Properties

Label 8280.2.a.bs.1.2
Level $8280$
Weight $2$
Character 8280.1
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.13955077.1
Defining polynomial: \(x^{5} - 14 x^{3} - x^{2} + 32 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.30649\) of defining polynomial
Character \(\chi\) \(=\) 8280.1

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{5} -2.55040 q^{7} +O(q^{10})\) \(q+1.00000 q^{5} -2.55040 q^{7} +2.72314 q^{11} +7.12637 q^{13} -0.924010 q^{17} +7.51623 q^{19} +1.00000 q^{23} +1.00000 q^{25} +2.38248 q^{29} +0.866248 q^{31} -2.55040 q^{35} +0.352855 q^{37} -4.34066 q^{41} +13.3239 q^{47} -0.495474 q^{49} -3.99262 q^{53} +2.72314 q^{55} +3.84064 q^{59} -9.14262 q^{61} +7.12637 q^{65} -3.15933 q^{67} +6.07883 q^{71} -11.3239 q^{73} -6.94508 q^{77} -12.0593 q^{79} +6.35285 q^{83} -0.924010 q^{85} +9.71377 q^{89} -18.1751 q^{91} +7.51623 q^{95} +8.76465 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 5 q^{5} - 2 q^{7} + O(q^{10}) \) \( 5 q + 5 q^{5} - 2 q^{7} + q^{11} + 4 q^{13} - 4 q^{17} + 7 q^{19} + 5 q^{23} + 5 q^{25} - 4 q^{29} + 19 q^{31} - 2 q^{35} + 15 q^{37} - 25 q^{41} + 11 q^{47} + 25 q^{49} - 3 q^{53} + q^{55} + q^{59} - 5 q^{61} + 4 q^{65} + 9 q^{67} - q^{71} - q^{73} - 18 q^{77} - 2 q^{79} + 45 q^{83} - 4 q^{85} - 6 q^{89} + 11 q^{91} + 7 q^{95} + 25 q^{97} + O(q^{100}) \)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −2.55040 −0.963960 −0.481980 0.876182i \(-0.660082\pi\)
−0.481980 + 0.876182i \(0.660082\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.72314 0.821056 0.410528 0.911848i \(-0.365344\pi\)
0.410528 + 0.911848i \(0.365344\pi\)
\(12\) 0 0
\(13\) 7.12637 1.97650 0.988250 0.152845i \(-0.0488435\pi\)
0.988250 + 0.152845i \(0.0488435\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.924010 −0.224105 −0.112053 0.993702i \(-0.535743\pi\)
−0.112053 + 0.993702i \(0.535743\pi\)
\(18\) 0 0
\(19\) 7.51623 1.72434 0.862171 0.506617i \(-0.169104\pi\)
0.862171 + 0.506617i \(0.169104\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.38248 0.442415 0.221208 0.975227i \(-0.429000\pi\)
0.221208 + 0.975227i \(0.429000\pi\)
\(30\) 0 0
\(31\) 0.866248 0.155583 0.0777913 0.996970i \(-0.475213\pi\)
0.0777913 + 0.996970i \(0.475213\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.55040 −0.431096
\(36\) 0 0
\(37\) 0.352855 0.0580089 0.0290045 0.999579i \(-0.490766\pi\)
0.0290045 + 0.999579i \(0.490766\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −4.34066 −0.677896 −0.338948 0.940805i \(-0.610071\pi\)
−0.338948 + 0.940805i \(0.610071\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 13.3239 1.94349 0.971746 0.236027i \(-0.0758454\pi\)
0.971746 + 0.236027i \(0.0758454\pi\)
\(48\) 0 0
\(49\) −0.495474 −0.0707819
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.99262 −0.548429 −0.274214 0.961669i \(-0.588418\pi\)
−0.274214 + 0.961669i \(0.588418\pi\)
\(54\) 0 0
\(55\) 2.72314 0.367187
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 3.84064 0.500009 0.250004 0.968245i \(-0.419568\pi\)
0.250004 + 0.968245i \(0.419568\pi\)
\(60\) 0 0
\(61\) −9.14262 −1.17059 −0.585296 0.810820i \(-0.699022\pi\)
−0.585296 + 0.810820i \(0.699022\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 7.12637 0.883918
\(66\) 0 0
\(67\) −3.15933 −0.385974 −0.192987 0.981201i \(-0.561817\pi\)
−0.192987 + 0.981201i \(0.561817\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.07883 0.721424 0.360712 0.932677i \(-0.382534\pi\)
0.360712 + 0.932677i \(0.382534\pi\)
\(72\) 0 0
\(73\) −11.3239 −1.32536 −0.662682 0.748901i \(-0.730582\pi\)
−0.662682 + 0.748901i \(0.730582\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.94508 −0.791465
\(78\) 0 0
\(79\) −12.0593 −1.35677 −0.678386 0.734706i \(-0.737320\pi\)
−0.678386 + 0.734706i \(0.737320\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 6.35285 0.697316 0.348658 0.937250i \(-0.386637\pi\)
0.348658 + 0.937250i \(0.386637\pi\)
