# Properties

 Label 8280.2.a.br.1.4 Level $8280$ Weight $2$ Character 8280.1 Self dual yes Analytic conductor $66.116$ Analytic rank $0$ Dimension $5$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [8280,2,Mod(1,8280)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(8280, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("8280.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 8280.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$66.1161328736$$ Analytic rank: $$0$$ Dimension: $$5$$ Coefficient field: 5.5.20087896.1 comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{5} - x^{4} - 21x^{3} + 5x^{2} + 84x - 4$$ x^5 - x^4 - 21*x^3 + 5*x^2 + 84*x - 4 Coefficient ring: $$\Z[a_1, \ldots, a_{11}]$$ Coefficient ring index: $$2^{2}$$ Twist minimal: no (minimal twist has level 2760) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## Embedding invariants

 Embedding label 1.4 Root $$-3.43588$$ of defining polynomial Character $$\chi$$ $$=$$ 8280.1

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q-1.00000 q^{5} +2.62057 q^{7} +O(q^{10})$$ $$q-1.00000 q^{5} +2.62057 q^{7} +6.55627 q^{11} +7.06828 q^{13} -6.42405 q^{17} -1.80348 q^{19} +1.00000 q^{23} +1.00000 q^{25} +7.17684 q^{29} +4.10856 q^{31} -2.62057 q^{35} +4.62057 q^{37} -4.30508 q^{41} +6.87176 q^{43} -1.80348 q^{47} -0.132589 q^{49} +4.93606 q^{53} -6.55627 q^{55} +7.54623 q^{59} +2.70854 q^{61} -7.06828 q^{65} +7.37337 q^{67} -3.93569 q^{71} -5.04462 q^{73} +17.1812 q^{77} +6.11897 q^{79} +8.42405 q^{83} +6.42405 q^{85} -11.3838 q^{89} +18.5230 q^{91} +1.80348 q^{95} -17.9843 q^{97} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$5 q - 5 q^{5} - 4 q^{7}+O(q^{10})$$ 5 * q - 5 * q^5 - 4 * q^7 $$5 q - 5 q^{5} - 4 q^{7} + 4 q^{11} + 4 q^{13} - 10 q^{17} - 4 q^{19} + 5 q^{23} + 5 q^{25} - 10 q^{29} + 6 q^{31} + 4 q^{35} + 6 q^{37} - 12 q^{41} - 2 q^{43} - 4 q^{47} + 19 q^{49} - 4 q^{55} - 6 q^{59} + 16 q^{61} - 4 q^{65} - 4 q^{67} - 8 q^{71} + 14 q^{73} - 16 q^{77} + 18 q^{79} + 20 q^{83} + 10 q^{85} - 18 q^{89} + 20 q^{91} + 4 q^{95} + 4 q^{97}+O(q^{100})$$ 5 * q - 5 * q^5 - 4 * q^7 + 4 * q^11 + 4 * q^13 - 10 * q^17 - 4 * q^19 + 5 * q^23 + 5 * q^25 - 10 * q^29 + 6 * q^31 + 4 * q^35 + 6 * q^37 - 12 * q^41 - 2 * q^43 - 4 * q^47 + 19 * q^49 - 4 * q^55 - 6 * q^59 + 16 * q^61 - 4 * q^65 - 4 * q^67 - 8 * q^71 + 14 * q^73 - 16 * q^77 + 18 * q^79 + 20 * q^83 + 10 * q^85 - 18 * q^89 + 20 * q^91 + 4 * q^95 + 4 * q^97

