1.90754 q^{35} +5.26201 q^{37} -6.09801 q^{41} -0.403830 q^{47} -3.36128 q^{49} -5.88332 q^{53} +5.48021 q^{55} -9.60111 q^{59} -7.09927 q^{61} -1.04937 q^{65} +13.7971 q^{67} -0.478950 q^{71} +2.40383 q^{73} -10.4537 q^{77} -4.24037 q^{79} +11.2620 q^{83} +6.74222 q^{85} -4.90495 q^{89} +2.00171 q^{91} -1.55049 q^{95} -12.3433 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{5} - 2 q^{7} + O(q^{10}) \) \( 5 q + 5 q^{5} - 2 q^{7} + q^{11} + 4 q^{13} - 4 q^{17} + 7 q^{19} + 5 q^{23} + 5 q^{25} - 4 q^{29} + 19 q^{31} - 2 q^{35} + 15 q^{37} - 25 q^{41} + 11 q^{47} + 25 q^{49} - 3 q^{53} + q^{55} + q^{59} - 5 q^{61} + 4 q^{65} + 9 q^{67} - q^{71} - q^{73} - 18 q^{77} - 2 q^{79} + 45 q^{83} - 4 q^{85} - 6 q^{89} + 11 q^{91} + 7 q^{95} + 25 q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.90754 −0.720984 −0.360492 0.932762i \(-0.617391\pi\)
−0.360492 + 0.932762i \(0.617391\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.48021 1.65234 0.826172 0.563418i \(-0.190514\pi\)
0.826172 + 0.563418i \(0.190514\pi\)
\(12\) 0 0
\(13\) −1.04937 −0.291041 −0.145521 0.989355i \(-0.546486\pi\)
−0.145521 + 0.989355i \(0.546486\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.74222 1.63523 0.817614 0.575767i \(-0.195297\pi\)
0.817614 + 0.575767i \(0.195297\pi\)
\(18\) 0 0
\(19\) −1.55049 −0.355707 −0.177853 0.984057i \(-0.556915\pi\)
−0.177853 + 0.984057i \(0.556915\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3.38219 0.628058 0.314029 0.949413i \(-0.398321\pi\)
0.314029 + 0.949413i \(0.398321\pi\)
\(30\) 0 0
\(31\) 10.9327 1.96357 0.981784 0.190000i \(-0.0608489\pi\)
0.981784 + 0.190000i \(0.0608489\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −1.90754 −0.322434
\(36\) 0 0
\(37\) 5.26201 0.865069 0.432534 0.901617i \(-0.357619\pi\)
0.432534 + 0.901617i \(0.357619\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −6.09801 −0.952350 −0.476175 0.879351i \(-0.657977\pi\)
−0.476175 + 0.879351i \(0.657977\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.403830 −0.0589046 −0.0294523 0.999566i \(-0.509376\pi\)
−0.0294523 + 0.999566i \(0.509376\pi\)
\(48\) 0 0
\(49\) −3.36128 −0.480183
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.88332 −0.808136 −0.404068 0.914729i \(-0.632404\pi\)
−0.404068 + 0.914729i \(0.632404\pi\)
\(54\) 0 0
\(55\) 5.48021 0.738951
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −9.60111 −1.24996 −0.624979 0.780641i \(-0.714893\pi\)
−0.624979 + 0.780641i \(0.714893\pi\)
\(60\) 0 0
\(61\) −7.09927 −0.908968 −0.454484 0.890755i \(-0.650176\pi\)
−0.454484 + 0.890755i \(0.650176\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.04937 −0.130158
\(66\) 0 0
\(67\) 13.7971 1.68559 0.842794 0.538236i \(-0.180909\pi\)
0.842794 + 0.538236i \(0.180909\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.478950 −0.0568409 −0.0284205 0.999596i \(-0.509048\pi\)
−0.0284205 + 0.999596i \(0.509048\pi\)
\(72\) 0 0
\(73\) 2.40383 0.281347 0.140673 0.990056i \(-0.455073\pi\)
0.140673 + 0.990056i \(0.455073\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10.4537 −1.19131
\(78\) 0 0
\(79\) −4.24037 −0.477079 −0.238540 0.971133i \(-0.576669\pi\)
−0.238540 + 0.971133i \(0.576669\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 11.2620 1.23617 0.618083 0.786113i \(-0.287910\pi\)
0.618083 + 0.786113i \(0.287910\pi\)
\(84\) 0 0
\(85\) 6.74222 0.731296
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.90495 −0.519924 −0.259962 0.965619i \(-0.583710\pi\)
−0.259962 + 0.965619i \(0.583710\pi\)
\(90\) 0 0
\(91\) 2.00171 0.209836
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.55049 −0.159077
\(96\) 0 0
\(97\) −12.3433 −1.25327 −0.626637 0.779311i \(-0.715569\pi\)
−0.626637 + 0.779311i \(0.715569\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.44692 0.143974 0.0719870 0.997406i \(-0.477066\pi\)