\(84\) 0 0
\(85\) −0.924010 −0.100223
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9.71377 1.02966 0.514829 0.857293i \(-0.327855\pi\)
0.514829 + 0.857293i \(0.327855\pi\)
\(90\) 0 0
\(91\) −18.1751 −1.90527
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 7.51623 0.771149
\(96\) 0 0
\(97\) 8.76465 0.889916 0.444958 0.895552i \(-0.353219\pi\)
0.444958 + 0.895552i \(0.353219\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −4.74794 −0.472438 −0.236219 0.971700i \(-0.575908\pi\)
−0.236219 + 0.971700i \(0.575908\pi\)
\(102\) 0 0
\(103\) 12.6304 1.24451 0.622255 0.782814i \(-0.286217\pi\)
0.622255 + 0.782814i \(0.286217\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 12.9658 1.25345 0.626727 0.779239i \(-0.284394\pi\)
0.626727 + 0.779239i \(0.284394\pi\)
\(108\) 0 0
\(109\) −15.0040 −1.43712 −0.718562 0.695463i \(-0.755199\pi\)
−0.718562 + 0.695463i \(0.755199\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −2.13496 −0.200840 −0.100420 0.994945i \(-0.532019\pi\)
−0.100420 + 0.994945i \(0.532019\pi\)
\(114\) 0 0
\(115\) 1.00000 0.0932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 2.35659 0.216029
\(120\) 0 0
\(121\) −3.58454 −0.325867
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −3.54181 −0.314285 −0.157142 0.987576i \(-0.550228\pi\)
−0.157142 + 0.987576i \(0.550228\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −19.5499 −1.70808 −0.854042 0.520205i \(-0.825856\pi\)
−0.854042 + 0.520205i \(0.825856\pi\)
\(132\) 0 0
\(133\) −19.1694 −1.66220
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.41544 −0.377236 −0.188618 0.982051i \(-0.560401\pi\)
−0.188618 + 0.982051i \(0.560401\pi\)
\(138\) 0 0
\(139\) 21.9954 1.86563 0.932814 0.360358i \(-0.117345\pi\)
0.932814 + 0.360358i \(0.117345\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 19.4061 1.62282
\(144\) 0 0
\(145\) 2.38248 0.197854
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −19.0780 −1.56293 −0.781466 0.623947i \(-0.785528\pi\)
−0.781466 + 0.623947i \(0.785528\pi\)
\(150\) 0 0
\(151\) −7.75273 −0.630908 −0.315454 0.948941i \(-0.602157\pi\)
−0.315454 + 0.948941i \(0.602157\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.866248 0.0695787
\(156\) 0 0
\(157\) 17.5129 1.39768 0.698841 0.715277i \(-0.253700\pi\)
0.698841 + 0.715277i \(0.253700\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −2.55040 −0.200999
\(162\) 0 0
\(163\) −2.55491 −0.200116 −0.100058 0.994982i \(-0.531903\pi\)
−0.100058 + 0.994982i \(0.531903\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 3.61301 0.279583 0.139791 0.990181i \(-0.455357\pi\)
0.139791 + 0.990181i \(0.455357\pi\)
\(168\) 0 0
\(169\) 37.7852 2.90655
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −12.7824 −0.971827 −0.485913 0.874007i \(-0.661513\pi\)
−0.485913 + 0.874007i \(0.661513\pi\)
\(174\) 0 0
\(175\) −2.55040 −0.192792
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −10.0149 −0.748546 −0.374273 0.927318i \(-0.622108\pi\)
−0.374273 + 0.927318i \(0.622108\pi\)
\(180\) 0 0
\(181\) 9.96248 0.740505 0.370252 0.928931i \(-0.379271\pi\)
0.370252 + 0.928931i \(0.379271\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.352855 0.0259424
\(186\) 0 0
\(187\) −2.51621 −0.184003
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 6.61298 0.478498 0.239249 0.970958i \(-0.423099\pi\)
0.239249 + 0.970958i \(0.423099\pi\)
\(192\) 0 0
\(193\) −19.0540 −1.37154 −0.685768 0.727820i \(-0.740534\pi\)
−0.685768 + 0.727820i \(0.740534\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 11.0886 0.790030 0.395015 0.918675i \(-0.370739\pi\)
0.395015 + 0.918675i \(0.370739\pi\)
\(198\) 0 0
\(199\) 3.71377 0.263263 0.131631 0.991299i \(-0.457979\pi\)
0.131631 + 0.991299i \(0.457979\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −6.07627 −0.426471
\(204\) 0 0
\(205\) −4.34066 −0.303165
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 20.4677 1.41578