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0 0
$$3$$ 0 0
$$4$$ 0 0
$$5$$ −1.00000 −0.447214
$$6$$ 0 0
$$7$$ 2.62057 0.990484 0.495242 0.868755i $$-0.335079\pi$$
0.495242 + 0.868755i $$0.335079\pi$$
$$8$$ 0 0
$$9$$ 0 0
$$10$$ 0 0
$$11$$ 6.55627 1.97679 0.988395 0.151907i $$-0.0485414\pi$$
0.988395 + 0.151907i $$0.0485414\pi$$
$$12$$ 0 0
$$13$$ 7.06828 1.96039 0.980195 0.198037i $$-0.0634565\pi$$
0.980195 + 0.198037i $$0.0634565\pi$$
$$14$$ 0 0
$$15$$ 0 0
$$16$$ 0 0
$$17$$ −6.42405 −1.55806 −0.779030 0.626986i $$-0.784288\pi$$
−0.779030 + 0.626986i $$0.784288\pi$$
$$18$$ 0 0
$$19$$ −1.80348 −0.413746 −0.206873 0.978368i $$-0.566329\pi$$
−0.206873 + 0.978368i $$0.566329\pi$$
$$20$$ 0 0
$$21$$ 0 0
$$22$$ 0 0
$$23$$ 1.00000 0.208514
$$24$$ 0 0
$$25$$ 1.00000 0.200000
$$26$$ 0 0
$$27$$ 0 0
$$28$$ 0 0
$$29$$ 7.17684 1.33271 0.666353 0.745636i $$-0.267854\pi$$
0.666353 + 0.745636i $$0.267854\pi$$
$$30$$ 0 0
$$31$$ 4.10856 0.737919 0.368960 0.929445i $$-0.379714\pi$$
0.368960 + 0.929445i $$0.379714\pi$$
$$32$$ 0 0
$$33$$ 0 0
$$34$$ 0 0
$$35$$ −2.62057 −0.442958
$$36$$ 0 0
$$37$$ 4.62057 0.759618 0.379809 0.925065i $$-0.375990\pi$$
0.379809 + 0.925065i $$0.375990\pi$$
$$38$$ 0 0
$$39$$ 0 0
$$40$$ 0 0
$$41$$ −4.30508 −0.672341 −0.336171 0.941801i $$-0.609132\pi$$
−0.336171 + 0.941801i $$0.609132\pi$$
$$42$$ 0 0
$$43$$ 6.87176 1.04793 0.523967 0.851739i $$-0.324452\pi$$
0.523967 + 0.851739i $$0.324452\pi$$
$$44$$ 0 0
$$45$$ 0 0
$$46$$ 0 0
$$47$$ −1.80348 −0.263064 −0.131532 0.991312i $$-0.541990\pi$$
−0.131532 + 0.991312i $$0.541990\pi$$
$$48$$ 0 0
$$49$$ −0.132589 −0.0189413
$$50$$ 0 0
$$51$$ 0 0
$$52$$ 0 0
$$53$$ 4.93606 0.678021 0.339010 0.940783i $$-0.389908\pi$$
0.339010 + 0.940783i $$0.389908\pi$$
$$54$$ 0 0
$$55$$ −6.55627 −0.884047
$$56$$ 0 0
$$57$$ 0 0
$$58$$ 0 0
$$59$$ 7.54623 0.982436 0.491218 0.871037i $$-0.336552\pi$$
0.491218 + 0.871037i $$0.336552\pi$$
$$60$$ 0 0
$$61$$ 2.70854 0.346793 0.173396 0.984852i $$-0.444526\pi$$
0.173396 + 0.984852i $$0.444526\pi$$
$$62$$ 0 0
$$63$$ 0 0
$$64$$ 0 0
$$65$$ −7.06828 −0.876713
$$66$$ 0 0
$$67$$ 7.37337 0.900800 0.450400 0.892827i $$-0.351281\pi$$
0.450400 + 0.892827i $$0.351281\pi$$
$$68$$ 0 0
$$69$$ 0 0
$$70$$ 0 0
$$71$$ −3.93569 −0.467081 −0.233541 0.972347i $$-0.575031\pi$$
−0.233541 + 0.972347i $$0.575031\pi$$
$$72$$ 0 0
$$73$$ −5.04462 −0.590429 −0.295214 0.955431i $$-0.595391\pi$$
−0.295214 + 0.955431i $$0.595391\pi$$
$$74$$ 0 0
$$75$$ 0 0
$$76$$ 0 0
$$77$$ 17.1812 1.95798