0.0719870 + 0.997406i \(0.477066\pi\)
\(102\) 0 0
\(103\) −7.76385 −0.764995 −0.382497 0.923957i \(-0.624936\pi\)
−0.382497 + 0.923957i \(0.624936\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 4.54197 0.439089 0.219544 0.975603i \(-0.429543\pi\)
0.219544 + 0.975603i \(0.429543\pi\)
\(108\) 0 0
\(109\) 12.4136 1.18901 0.594504 0.804093i \(-0.297348\pi\)
0.594504 + 0.804093i \(0.297348\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −9.27312 −0.872342 −0.436171 0.899864i \(-0.643666\pi\)
−0.436171 + 0.899864i \(0.643666\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.8611 −1.17897
\(120\) 0 0
\(121\) 19.0327 1.73024
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 12.4149 1.10165 0.550824 0.834621i \(-0.314314\pi\)
0.550824 + 0.834621i \(0.314314\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −9.55434 −0.834766 −0.417383 0.908731i \(-0.637053\pi\)
−0.417383 + 0.908731i \(0.637053\pi\)
\(132\) 0 0
\(133\) 2.95763 0.256459
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.36558 0.287541 0.143770 0.989611i \(-0.454077\pi\)
0.143770 + 0.989611i \(0.454077\pi\)
\(138\) 0 0
\(139\) −20.7361 −1.75881 −0.879406 0.476072i \(-0.842060\pi\)
−0.879406 + 0.476072i \(0.842060\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −5.75074 −0.480901
\(144\) 0 0
\(145\) 3.38219 0.280876
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.9399 1.63354 0.816769 0.576965i \(-0.195763\pi\)
0.816769 + 0.576965i \(0.195763\pi\)
\(150\) 0 0
\(151\) 23.7979 1.93664 0.968321 0.249709i \(-0.0803349\pi\)
0.968321 + 0.249709i \(0.0803349\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 10.9327 0.878134
\(156\) 0 0
\(157\) 13.3175 1.06285 0.531425 0.847105i \(-0.321657\pi\)
0.531425 + 0.847105i \(0.321657\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −1.90754 −0.150335
\(162\) 0 0
\(163\) 16.1529 1.26519 0.632595 0.774483i \(-0.281990\pi\)
0.632595 + 0.774483i \(0.281990\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.6782 1.60013 0.800064 0.599915i \(-0.204799\pi\)
0.800064 + 0.599915i \(0.204799\pi\)
\(168\) 0 0
\(169\) −11.8988 −0.915295
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −7.72058 −0.586985 −0.293492 0.955961i \(-0.594818\pi\)
−0.293492 + 0.955961i \(0.594818\pi\)
\(174\) 0 0
\(175\) −1.90754 −0.144197
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −9.88683 −0.738976 −0.369488 0.929236i \(-0.620467\pi\)
−0.369488 + 0.929236i \(0.620467\pi\)
\(180\) 0 0
\(181\) −23.9883 −1.78304 −0.891519 0.452983i \(-0.850360\pi\)
−0.891519 + 0.452983i \(0.850360\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.26201 0.386871
\(186\) 0 0
\(187\) 36.9487 2.70196
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.72004 −0.486245 −0.243123 0.969996i \(-0.578172\pi\)
−0.243123 + 0.969996i \(0.578172\pi\)
\(192\) 0 0
\(193\) 8.95007 0.644240 0.322120 0.946699i \(-0.395605\pi\)
0.322120 + 0.946699i \(0.395605\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.65109 0.473871 0.236935 0.971525i \(-0.423857\pi\)
0.236935 + 0.971525i \(0.423857\pi\)
\(198\) 0 0
\(199\) −10.9050 −0.773032 −0.386516 0.922283i \(-0.626322\pi\)
−0.386516 + 0.922283i \(0.626322\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.45168 −0.452819
\(204\) 0 0
\(205\) −6.09801 −0.425904
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −8.49700 −0.587750
\(210\) 0 0
\(211\) −1.21874 −0.0839014 −0.0419507 0.999120i \(-0.513357\pi\)
−0.0419507 + 0.999120i \(0.513357\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −20.8546 −1.41570
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −7.07505 −0.475919
\(222\) 0 0
\(223\) 14.1542 0.947835 0.473917 0.880569i \(-0.342840\pi\)
0.473917 + 0.880569i \(0.342840\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 4.89902 0.325159 0.162580 0.986695i \(-0.448019\pi\)