\(210\) 0 0
\(211\) −21.7656 −1.49841 −0.749204 0.662339i \(-0.769564\pi\)
−0.749204 + 0.662339i \(0.769564\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −2.20928 −0.149975
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −6.58484 −0.442944
\(222\) 0 0
\(223\) 6.90730 0.462547 0.231273 0.972889i \(-0.425711\pi\)
0.231273 + 0.972889i \(0.425711\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 23.0325 1.52872 0.764359 0.644791i \(-0.223055\pi\)
0.764359 + 0.644791i \(0.223055\pi\)
\(228\) 0 0
\(229\) 12.9665 0.856854 0.428427 0.903576i \(-0.359068\pi\)
0.428427 + 0.903576i \(0.359068\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 4.80934 0.315071 0.157535 0.987513i \(-0.449645\pi\)
0.157535 + 0.987513i \(0.449645\pi\)
\(234\) 0 0
\(235\) 13.3239 0.869156
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 20.4661 1.32384 0.661922 0.749573i \(-0.269741\pi\)
0.661922 + 0.749573i \(0.269741\pi\)
\(240\) 0 0
\(241\) 26.8657 1.73057 0.865287 0.501277i \(-0.167136\pi\)
0.865287 + 0.501277i \(0.167136\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.495474 −0.0316546
\(246\) 0 0
\(247\) 53.5635 3.40816
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 15.9625 1.00754 0.503771 0.863837i \(-0.331945\pi\)
0.503771 + 0.863837i \(0.331945\pi\)
\(252\) 0 0
\(253\) 2.72314 0.171202
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.33867 −0.208261 −0.104130 0.994564i \(-0.533206\pi\)
−0.104130 + 0.994564i \(0.533206\pi\)
\(258\) 0 0
\(259\) −0.899919 −0.0559183
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 23.3880 1.44217 0.721083 0.692849i \(-0.243645\pi\)
0.721083 + 0.692849i \(0.243645\pi\)
\(264\) 0 0
\(265\) −3.99262 −0.245265
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.1378 −0.861995 −0.430998 0.902353i \(-0.641838\pi\)
−0.430998 + 0.902353i \(0.641838\pi\)
\(270\) 0 0
\(271\) 25.9283 1.57503 0.787517 0.616293i \(-0.211366\pi\)
0.787517 + 0.616293i \(0.211366\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.72314 0.164211
\(276\) 0 0
\(277\) 1.07117 0.0643603 0.0321802 0.999482i \(-0.489755\pi\)
0.0321802 + 0.999482i \(0.489755\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.2260 −0.729341 −0.364671 0.931137i \(-0.618818\pi\)
−0.364671 + 0.931137i \(0.618818\pi\)
\(282\) 0 0
\(283\) −30.5454 −1.81573 −0.907867 0.419259i \(-0.862290\pi\)
−0.907867 + 0.419259i \(0.862290\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 11.0704 0.653465
\(288\) 0 0
\(289\) −16.1462 −0.949777
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 8.46838 0.494728 0.247364 0.968923i \(-0.420436\pi\)
0.247364 + 0.968923i \(0.420436\pi\)
\(294\) 0 0
\(295\) 3.84064 0.223611
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 7.12637 0.412129
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −9.14262 −0.523505
\(306\) 0 0
\(307\) −1.32802 −0.0757942 −0.0378971 0.999282i \(-0.512066\pi\)
−0.0378971 + 0.999282i \(0.512066\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −24.2971 −1.37776 −0.688882 0.724874i \(-0.741898\pi\)
−0.688882 + 0.724874i \(0.741898\pi\)
\(312\) 0 0
\(313\) 20.3478 1.15013 0.575063 0.818109i \(-0.304977\pi\)
0.575063 + 0.818109i \(0.304977\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.57309 0.481513 0.240756 0.970586i \(-0.422604\pi\)
0.240756 + 0.970586i \(0.422604\pi\)
\(318\) 0 0
\(319\) 6.48781 0.363248
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −6.94508 −0.386434
\(324\) 0 0
\(325\) 7.12637 0.395300
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −33.9813 −1.87345
\(330\) 0 0
\(331\) −20.9767 −1.15299 −0.576493 0.817102i \(-0.695579\pi\)
−0.576493 + 0.817102i \(0.695579\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.15933 −0.172613
\(336\) 0 0
\(337\) −2.17314 −0.118379 −0.0591894 0.998247i \(-0.518852\pi\)
−0.0591894 + 0.998247i \(0.518852\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.35891 0.127742