$$78$$ 0 0
$$79$$ 6.11897 0.688437 0.344219 0.938889i $$-0.388144\pi$$
0.344219 + 0.938889i $$0.388144\pi$$
$$80$$ 0 0
$$81$$ 0 0
$$82$$ 0 0
$$83$$ 8.42405 0.924660 0.462330 0.886708i $$-0.347014\pi$$
0.462330 + 0.886708i $$0.347014\pi$$
$$84$$ 0 0
$$85$$ 6.42405 0.696786
$$86$$ 0 0
$$87$$ 0 0
$$88$$ 0 0
$$89$$ −11.3838 −1.20668 −0.603339 0.797485i $$-0.706163\pi$$
−0.603339 + 0.797485i $$0.706163\pi$$
$$90$$ 0 0
$$91$$ 18.5230 1.94173
$$92$$ 0 0
$$93$$ 0 0
$$94$$ 0 0
$$95$$ 1.80348 0.185033
$$96$$ 0 0
$$97$$ −17.9843 −1.82603 −0.913014 0.407927i $$-0.866252\pi$$
−0.913014 + 0.407927i $$0.866252\pi$$
$$98$$ 0 0
$$99$$ 0 0
$$100$$ 0 0
$$101$$ −1.67126 −0.166296 −0.0831481 0.996537i $$-0.526497\pi$$
−0.0831481 + 0.996537i $$0.526497\pi$$
$$102$$ 0 0
$$103$$ 6.72913 0.663041 0.331521 0.943448i $$-0.392438\pi$$
0.331521 + 0.943448i $$0.392438\pi$$
$$104$$ 0 0
$$105$$ 0 0
$$106$$ 0 0
$$107$$ −17.9296 −1.73332 −0.866662 0.498896i $$-0.833739\pi$$
−0.866662 + 0.498896i $$0.833739\pi$$
$$108$$ 0 0
$$109$$ −12.6692 −1.21349 −0.606744 0.794898i $$-0.707525\pi$$
−0.606744 + 0.794898i $$0.707525\pi$$
$$110$$ 0 0
$$111$$ 0 0
$$112$$ 0 0
$$113$$ −21.1708 −1.99158 −0.995790 0.0916634i $$-0.970782\pi$$
−0.995790 + 0.0916634i $$0.970782\pi$$
$$114$$ 0 0
$$115$$ −1.00000 −0.0932505
$$116$$ 0 0
$$117$$ 0 0
$$118$$ 0 0
$$119$$ −16.8347 −1.54323
$$120$$ 0 0
$$121$$ 31.9847 2.90770
$$122$$ 0 0
$$123$$ 0 0
$$124$$ 0 0
$$125$$ −1.00000 −0.0894427
$$126$$ 0 0
$$127$$ −4.04425 −0.358870 −0.179435 0.983770i $$-0.557427\pi$$
−0.179435 + 0.983770i $$0.557427\pi$$
$$128$$ 0 0
$$129$$ 0 0
$$130$$ 0 0
$$131$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$132$$ 0 0
$$133$$ −4.72614 −0.409808
$$134$$ 0 0
$$135$$ 0 0
$$136$$ 0 0
$$137$$ −5.75316 −0.491526 −0.245763 0.969330i $$-0.579038\pi$$
−0.245763 + 0.969330i $$0.579038\pi$$
$$138$$ 0 0
$$139$$ 4.50161 0.381821 0.190911 0.981607i $$-0.438856\pi$$
0.190911 + 0.981607i $$0.438856\pi$$
$$140$$ 0 0
$$141$$ 0 0
$$142$$ 0 0
$$143$$ 46.3416 3.87528
$$144$$ 0 0
$$145$$ −7.17684 −0.596004
$$146$$ 0 0
$$147$$ 0 0
$$148$$ 0 0
$$149$$ 14.1572 1.15980 0.579900 0.814688i $$-0.303092\pi$$
0.579900 + 0.814688i $$0.303092\pi$$
$$150$$ 0 0
$$151$$ −18.9847 −1.54495 −0.772475 0.635045i $$-0.780982\pi$$
−0.772475 + 0.635045i $$0.780982\pi$$
$$152$$ 0 0
$$153$$ 0 0
$$154$$ 0 0
$$155$$ −4.10856 −0.330007
$$156$$ 0 0
$$157$$ 8.22753 0.656628 0.328314 0.944569i $$-0.393520\pi$$