0.162580 + 0.986695i \(0.448019\pi\)
\(228\) 0 0
\(229\) 12.3946 0.819056 0.409528 0.912298i \(-0.365693\pi\)
0.409528 + 0.912298i \(0.365693\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.882062 −0.0577858 −0.0288929 0.999583i \(-0.509198\pi\)
−0.0288929 + 0.999583i \(0.509198\pi\)
\(234\) 0 0
\(235\) −0.403830 −0.0263429
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 19.9506 1.29049 0.645247 0.763974i \(-0.276754\pi\)
0.645247 + 0.763974i \(0.276754\pi\)
\(240\) 0 0
\(241\) −2.81877 −0.181573 −0.0907865 0.995870i \(-0.528938\pi\)
−0.0907865 + 0.995870i \(0.528938\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −3.36128 −0.214744
\(246\) 0 0
\(247\) 1.62703 0.103525
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −17.9883 −1.13541 −0.567706 0.823231i \(-0.692169\pi\)
−0.567706 + 0.823231i \(0.692169\pi\)
\(252\) 0 0
\(253\) 5.48021 0.344538
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.1705 0.883930 0.441965 0.897032i \(-0.354282\pi\)
0.441965 + 0.897032i \(0.354282\pi\)
\(258\) 0 0
\(259\) −10.0375 −0.623701
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.88386 0.424477 0.212238 0.977218i \(-0.431925\pi\)
0.212238 + 0.977218i \(0.431925\pi\)
\(264\) 0 0
\(265\) −5.88332 −0.361409
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 23.3463 1.42345 0.711724 0.702459i \(-0.247915\pi\)
0.711724 + 0.702459i \(0.247915\pi\)
\(270\) 0 0
\(271\) 13.9519 0.847517 0.423759 0.905775i \(-0.360711\pi\)
0.423759 + 0.905775i \(0.360711\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 5.48021 0.330469
\(276\) 0 0
\(277\) 3.69490 0.222005 0.111003 0.993820i \(-0.464594\pi\)
0.111003 + 0.993820i \(0.464594\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.9582 −0.951984 −0.475992 0.879450i \(-0.657911\pi\)
−0.475992 + 0.879450i \(0.657911\pi\)
\(282\) 0 0
\(283\) −8.21649 −0.488420 −0.244210 0.969722i \(-0.578529\pi\)
−0.244210 + 0.969722i \(0.578529\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.6322 0.686628
\(288\) 0 0
\(289\) 28.4575 1.67397
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.0878 −1.29038 −0.645191 0.764021i \(-0.723222\pi\)
−0.645191 + 0.764021i \(0.723222\pi\)
\(294\) 0 0
\(295\) −9.60111 −0.558998
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.04937 −0.0606863
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −7.09927 −0.406503
\(306\) 0 0
\(307\) 15.2091 0.868030 0.434015 0.900906i \(-0.357097\pi\)
0.434015 + 0.900906i \(0.357097\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.254818 −0.0144494 −0.00722471 0.999974i \(-0.502300\pi\)
−0.00722471 + 0.999974i \(0.502300\pi\)
\(312\) 0 0
\(313\) 3.57095 0.201842 0.100921 0.994894i \(-0.467821\pi\)
0.100921 + 0.994894i \(0.467821\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −12.3235 −0.692155 −0.346078 0.938206i \(-0.612487\pi\)
−0.346078 + 0.938206i \(0.612487\pi\)
\(318\) 0 0
\(319\) 18.5351 1.03777
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −10.4537 −0.581661
\(324\) 0 0
\(325\) −1.04937 −0.0582083
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0.770323 0.0424693
\(330\) 0 0
\(331\) 26.1082 1.43503 0.717517 0.696541i \(-0.245278\pi\)
0.717517 + 0.696541i \(0.245278\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 13.7971 0.753818
\(336\) 0 0
\(337\) 9.68246 0.527437 0.263718 0.964600i \(-0.415051\pi\)
0.263718 + 0.964600i \(0.415051\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 59.9134 3.24449
\(342\) 0 0
\(343\) 19.7646 1.06719
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −24.9747 −1.34071 −0.670355 0.742040i \(-0.733858\pi\)
−0.670355 + 0.742040i \(0.733858\pi\)
\(348\) 0 0
\(349\) −35.3019 −1.88967 −0.944835 0.327547i \(-0.893778\pi\)
−0.944835 + 0.327547i \(0.893778\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0326 0.533980 0.266990 0.963699i \(-0.413971\pi\)