\(342\) 0 0
\(343\) 19.1164 1.03219
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.1335 1.72502 0.862509 0.506042i \(-0.168892\pi\)
0.862509 + 0.506042i \(0.168892\pi\)
\(348\) 0 0
\(349\) 13.5157 0.723479 0.361740 0.932279i \(-0.382183\pi\)
0.361740 + 0.932279i \(0.382183\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 28.0645 1.49372 0.746861 0.664981i \(-0.231560\pi\)
0.746861 + 0.664981i \(0.231560\pi\)
\(354\) 0 0
\(355\) 6.07883 0.322631
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −20.2340 −1.06791 −0.533956 0.845513i \(-0.679295\pi\)
−0.533956 + 0.845513i \(0.679295\pi\)
\(360\) 0 0
\(361\) 37.4937 1.97336
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −11.3239 −0.592721
\(366\) 0 0
\(367\) 4.76666 0.248818 0.124409 0.992231i \(-0.460297\pi\)
0.124409 + 0.992231i \(0.460297\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.1828 0.528663
\(372\) 0 0
\(373\) −29.1510 −1.50938 −0.754690 0.656082i \(-0.772213\pi\)
−0.754690 + 0.656082i \(0.772213\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.9784 0.874434
\(378\) 0 0
\(379\) 4.20856 0.216179 0.108090 0.994141i \(-0.465527\pi\)
0.108090 + 0.994141i \(0.465527\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.55206 −0.181502 −0.0907508 0.995874i \(-0.528927\pi\)
−0.0907508 + 0.995874i \(0.528927\pi\)
\(384\) 0 0
\(385\) −6.94508 −0.353954
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 29.2515 1.48311 0.741554 0.670893i \(-0.234089\pi\)
0.741554 + 0.670893i \(0.234089\pi\)
\(390\) 0 0
\(391\) −0.924010 −0.0467292
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −12.0593 −0.606767
\(396\) 0 0
\(397\) −17.8000 −0.893356 −0.446678 0.894695i \(-0.647393\pi\)
−0.446678 + 0.894695i \(0.647393\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 11.6210 0.580327 0.290164 0.956977i \(-0.406290\pi\)
0.290164 + 0.956977i \(0.406290\pi\)
\(402\) 0 0
\(403\) 6.17320 0.307509
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0.960871 0.0476286
\(408\) 0 0
\(409\) −13.5710 −0.671041 −0.335521 0.942033i \(-0.608912\pi\)
−0.335521 + 0.942033i \(0.608912\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −9.79516 −0.481988
\(414\) 0 0
\(415\) 6.35285 0.311849
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −13.4959 −0.659317 −0.329658 0.944100i \(-0.606934\pi\)
−0.329658 + 0.944100i \(0.606934\pi\)
\(420\) 0 0
\(421\) 37.6495 1.83492 0.917462 0.397824i \(-0.130234\pi\)
0.917462 + 0.397824i \(0.130234\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −0.924010 −0.0448211
\(426\) 0 0
\(427\) 23.3173 1.12840
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.0568 −0.484421 −0.242210 0.970224i \(-0.577872\pi\)
−0.242210 + 0.970224i \(0.577872\pi\)
\(432\) 0 0
\(433\) 2.30001 0.110531 0.0552657 0.998472i \(-0.482399\pi\)
0.0552657 + 0.998472i \(0.482399\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.51623 0.359550
\(438\) 0 0
\(439\) 12.4273 0.593124 0.296562 0.955014i \(-0.404160\pi\)
0.296562 + 0.955014i \(0.404160\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.18268 −0.103702 −0.0518510 0.998655i \(-0.516512\pi\)
−0.0518510 + 0.998655i \(0.516512\pi\)
\(444\) 0 0
\(445\) 9.71377 0.460477
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.09603 −0.146111 −0.0730554 0.997328i \(-0.523275\pi\)
−0.0730554 + 0.997328i \(0.523275\pi\)
\(450\) 0 0
\(451\) −11.8202 −0.556591
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −18.1751 −0.852061
\(456\) 0 0
\(457\) −0.320363 −0.0149860 −0.00749298 0.999972i \(-0.502385\pi\)
−0.00749298 + 0.999972i \(0.502385\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 15.3239 0.713706 0.356853 0.934161i \(-0.383850\pi\)
0.356853 + 0.934161i \(0.383850\pi\)
\(462\) 0 0
\(463\) 6.81556 0.316746 0.158373 0.987379i \(-0.449375\pi\)
0.158373 + 0.987379i \(0.449375\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −27.2444 −1.26072 −0.630360 0.776303i \(-0.717093\pi\)
