# Properties

 Label 8280.2.a.bs Level $8280$ Weight $2$ Character orbit 8280.a Self dual yes Analytic conductor $66.116$ Analytic rank $0$ Dimension $5$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8280.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$66.1161328736$$ Analytic rank: $$0$$ Dimension: $$5$$ Coefficient field: 5.5.13955077.1 Defining polynomial: $$x^{5} - 14 x^{3} - x^{2} + 32 x + 16$$ Coefficient ring: $$\Z[a_1, \ldots, a_{17}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 920) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3,\beta_4$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + q^{5} + ( -\beta_{3} - \beta_{4} ) q^{7} +O(q^{10})$$ $$q + q^{5} + ( -\beta_{3} - \beta_{4} ) q^{7} + ( -\beta_{1} + \beta_{2} ) q^{11} + ( 1 + \beta_{2} - \beta_{4} ) q^{13} + ( -1 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{17} + ( 1 + 2 \beta_{1} + \beta_{4} ) q^{19} + q^{23} + q^{25} + ( -1 + \beta_{2} - \beta_{3} ) q^{29} + ( 4 - 2 \beta_{1} + \beta_{2} - \beta_{3} - \beta_{4} ) q^{31} + ( -\beta_{3} - \beta_{4} ) q^{35} + ( 3 - \beta_{3} ) q^{37} + ( -5 + \beta_{1} - \beta_{3} ) q^{41} + ( 2 + \beta_{2} + 2 \beta_{3} ) q^{47} + ( 6 - \beta_{1} - \beta_{2} + \beta_{3} - 2 \beta_{4} ) q^{49} + ( -1 + 2 \beta_{1} - 2 \beta_{2} + \beta_{3} + 2 \beta_{4} ) q^{53} + ( -\beta_{1} + \beta_{2} ) q^{55} + ( 1 + \beta_{3} - 2 \beta_{4} ) q^{59} + ( -\beta_{1} - \beta_{2} - 2 \beta_{4} ) q^{61} + ( 1 + \beta_{2} - \beta_{4} ) q^{65} + ( 1 - 2 \beta_{1} + \beta_{3} + 2 \beta_{4} ) q^{67} + ( -1 + 3 \beta_{1} - \beta_{3} + 2 \beta_{4} ) q^{71} + ( -\beta_{2} - 2 \beta_{3} ) q^{73} + ( -3 - \beta_{1} - \beta_{2} + 2 \beta_{3} - \beta_{4} ) q^{77} -2 \beta_{2} q^{79} + ( 9 - \beta_{3} ) q^{83} + ( -1 - \beta_{1} + \beta_{2} - \beta_{3} ) q^{85} + ( -2 + 2 \beta_{1} + 2 \beta_{3} + 2 \beta_{4} ) q^{89} + ( 4 - 5 \beta_{1} - \beta_{2} - 4 \beta_{4} ) q^{91} + ( 1 + 2 \beta_{1} + \beta_{4} ) q^{95} + ( 6 + \beta_{1} - \beta_{2} + 2 \beta_{3} - 2 \beta_{4} ) q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$5 q + 5 q^{5} - 2 q^{7} + O(q^{10})$$ $$5 q + 5 q^{5} - 2 q^{7} + q^{11} + 4 q^{13} - 4 q^{17} + 7 q^{19} + 5 q^{23} + 5 q^{25} - 4 q^{29} + 19 q^{31} - 2 q^{35} + 15 q^{37} - 25 q^{41} + 11 q^{47} + 25 q^{49} - 3 q^{53} + q^{55} + q^{59} - 5 q^{61} + 4 q^{65} + 9 q^{67} - q^{71} - q^{73} - 18 q^{77} - 2 q^{79} + 45 q^{83} - 4 q^{85} - 6 q^{89} + 11 q^{91} + 7 q^{95} + 25 q^{97} + O(q^{100})$$

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{5} - 14 x^{3} - x^{2} + 32 x + 16$$:

 $$\beta_{0}$$ $$=$$ $$1$$ $$\beta_{1}$$ $$=$$ $$\nu$$ $$\beta_{2}$$ $$=$$ $$($$$$\nu^{4} - 10 \nu^{2} + 3 \nu + 4$$$$)/4$$ $$\beta_{3}$$ $$=$$ $$($$$$-\nu^{4} + 4 \nu^{3} + 14 \nu^{2} - 39 \nu - 28$$$$)/8$$ $$\beta_{4}$$ $$=$$ $$($$$$-\nu^{4} + 14 \nu^{2} - 3 \nu - 24$$$$)/4$$
 $$1$$ $$=$$ $$\beta_0$$ $$\nu$$ $$=$$ $$\beta_{1}$$ $$\nu^{2}$$ $$=$$ $$\beta_{4} + \beta_{2} + 5$$ $$\nu^{3}$$ $$=$$ $$-\beta_{4} + 2 \beta_{3} + 9 \beta_{1} + 1$$ $$\nu^{4}$$ $$=$$ $$10 \beta_{4} + 14 \beta_{2} - 3 \beta_{1} + 46$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 −1.31091 3.30649 −3.36002 1.93283 −0.568386
0 0 0 1.00000 0 −4.66212 0 0 0
1.2 0 0 0 1.00000 0 −2.55040 0 0 0
1.3 0 0 0 1.00000 0 −1.90754 0 0 0
1.4 0 0 0 1.00000 0 2.38236 0 0 0
1.5 0 0 0 1.00000 0 4.73770 0 0 0
 $$n$$: e.g. 2-40 or 990-1000 Embeddings: e.g. 1-3 or 1.5 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$23$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.bs 5
3.b odd 2 1 920.2.a.j 5
12.b even 2 1 1840.2.a.v 5
15.d odd 2 1 4600.2.a.be 5
15.e even 4 2 4600.2.e.u 10
24.f even 2 1 7360.2.a.cp 5
24.h odd 2 1 7360.2.a.co 5
60.h even 2 1 9200.2.a.cu 5

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.j 5 3.b odd 2 1
1840.2.a.v 5 12.b even 2 1
4600.2.a.be 5 15.d odd 2 1
4600.2.e.u 10 15.e even 4 2
7360.2.a.co 5 24.h odd 2 1
7360.2.a.cp 5 24.f even 2 1
8280.2.a.bs 5 1.a even 1 1 trivial
9200.2.a.cu 5 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(8280))$$:

 $$T_{7}^{5} + 2 T_{7}^{4} - 28 T_{7}^{3} - 57 T_{7}^{2} + 128 T_{7} + 256$$ $$T_{11}^{5} - T_{11}^{4} - 35 T_{11}^{3} + 28 T_{11}^{2} + 172 T_{11} - 64$$ $$T_{13}^{5} - 4 T_{13}^{4} - 46 T_{13}^{3} + 75 T_{13}^{2} + 600 T_{13} + 500$$ $$T_{17}^{5} + 4 T_{17}^{4} - 46 T_{17}^{3} - 157 T_{17}^{2} - 138 T_{17} - 32$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{5}$$
$3$ $$T^{5}$$
$5$ $$( -1 + T )^{5}$$
$7$ $$256 + 128 T - 57 T^{2} - 28 T^{3} + 2 T^{4} + T^{5}$$
$11$ $$-64 + 172 T + 28 T^{2} - 35 T^{3} - T^{4} + T^{5}$$
$13$ $$500 + 600 T + 75 T^{2} - 46 T^{3} - 4 T^{4} + T^{5}$$
$17$ $$-32 - 138 T - 157 T^{2} - 46 T^{3} + 4 T^{4} + T^{5}$$
$19$ $$512 + 676 T + 180 T^{2} - 41 T^{3} - 7 T^{4} + T^{5}$$
$23$ $$( -1 + T )^{5}$$
$29$ $$-8 + 64 T + 36 T^{2} - 41 T^{3} + 4 T^{4} + T^{5}$$
$31$ $$-128 - 53 T + 183 T^{2} + 72 T^{3} - 19 T^{4} + T^{5}$$
$37$ $$64 - 176 T - 36 T^{2} + 64 T^{3} - 15 T^{4} + T^{5}$$
$41$ $$-2182 + 27 T + 653 T^{2} + 212 T^{3} + 25 T^{4} + T^{5}$$
$43$ $$T^{5}$$
$47$ $$-512 - 800 T + 1116 T^{2} - 110 T^{3} - 11 T^{4} + T^{5}$$
$53$ $$20272 + 5808 T - 440 T^{2} - 160 T^{3} + 3 T^{4} + T^{5}$$
$59$ $$-13568 + 4560 T + 236 T^{2} - 142 T^{3} - T^{4} + T^{5}$$
$61$ $$7664 + 2092 T - 568 T^{2} - 115 T^{3} + 5 T^{4} + T^{5}$$
$67$ $$8192 + 4832 T + 432 T^{2} - 126 T^{3} - 9 T^{4} + T^{5}$$
$71$ $$3968 + 8139 T - 407 T^{2} - 214 T^{3} + T^{4} + T^{5}$$
$73$ $$-1328 + 2072 T - 272 T^{2} - 158 T^{3} + T^{4} + T^{5}$$
$79$ $$-1024 + 2432 T + 128 T^{2} - 128 T^{3} + 2 T^{4} + T^{5}$$
$83$ $$-41216 + 26608 T - 6588 T^{2} + 784 T^{3} - 45 T^{4} + T^{5}$$
$89$ $$8192 + 2560 T - 512 T^{2} - 136 T^{3} + 6 T^{4} + T^{5}$$
$97$ $$-49616 - 16908 T + 4164 T^{2} - 39 T^{3} - 25 T^{4} + T^{5}$$