0.266990 + 0.963699i \(0.413971\pi\)
\(354\) 0 0
\(355\) −0.478950 −0.0254200
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 30.8691 1.62921 0.814603 0.580019i \(-0.196955\pi\)
0.814603 + 0.580019i \(0.196955\pi\)
\(360\) 0 0
\(361\) −16.5960 −0.873473
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 2.40383 0.125822
\(366\) 0 0
\(367\) 33.3234 1.73947 0.869734 0.493521i \(-0.164291\pi\)
0.869734 + 0.493521i \(0.164291\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 11.2227 0.582653
\(372\) 0 0
\(373\) 4.62023 0.239227 0.119613 0.992821i \(-0.461835\pi\)
0.119613 + 0.992821i \(0.461835\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.54916 −0.182791
\(378\) 0 0
\(379\) 15.0020 0.770600 0.385300 0.922791i \(-0.374098\pi\)
0.385300 + 0.922791i \(0.374098\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.87882 −0.0960033 −0.0480016 0.998847i \(-0.515285\pi\)
−0.0480016 + 0.998847i \(0.515285\pi\)
\(384\) 0 0
\(385\) −10.4537 −0.532772
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 1.48539 0.0753121 0.0376560 0.999291i \(-0.488011\pi\)
0.0376560 + 0.999291i \(0.488011\pi\)
\(390\) 0 0
\(391\) 6.74222 0.340968
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −4.24037 −0.213356
\(396\) 0 0
\(397\) 5.26722 0.264354 0.132177 0.991226i \(-0.457803\pi\)
0.132177 + 0.991226i \(0.457803\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −26.1490 −1.30582 −0.652910 0.757436i \(-0.726452\pi\)
−0.652910 + 0.757436i \(0.726452\pi\)
\(402\) 0 0
\(403\) −11.4724 −0.571480
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 28.8369 1.42939
\(408\) 0 0
\(409\) −14.7503 −0.729355 −0.364677 0.931134i \(-0.618821\pi\)
−0.364677 + 0.931134i \(0.618821\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 18.3145 0.901200
\(414\) 0 0
\(415\) 11.2620 0.552830
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.10616 −0.0540394 −0.0270197 0.999635i \(-0.508602\pi\)
−0.0270197 + 0.999635i \(0.508602\pi\)
\(420\) 0 0
\(421\) 9.16362 0.446607 0.223304 0.974749i \(-0.428316\pi\)
0.223304 + 0.974749i \(0.428316\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 6.74222 0.327045
\(426\) 0 0
\(427\) 13.5422 0.655351
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 32.1712 1.54963 0.774817 0.632186i \(-0.217842\pi\)
0.774817 + 0.632186i \(0.217842\pi\)
\(432\) 0 0
\(433\) −8.37861 −0.402650 −0.201325 0.979524i \(-0.564525\pi\)
−0.201325 + 0.979524i \(0.564525\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.55049 −0.0741700
\(438\) 0 0
\(439\) −15.3093 −0.730673 −0.365336 0.930876i \(-0.619046\pi\)
−0.365336 + 0.930876i \(0.619046\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.24129 0.153998 0.0769992 0.997031i \(-0.475466\pi\)
0.0769992 + 0.997031i \(0.475466\pi\)
\(444\) 0 0
\(445\) −4.90495 −0.232517
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 9.02215 0.425782 0.212891 0.977076i \(-0.431712\pi\)
0.212891 + 0.977076i \(0.431712\pi\)
\(450\) 0 0
\(451\) −33.4184 −1.57361
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 2.00171 0.0938416
\(456\) 0 0
\(457\) 7.03526 0.329096 0.164548 0.986369i \(-0.447384\pi\)
0.164548 + 0.986369i \(0.447384\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.59617 0.0743411 0.0371705 0.999309i \(-0.488166\pi\)
0.0371705 + 0.999309i \(0.488166\pi\)
\(462\) 0 0
\(463\) 9.61655 0.446919 0.223459 0.974713i \(-0.428265\pi\)
0.223459 + 0.974713i \(0.428265\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −24.4764 −1.13263 −0.566317 0.824188i \(-0.691632\pi\)
−0.566317 + 0.824188i \(0.691632\pi\)
\(468\) 0 0
\(469\) −26.3186 −1.21528
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) −1.55049 −0.0711413
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 13.2108 0.603618 0.301809 0.953368i \(-0.402410\pi\)
0.301809 + 0.953368i \(0.402410\pi\)