−0.630360 + 0.776303i \(0.717093\pi\)
\(468\) 0 0
\(469\) 8.05755 0.372063
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.51623 0.344868
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −23.5031 −1.07388 −0.536942 0.843619i \(-0.680421\pi\)
−0.536942 + 0.843619i \(0.680421\pi\)
\(480\) 0 0
\(481\) 2.51457 0.114655
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 8.76465 0.397982
\(486\) 0 0
\(487\) 7.63058 0.345774 0.172887 0.984942i \(-0.444690\pi\)
0.172887 + 0.984942i \(0.444690\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.1206 0.862902 0.431451 0.902136i \(-0.358002\pi\)
0.431451 + 0.902136i \(0.358002\pi\)
\(492\) 0 0
\(493\) −2.20144 −0.0991477
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.5034 −0.695424
\(498\) 0 0
\(499\) −25.6581 −1.14861 −0.574306 0.818641i \(-0.694728\pi\)
−0.574306 + 0.818641i \(0.694728\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.42282 0.375555 0.187777 0.982212i \(-0.439872\pi\)
0.187777 + 0.982212i \(0.439872\pi\)
\(504\) 0 0
\(505\) −4.74794 −0.211281
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −18.2328 −0.808153 −0.404076 0.914725i \(-0.632407\pi\)
−0.404076 + 0.914725i \(0.632407\pi\)
\(510\) 0 0
\(511\) 28.8805 1.27760
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 12.6304 0.556562
\(516\) 0 0
\(517\) 36.2828 1.59572
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.8738 −0.870689 −0.435345 0.900264i \(-0.643373\pi\)
−0.435345 + 0.900264i \(0.643373\pi\)
\(522\) 0 0
\(523\) −19.7228 −0.862418 −0.431209 0.902252i \(-0.641913\pi\)
−0.431209 + 0.902252i \(0.641913\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −0.800422 −0.0348669
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −30.9331 −1.33986
\(534\) 0 0
\(535\) 12.9658 0.560562
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.34924 −0.0581160
\(540\) 0 0
\(541\) −16.4662 −0.707938 −0.353969 0.935257i \(-0.615168\pi\)
−0.353969 + 0.935257i \(0.615168\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.0040 −0.642702
\(546\) 0 0
\(547\) −38.3286 −1.63881 −0.819405 0.573215i \(-0.805696\pi\)
−0.819405 + 0.573215i \(0.805696\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 17.9073 0.762875
\(552\) 0 0
\(553\) 30.7559 1.30787
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20.3973 0.864263 0.432132 0.901811i \(-0.357762\pi\)
0.432132 + 0.901811i \(0.357762\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 1.72270 0.0726032 0.0363016 0.999341i \(-0.488442\pi\)
0.0363016 + 0.999341i \(0.488442\pi\)
\(564\) 0 0
\(565\) −2.13496 −0.0898184
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −25.3283 −1.06182 −0.530909 0.847429i \(-0.678150\pi\)
−0.530909 + 0.847429i \(0.678150\pi\)
\(570\) 0 0
\(571\) −5.68968 −0.238106 −0.119053 0.992888i \(-0.537986\pi\)
−0.119053 + 0.992888i \(0.537986\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.00000 0.0417029
\(576\) 0 0
\(577\) −18.0377 −0.750918 −0.375459 0.926839i \(-0.622515\pi\)
−0.375459 + 0.926839i \(0.622515\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −16.2023 −0.672185
\(582\) 0 0
\(583\) −10.8724 −0.450291
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −13.1894 −0.544383 −0.272192 0.962243i \(-0.587748\pi\)
−0.272192 + 0.962243i \(0.587748\pi\)
\(588\) 0 0
\(589\) 6.51092 0.268278
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0.326755 0.0134182 0.00670911 0.999977i \(-0.497864\pi\)
0.00670911 + 0.999977i \(0.497864\pi\)
\(594\) 0 0
\(595\) 2.35659 0.0966109
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.49619 0.306286 0.153143 0.988204i \(-0.451061\pi\)
0.153143 + 0.988204i \(0.451061\pi\)
\(600\) 0 0
\(601\) 0.121724 0.00496523 0.00248262 0.999997i \(-0.499210\pi\)
0.00248262 + 0.999997i \(0.499210\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.58454 −0.145732
\(606\) 0 0
\(607\) 1.52992 0.0620975 0.0310488 0.999518i \(-0.490115\pi\)
0.0310488 + 0.999518i \(0.490115\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 94.9512 3.84131
\(612\) 0 0
\(613\) 24.3927 0.985211 0.492605 0.870253i \(-0.336045\pi\)
0.492605 + 0.870253i \(0.336045\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.8906 −1.12283 −0.561416 0.827534i \(-0.689743\pi\)
−0.561416 + 0.827534i \(0.689743\pi\)
\(618\) 0 0
\(619\) 12.8617 0.516957 0.258478 0.966017i \(-0.416779\pi\)
0.258478 + 0.966017i \(0.416779\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −24.7740 −0.992549
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −0.326041 −0.0130001
\(630\) 0 0
\(631\) −11.9518 −0.475794 −0.237897 0.971290i \(-0.576458\pi\)
−0.237897 + 0.971290i \(0.576458\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.54181 −0.140552
\(636\) 0 0
\(637\) −3.53093 −0.139901
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 23.9139 0.944544 0.472272 0.881453i \(-0.343434\pi\)
0.472272 + 0.881453i \(0.343434\pi\)
\(642\) 0 0
\(643\) 3.87313 0.152741 0.0763707 0.997079i \(-0.475667\pi\)
0.0763707 + 0.997079i \(0.475667\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 10.3330 0.406231 0.203115 0.979155i \(-0.434893\pi\)
0.203115 + 0.979155i \(0.434893\pi\)
\(648\) 0 0
\(649\) 10.4586 0.410535
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −21.6319 −0.846522 −0.423261 0.906008i \(-0.639115\pi\)
−0.423261 + 0.906008i \(0.639115\pi\)
\(654\) 0 0
\(655\) −19.5499 −0.763878
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −15.7168 −0.612238 −0.306119 0.951993i \(-0.599030\pi\)
−0.306119 + 0.951993i \(0.599030\pi\)
\(660\) 0 0
\(661\) −40.3002 −1.56750 −0.783749 0.621078i \(-0.786695\pi\)
−0.783749 + 0.621078i \(0.786695\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −19.1694 −0.743357
\(666\) 0 0
\(667\) 2.38248 0.0922500
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −24.8966 −0.961122
\(672\) 0 0
\(673\) −6.69888 −0.258223 −0.129111 0.991630i \(-0.541212\pi\)
−0.129111 + 0.991630i \(0.541212\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 22.5812 0.867866 0.433933 0.900945i \(-0.357125\pi\)
0.433933 + 0.900945i \(0.357125\pi\)
\(678\) 0 0
\(679\) −22.3533 −0.857843
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1.42797 0.0546398 0.0273199 0.999627i \(-0.491303\pi\)
0.0273199 + 0.999627i \(0.491303\pi\)
\(684\) 0 0
\(685\) −4.41544 −0.168705
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −28.4529 −1.08397
\(690\) 0 0
\(691\) −1.50255 −0.0571595 −0.0285798 0.999592i \(-0.509098\pi\)
−0.0285798 + 0.999592i \(0.509098\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 21.9954 0.834334
\(696\) 0 0
\(697\) 4.01081 0.151920
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −18.7341 −0.707577 −0.353789 0.935325i \(-0.615107\pi\)
−0.353789 + 0.935325i \(0.615107\pi\)
\(702\) 0 0
\(703\) 2.65214 0.100027
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.1091 0.455411
\(708\) 0 0
\(709\) −13.5052 −0.507199 −0.253599 0.967309i \(-0.581615\pi\)
−0.253599 + 0.967309i \(0.581615\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.866248 0.0324412
\(714\) 0 0
\(715\) 19.4061 0.725746
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −31.7496 −1.18406 −0.592030 0.805916i \(-0.701673\pi\)
−0.592030 + 0.805916i \(0.701673\pi\)
\(720\) 0 0
\(721\) −32.2126 −1.19966
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 2.38248 0.0884831
\(726\) 0 0
\(727\) 21.6531 0.803070 0.401535 0.915844i \(-0.368477\pi\)
0.401535 + 0.915844i \(0.368477\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0.640507 0.0236577 0.0118288 0.999930i \(-0.496235\pi\)
0.0118288 + 0.999930i \(0.496235\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −8.60329 −0.316906
\(738\) 0 0
\(739\) 16.8191 0.618700 0.309350 0.950948i \(-0.399889\pi\)
0.309350 + 0.950948i \(0.399889\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.9691 0.585851 0.292925 0.956135i \(-0.405371\pi\)