\(480\) 0 0
\(481\) −5.52177 −0.251771
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −12.3433 −0.560482
\(486\) 0 0
\(487\) −23.7078 −1.07431 −0.537153 0.843485i \(-0.680500\pi\)
−0.537153 + 0.843485i \(0.680500\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −18.5930 −0.839091 −0.419546 0.907734i \(-0.637811\pi\)
−0.419546 + 0.907734i \(0.637811\pi\)
\(492\) 0 0
\(493\) 22.8035 1.02702
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.913618 0.0409814
\(498\) 0 0
\(499\) 17.9121 0.801858 0.400929 0.916109i \(-0.368687\pi\)
0.400929 + 0.916109i \(0.368687\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.24890 −0.0556855 −0.0278428 0.999612i \(-0.508864\pi\)
−0.0278428 + 0.999612i \(0.508864\pi\)
\(504\) 0 0
\(505\) 1.44692 0.0643871
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −15.8757 −0.703679 −0.351839 0.936060i \(-0.614444\pi\)
−0.351839 + 0.936060i \(0.614444\pi\)
\(510\) 0 0
\(511\) −4.58541 −0.202847
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −7.76385 −0.342116
\(516\) 0 0
\(517\) −2.21307 −0.0973307
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −26.5488 −1.16312 −0.581561 0.813503i \(-0.697558\pi\)
−0.581561 + 0.813503i \(0.697558\pi\)
\(522\) 0 0
\(523\) 31.0258 1.35666 0.678331 0.734757i \(-0.262704\pi\)
0.678331 + 0.734757i \(0.262704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 73.7105 3.21088
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.39904 0.277173
\(534\) 0 0
\(535\) 4.54197 0.196366
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −18.4205 −0.793427
\(540\) 0 0
\(541\) 22.4123 0.963579 0.481790 0.876287i \(-0.339987\pi\)
0.481790 + 0.876287i \(0.339987\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 12.4136 0.531741
\(546\) 0 0
\(547\) −43.3980 −1.85556 −0.927782 0.373122i \(-0.878287\pi\)
−0.927782 + 0.373122i \(0.878287\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −5.24406 −0.223404
\(552\) 0 0
\(553\) 8.08870 0.343966
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.2690 0.901197 0.450599 0.892727i \(-0.351211\pi\)
0.450599 + 0.892727i \(0.351211\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10.6629 −0.449389 −0.224694 0.974429i \(-0.572138\pi\)
−0.224694 + 0.974429i \(0.572138\pi\)
\(564\) 0 0
\(565\) −9.27312 −0.390123
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −31.8986 −1.33726 −0.668630 0.743596i \(-0.733119\pi\)
−0.668630 + 0.743596i \(0.733119\pi\)
\(570\) 0 0
\(571\) −7.87477 −0.329549 −0.164774 0.986331i \(-0.552690\pi\)
−0.164774 + 0.986331i \(0.552690\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) 40.7070 1.69466 0.847328 0.531070i \(-0.178210\pi\)
0.847328 + 0.531070i \(0.178210\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −21.4828 −0.891256
\(582\) 0 0
\(583\) −32.2418 −1.33532
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 22.9321 0.946508 0.473254 0.880926i \(-0.343079\pi\)
0.473254 + 0.880926i \(0.343079\pi\)
\(588\) 0 0
\(589\) −16.9510 −0.698454
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27.6250 −1.13442 −0.567211 0.823572i \(-0.691978\pi\)
−0.567211 + 0.823572i \(0.691978\pi\)
\(594\) 0 0
\(595\) −12.8611 −0.527252
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 18.2139 0.744199 0.372099 0.928193i \(-0.378638\pi\)
0.372099 + 0.928193i \(0.378638\pi\)
\(600\) 0 0
\(601\) −24.0407 −0.980640 −0.490320 0.871543i \(-0.663120\pi\)
−0.490320 + 0.871543i \(0.663120\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 19.0327 0.773788
\(606\) 0 0
\(607\) 5.52878 0.224406 0.112203 0.993685i \(-0.464209\pi\)
0.112203 + 0.993685i \(0.464209\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0.423765 0.0171437
\(612\) 0 0
\(613\) −21.1205 −0.853050 −0.426525 0.904476i \(-0.640262\pi\)