0.292925 + 0.956135i \(0.405371\pi\)
\(744\) 0 0
\(745\) −19.0780 −0.698965
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −33.0680 −1.20828
\(750\) 0 0
\(751\) −8.09841 −0.295515 −0.147758 0.989024i \(-0.547206\pi\)
−0.147758 + 0.989024i \(0.547206\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −7.75273 −0.282151
\(756\) 0 0
\(757\) 20.5691 0.747598 0.373799 0.927510i \(-0.378055\pi\)
0.373799 + 0.927510i \(0.378055\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.1840 0.622919 0.311459 0.950259i \(-0.399182\pi\)
0.311459 + 0.950259i \(0.399182\pi\)
\(762\) 0 0
\(763\) 38.2662 1.38533
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 27.3698 0.988268
\(768\) 0 0
\(769\) 41.8648 1.50968 0.754841 0.655908i \(-0.227714\pi\)
0.754841 + 0.655908i \(0.227714\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 35.7639 1.28634 0.643170 0.765724i \(-0.277619\pi\)
0.643170 + 0.765724i \(0.277619\pi\)
\(774\) 0 0
\(775\) 0.866248 0.0311165
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −32.6254 −1.16893
\(780\) 0 0
\(781\) 16.5535 0.592330
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17.5129 0.625062
\(786\) 0 0
\(787\) 26.9835 0.961858 0.480929 0.876759i \(-0.340299\pi\)
0.480929 + 0.876759i \(0.340299\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 5.44500 0.193602
\(792\) 0 0
\(793\) −65.1537 −2.31368
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −26.7226 −0.946561 −0.473281 0.880912i \(-0.656930\pi\)
−0.473281 + 0.880912i \(0.656930\pi\)
\(798\) 0 0
\(799\) −12.3114 −0.435547
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −30.8366 −1.08820
\(804\) 0 0
\(805\) −2.55040 −0.0898897
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −50.0319 −1.75903 −0.879513 0.475874i \(-0.842132\pi\)
−0.879513 + 0.475874i \(0.842132\pi\)
\(810\) 0 0
\(811\) 33.5774 1.17906 0.589531 0.807746i \(-0.299313\pi\)
0.589531 + 0.807746i \(0.299313\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −2.55491 −0.0894946
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.1429 −0.947295 −0.473647 0.880715i \(-0.657063\pi\)
−0.473647 + 0.880715i \(0.657063\pi\)
\(822\) 0 0
\(823\) 32.6392 1.13773 0.568866 0.822431i \(-0.307382\pi\)
0.568866 + 0.822431i \(0.307382\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 37.0828 1.28949 0.644747 0.764396i \(-0.276963\pi\)
0.644747 + 0.764396i \(0.276963\pi\)
\(828\) 0 0
\(829\) 33.9405 1.17880 0.589401 0.807841i \(-0.299364\pi\)
0.589401 + 0.807841i \(0.299364\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0.457823 0.0158626
\(834\) 0 0
\(835\) 3.61301 0.125033
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 1.36929 0.0472730 0.0236365 0.999721i \(-0.492476\pi\)
0.0236365 + 0.999721i \(0.492476\pi\)
\(840\) 0 0
\(841\) −23.3238 −0.804269
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 37.7852 1.29985
\(846\) 0 0
\(847\) 9.14199 0.314122
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.352855 0.0120957
\(852\) 0 0
\(853\) 9.21382 0.315475 0.157738 0.987481i \(-0.449580\pi\)
0.157738 + 0.987481i \(0.449580\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.3564 −0.490405 −0.245202 0.969472i \(-0.578854\pi\)
−0.245202 + 0.969472i \(0.578854\pi\)
\(858\) 0 0
\(859\) 31.3758 1.07053 0.535264 0.844685i \(-0.320212\pi\)
0.535264 + 0.844685i \(0.320212\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −26.1214 −0.889182 −0.444591 0.895734i \(-0.646651\pi\)
−0.444591 + 0.895734i \(0.646651\pi\)
\(864\) 0 0
\(865\) −12.7824 −0.434614
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −32.8390 −1.11399
\(870\) 0 0
\(871\) −22.5146 −0.762877
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −2.55040 −0.0862192
\(876\) 0 0
\(877\) −11.5530 −0.390118 −0.195059 0.980792i \(-0.562490\pi\)
−0.195059 + 0.980792i \(0.562490\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 34.3559 1.15748 0.578740 0.815512i \(-0.303544\pi\)