−0.426525 + 0.904476i \(0.640262\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −19.6523 −0.791174 −0.395587 0.918429i \(-0.629459\pi\)
−0.395587 + 0.918429i \(0.629459\pi\)
\(618\) 0 0
\(619\) 40.9931 1.64765 0.823826 0.566843i \(-0.191836\pi\)
0.823826 + 0.566843i \(0.191836\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.35641 0.374857
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35.4776 1.41458
\(630\) 0 0
\(631\) −45.5595 −1.81369 −0.906847 0.421461i \(-0.861517\pi\)
−0.906847 + 0.421461i \(0.861517\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 12.4149 0.492672
\(636\) 0 0
\(637\) 3.52721 0.139753
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −8.97997 −0.354688 −0.177344 0.984149i \(-0.556750\pi\)
−0.177344 + 0.984149i \(0.556750\pi\)
\(642\) 0 0
\(643\) 2.69616 0.106326 0.0531630 0.998586i \(-0.483070\pi\)
0.0531630 + 0.998586i \(0.483070\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.12638 −0.358795 −0.179398 0.983777i \(-0.557415\pi\)
−0.179398 + 0.983777i \(0.557415\pi\)
\(648\) 0 0
\(649\) −52.6161 −2.06536
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −41.5497 −1.62596 −0.812982 0.582289i \(-0.802157\pi\)
−0.812982 + 0.582289i \(0.802157\pi\)
\(654\) 0 0
\(655\) −9.55434 −0.373319
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.9256 −0.815145 −0.407573 0.913173i \(-0.633625\pi\)
−0.407573 + 0.913173i \(0.633625\pi\)
\(660\) 0 0
\(661\) 5.25688 0.204469 0.102234 0.994760i \(-0.467401\pi\)
0.102234 + 0.994760i \(0.467401\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.95763 0.114692
\(666\) 0 0
\(667\) 3.38219 0.130959
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −38.9055 −1.50193
\(672\) 0 0
\(673\) 38.1900 1.47212 0.736059 0.676918i \(-0.236685\pi\)
0.736059 + 0.676918i \(0.236685\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.83529 0.185835 0.0929176 0.995674i \(-0.470381\pi\)
0.0929176 + 0.995674i \(0.470381\pi\)
\(678\) 0 0
\(679\) 23.5454 0.903591
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 50.3044 1.92484 0.962422 0.271559i \(-0.0875391\pi\)
0.962422 + 0.271559i \(0.0875391\pi\)
\(684\) 0 0
\(685\) 3.36558 0.128592
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 6.17375 0.235201
\(690\) 0 0
\(691\) 20.6298 0.784793 0.392396 0.919796i \(-0.371646\pi\)
0.392396 + 0.919796i \(0.371646\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −20.7361 −0.786565
\(696\) 0 0
\(697\) −41.1141 −1.55731
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 22.9598 0.867182 0.433591 0.901110i \(-0.357246\pi\)
0.433591 + 0.901110i \(0.357246\pi\)
\(702\) 0 0
\(703\) −8.15869 −0.307711
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.76006 −0.103803
\(708\) 0 0
\(709\) 11.9069 0.447174 0.223587 0.974684i \(-0.428223\pi\)
0.223587 + 0.974684i \(0.428223\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.9327 0.409432
\(714\) 0 0
\(715\) −5.75074 −0.215065
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.5244 −0.914604 −0.457302 0.889311i \(-0.651184\pi\)
−0.457302 + 0.889311i \(0.651184\pi\)
\(720\) 0 0
\(721\) 14.8099 0.551549
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 3.38219 0.125612
\(726\) 0 0
\(727\) 11.4034 0.422928 0.211464 0.977386i \(-0.432177\pi\)
0.211464 + 0.977386i \(0.432177\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 35.8722 1.32497 0.662484 0.749076i \(-0.269502\pi\)
0.662484 + 0.749076i \(0.269502\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 75.6112 2.78517
\(738\) 0 0
\(739\) −17.1503 −0.630883 −0.315441 0.948945i \(-0.602153\pi\)
−0.315441 + 0.948945i \(0.602153\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −27.7242 −1.01710 −0.508552 0.861031i \(-0.669819\pi\)
−0.508552 + 0.861031i \(0.669819\pi\)
\(744\) 0 0
\(745\) 19.9399 0.730540
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −8.66400 −0.316576
\(750\) 0 0
\(751\) −2.80173 −0.102236 −0.0511182 0.998693i \(-0.516279\pi\)
−0.0511182 + 0.998693i \(0.516279\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 23.7979 0.866093
\(756\) 0 0
\(757\) −41.6710 −1.51456 −0.757278 0.653092i \(-0.773471\pi\)
−0.757278 + 0.653092i \(0.773471\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 35.4285 1.28428 0.642141 0.766587i \(-0.278046\pi\)
0.642141 + 0.766587i \(0.278046\pi\)
\(762\) 0 0
\(763\) −23.6795 −0.857255
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.0751 0.363790
\(768\) 0 0
\(769\) 23.8731 0.860885 0.430442 0.902618i \(-0.358358\pi\)
0.430442 + 0.902618i \(0.358358\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −11.3403 −0.407881 −0.203941 0.978983i \(-0.565375\pi\)
−0.203941 + 0.978983i \(0.565375\pi\)
\(774\) 0 0
\(775\) 10.9327 0.392714
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 9.45490 0.338757
\(780\) 0 0
\(781\) −2.62475 −0.0939208
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.3175 0.475321
\(786\) 0 0
\(787\) −26.1906 −0.933595 −0.466797 0.884364i \(-0.654592\pi\)
−0.466797 + 0.884364i \(0.654592\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 17.6889 0.628944
\(792\) 0 0
\(793\) 7.44973 0.264547
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 4.48133 0.158737 0.0793684 0.996845i \(-0.474710\pi\)
0.0793684 + 0.996845i \(0.474710\pi\)
\(798\) 0 0
\(799\) −2.72271 −0.0963224
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 13.1735 0.464882
\(804\) 0 0
\(805\) −1.90754 −0.0672321
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 32.4608 1.14126 0.570630 0.821207i \(-0.306699\pi\)
0.570630 + 0.821207i \(0.306699\pi\)
\(810\) 0 0
\(811\) 11.3500 0.398554 0.199277 0.979943i \(-0.436141\pi\)
0.199277 + 0.979943i \(0.436141\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 16.1529 0.565810
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −48.2070 −1.68244 −0.841218 0.540697i \(-0.818161\pi\)
−0.841218 + 0.540697i \(0.818161\pi\)
\(822\) 0 0
\(823\) −37.7179 −1.31476 −0.657381 0.753558i \(-0.728336\pi\)
−0.657381 + 0.753558i \(0.728336\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 8.89736 0.309392 0.154696 0.987962i \(-0.450560\pi\)
0.154696 + 0.987962i \(0.450560\pi\)
\(828\) 0 0
\(829\) 30.9058 1.07340 0.536702 0.843772i \(-0.319670\pi\)
0.536702 + 0.843772i \(0.319670\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −22.6625 −0.785208
\(834\) 0 0
\(835\) 20.6782 0.715599
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −1.34387 −0.0463954 −0.0231977 0.999731i \(-0.507385\pi\)
−0.0231977 + 0.999731i \(0.507385\pi\)
\(840\) 0 0
\(841\) −17.5608 −0.605543
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.8988 −0.409332
\(846\) 0 0
\(847\) −36.3056 −1.24748
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.26201 0.180379
\(852\) 0 0
\(853\) −26.3940 −0.903713 −0.451857 0.892091i \(-0.649238\pi\)
−0.451857 + 0.892091i \(0.649238\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 17.5048 0.597953 0.298976 0.954260i \(-0.403355\pi\)
0.298976 + 0.954260i \(0.403355\pi\)
\(858\) 0 0
\(859\) 11.7199 0.399877 0.199938 0.979808i \(-0.435926\pi\)
0.199938 + 0.979808i \(0.435926\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.6578 −0.907443 −0.453722 0.891144i \(-0.649904\pi\)
−0.453722 + 0.891144i \(0.649904\pi\)
\(864\) 0 0
\(865\) −7.72058 −0.262508
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −23.2381 −0.788299
\(870\) 0 0
\(871\) −14.4782 −0.490576
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.90754 −0.0644867
\(876\) 0 0
\(877\) 19.9574 0.673912 0.336956 0.941520i \(-0.390603\pi\)
0.336956 + 0.941520i \(0.390603\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 20.7297 0.698402 0.349201 0.937048i \(-0.386453\pi\)
0.349201 + 0.937048i \(0.386453\pi\)
\(882\) 0 0
\(883\) 2.31093 0.0777690 0.0388845 0.999244i \(-0.487620\pi\)