0.578740 + 0.815512i \(0.303544\pi\)
\(882\) 0 0
\(883\) 12.8316 0.431818 0.215909 0.976414i \(-0.430729\pi\)
0.215909 + 0.976414i \(0.430729\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1.46724 0.0492652 0.0246326 0.999697i \(-0.492158\pi\)
0.0246326 + 0.999697i \(0.492158\pi\)
\(888\) 0 0
\(889\) 9.03303 0.302958
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 100.146 3.35125
\(894\) 0 0
\(895\) −10.0149 −0.334760
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 2.06382 0.0688322
\(900\) 0 0
\(901\) 3.68922 0.122906
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.96248 0.331164
\(906\) 0 0
\(907\) 4.44558 0.147613 0.0738066 0.997273i \(-0.476485\pi\)
0.0738066 + 0.997273i \(0.476485\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −40.1697 −1.33088 −0.665440 0.746451i \(-0.731756\pi\)
−0.665440 + 0.746451i \(0.731756\pi\)
\(912\) 0 0
\(913\) 17.2997 0.572536
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 49.8600 1.64652
\(918\) 0 0
\(919\) 46.8063 1.54400 0.771999 0.635624i \(-0.219257\pi\)
0.771999 + 0.635624i \(0.219257\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 43.3200 1.42590
\(924\) 0 0
\(925\) 0.352855 0.0116018
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −8.92145 −0.292703 −0.146352 0.989233i \(-0.546753\pi\)
−0.146352 + 0.989233i \(0.546753\pi\)
\(930\) 0 0
\(931\) −3.72409 −0.122052
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.51621 −0.0822887
\(936\) 0 0
\(937\) 7.70070 0.251571 0.125785 0.992057i \(-0.459855\pi\)
0.125785 + 0.992057i \(0.459855\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.8979 0.550856 0.275428 0.961322i \(-0.411180\pi\)
0.275428 + 0.961322i \(0.411180\pi\)
\(942\) 0 0
\(943\) −4.34066 −0.141351
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 43.7150 1.42055 0.710273 0.703927i \(-0.248572\pi\)
0.710273 + 0.703927i \(0.248572\pi\)
\(948\) 0 0
\(949\) −80.6985 −2.61958
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.2353 −0.979418 −0.489709 0.871886i \(-0.662897\pi\)
−0.489709 + 0.871886i \(0.662897\pi\)
\(954\) 0 0
\(955\) 6.61298 0.213991
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 11.2611 0.363641
\(960\) 0 0
\(961\) −30.2496 −0.975794
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −19.0540 −0.613370
\(966\) 0 0
\(967\) 16.2727 0.523296 0.261648 0.965163i \(-0.415734\pi\)
0.261648 + 0.965163i \(0.415734\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −6.21424 −0.199424 −0.0997122 0.995016i \(-0.531792\pi\)
−0.0997122 + 0.995016i \(0.531792\pi\)
\(972\) 0 0
\(973\) −56.0971 −1.79839
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −25.6705 −0.821271 −0.410636 0.911800i \(-0.634693\pi\)
−0.410636 + 0.911800i \(0.634693\pi\)
\(978\) 0 0
\(979\) 26.4519 0.845407
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 30.7124 0.979574 0.489787 0.871842i \(-0.337075\pi\)
0.489787 + 0.871842i \(0.337075\pi\)
\(984\) 0 0
\(985\) 11.0886 0.353312
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 29.4052 0.934086 0.467043 0.884235i \(-0.345319\pi\)
0.467043 + 0.884235i \(0.345319\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.71377 0.117735
\(996\) 0 0
\(997\) 5.59825 0.177298 0.0886492 0.996063i \(-0.471745\pi\)
0.0886492 + 0.996063i \(0.471745\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8280.2.a.bs.1.2 5
3.2 odd 2 920.2.a.j.1.5 5
12.11 even 2 1840.2.a.v.1.1 5
15.2 even 4 4600.2.e.u.4049.2 10
15.8 even 4 4600.2.e.u.4049.9 10
15.14 odd 2 4600.2.a.be.1.1 5
24.5 odd 2 7360.2.a.co.1.1 5
24.11 even 2 7360.2.a.cp.1.5 5
60.59 even 2 9200.2.a.cu.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
920.2.a.j.1.5 5 3.2 odd 2
1840.2.a.v.1.1 5 12.11 even 2
4600.2.a.be.1.1 5 15.14 odd 2
4600.2.e.u.4049.2 10 15.2 even 4
4600.2.e.u.4049.9 10 15.8 even 4
7360.2.a.co.1.1 5 24.5 odd 2
7360.2.a.cp.1.5 5 24.11 even 2
8280.2.a.bs.1.2 5 1.1 even 1 trivial
9200.2.a.cu.1.5 5 60.59 even 2