0.0388845 + 0.999244i \(0.487620\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.6924 0.392592 0.196296 0.980545i \(-0.437109\pi\)
0.196296 + 0.980545i \(0.437109\pi\)
\(888\) 0 0
\(889\) −23.6820 −0.794270
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0.626134 0.0209528
\(894\) 0 0
\(895\) −9.88683 −0.330480
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 36.9765 1.23323
\(900\) 0 0
\(901\) −39.6666 −1.32149
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.9883 −0.797399
\(906\) 0 0
\(907\) 32.5061 1.07935 0.539673 0.841875i \(-0.318548\pi\)
0.539673 + 0.841875i \(0.318548\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −10.7518 −0.356224 −0.178112 0.984010i \(-0.556999\pi\)
−0.178112 + 0.984010i \(0.556999\pi\)
\(912\) 0 0
\(913\) 61.7181 2.04257
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 18.2253 0.601853
\(918\) 0 0
\(919\) −24.2758 −0.800785 −0.400392 0.916344i \(-0.631126\pi\)
−0.400392 + 0.916344i \(0.631126\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.502594 0.0165431
\(924\) 0 0
\(925\) 5.26201 0.173014
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.18842 −0.268653 −0.134327 0.990937i \(-0.542887\pi\)
−0.134327 + 0.990937i \(0.542887\pi\)
\(930\) 0 0
\(931\) 5.21163 0.170804
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 36.9487 1.20835
\(936\) 0 0
\(937\) 26.2312 0.856936 0.428468 0.903557i \(-0.359053\pi\)
0.428468 + 0.903557i \(0.359053\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −23.6292 −0.770291 −0.385145 0.922856i \(-0.625849\pi\)
−0.385145 + 0.922856i \(0.625849\pi\)
\(942\) 0 0
\(943\) −6.09801 −0.198579
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 15.9026 0.516765 0.258383 0.966043i \(-0.416810\pi\)
0.258383 + 0.966043i \(0.416810\pi\)
\(948\) 0 0
\(949\) −2.52249 −0.0818836
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −20.9451 −0.678478 −0.339239 0.940700i \(-0.610169\pi\)
−0.339239 + 0.940700i \(0.610169\pi\)
\(954\) 0 0
\(955\) −6.72004 −0.217455
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −6.41998 −0.207312
\(960\) 0 0
\(961\) 88.5236 2.85560
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 8.95007 0.288113
\(966\) 0 0
\(967\) −14.0732 −0.452563 −0.226281 0.974062i \(-0.572657\pi\)
−0.226281 + 0.974062i \(0.572657\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 11.4404 0.367139 0.183569 0.983007i \(-0.441235\pi\)
0.183569 + 0.983007i \(0.441235\pi\)
\(972\) 0 0
\(973\) 39.5550 1.26808
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.9119 −1.40487 −0.702433 0.711750i \(-0.747903\pi\)
−0.702433 + 0.711750i \(0.747903\pi\)
\(978\) 0 0
\(979\) −26.8802 −0.859094
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 43.0420 1.37283 0.686413 0.727212i \(-0.259184\pi\)
0.686413 + 0.727212i \(0.259184\pi\)
\(984\) 0 0
\(985\) 6.65109 0.211921
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 43.5288 1.38274 0.691369 0.722501i \(-0.257008\pi\)
0.691369 + 0.722501i \(0.257008\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −10.9050 −0.345710
\(996\) 0 0
\(997\) 26.4448 0.837517 0.418758 0.908098i \(-0.362465\pi\)
0.418758 + 0.908098i \(0.362465\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8280.2.a.bs.1.3 5
3.2 odd 2 920.2.a.j.1.1 5
12.11 even 2 1840.2.a.v.1.5 5
15.2 even 4 4600.2.e.u.4049.10 10
15.8 even 4 4600.2.e.u.4049.1 10
15.14 odd 2 4600.2.a.be.1.5 5
24.5 odd 2 7360.2.a.co.1.5 5
24.11 even 2 7360.2.a.cp.1.1 5
60.59 even 2 9200.2.a.cu.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.j.1.1 5 3.2 odd 2
1840.2.a.v.1.5 5 12.11 even 2
4600.2.a.be.1.5 5 15.14 odd 2
4600.2.e.u.4049.1 10 15.8 even 4
4600.2.e.u.4049.10 10 15.2 even 4
7360.2.a.co.1.5 5 24.5 odd 2
7360.2.a.cp.1.1 5 24.11 even 2
8280.2.a.bs.1.3 5 1.1 even 1 trivial
9200.2.a.cu.1.1 5 60.59 even 2