0.328314 + 0.944569i $$0.393520\pi$$
$$158$$ 0 0
$$159$$ 0 0
$$160$$ 0 0
$$161$$ 2.62057 0.206530
$$162$$ 0 0
$$163$$ 0.264439 0.0207124 0.0103562 0.999946i $$-0.496703\pi$$
0.0103562 + 0.999946i $$0.496703\pi$$
$$164$$ 0 0
$$165$$ 0 0
$$166$$ 0 0
$$167$$ −9.45775 −0.731862 −0.365931 0.930642i $$-0.619249\pi$$
−0.365931 + 0.930642i $$0.619249\pi$$
$$168$$ 0 0
$$169$$ 36.9606 2.84313
$$170$$ 0 0
$$171$$ 0 0
$$172$$ 0 0
$$173$$ 0.758851 0.0576944 0.0288472 0.999584i $$-0.490816\pi$$
0.0288472 + 0.999584i $$0.490816\pi$$
$$174$$ 0 0
$$175$$ 2.62057 0.198097
$$176$$ 0 0
$$177$$ 0 0
$$178$$ 0 0
$$179$$ −21.9606 −1.64142 −0.820708 0.571348i $$-0.806420\pi$$
−0.820708 + 0.571348i $$0.806420\pi$$
$$180$$ 0 0
$$181$$ −14.4727 −1.07574 −0.537872 0.843027i $$-0.680772\pi$$
−0.537872 + 0.843027i $$0.680772\pi$$
$$182$$ 0 0
$$183$$ 0 0
$$184$$ 0 0
$$185$$ −4.62057 −0.339711
$$186$$ 0 0
$$187$$ −42.1178 −3.07996
$$188$$ 0 0
$$189$$ 0 0
$$190$$ 0 0
$$191$$ 11.9400 0.863951 0.431976 0.901885i $$-0.357817\pi$$
0.431976 + 0.901885i $$0.357817\pi$$
$$192$$ 0 0
$$193$$ 11.6342 0.837448 0.418724 0.908114i $$-0.362477\pi$$
0.418724 + 0.908114i $$0.362477\pi$$
$$194$$ 0 0
$$195$$ 0 0
$$196$$ 0 0
$$197$$ −24.6181 −1.75397 −0.876984 0.480519i $$-0.840448\pi$$
−0.876984 + 0.480519i $$0.840448\pi$$
$$198$$ 0 0
$$199$$ 18.7291 1.32767 0.663837 0.747878i $$-0.268927\pi$$
0.663837 + 0.747878i $$0.268927\pi$$
$$200$$ 0 0
$$201$$ 0 0
$$202$$ 0 0
$$203$$ 18.8075 1.32002
$$204$$ 0 0
$$205$$ 4.30508 0.300680
$$206$$ 0 0
$$207$$ 0 0
$$208$$ 0 0
$$209$$ −11.8241 −0.817888
$$210$$ 0 0
$$211$$ 3.49839 0.240839 0.120420 0.992723i $$-0.461576\pi$$
0.120420 + 0.992723i $$0.461576\pi$$
$$212$$ 0 0
$$213$$ 0 0
$$214$$ 0 0
$$215$$ −6.87176 −0.468650
$$216$$ 0 0
$$217$$ 10.7668 0.730897
$$218$$ 0 0
$$219$$ 0 0
$$220$$ 0 0
$$221$$ −45.4070 −3.05441
$$222$$ 0 0
$$223$$ −13.8477 −0.927313 −0.463656 0.886015i $$-0.653463\pi$$
−0.463656 + 0.886015i $$0.653463\pi$$
$$224$$ 0 0
$$225$$ 0 0
$$226$$ 0 0
$$227$$ −19.5772 −1.29939 −0.649693 0.760196i $$-0.725103\pi$$
−0.649693 + 0.760196i $$0.725103\pi$$
$$228$$ 0 0
$$229$$ 25.4959 1.68482 0.842410 0.538838i $$-0.181136\pi$$
0.842410 + 0.538838i $$0.181136\pi$$
$$230$$ 0 0
$$231$$ 0 0
$$232$$ 0 0
$$233$$ −16.9847 −1.11270 −0.556351 0.830947i $$-0.687799\pi$$
−0.556351 + 0.830947i $$0.687799\pi$$
$$234$$ 0 0
$$235$$ 1.80348 0.117646
$$236$$ 0 0
$$237$$ 0 0
$$238$$ 0 0
$$239$$ −16.5459 −1.07026 −0.535131 0.844769i $$-0.679738\pi$$
−0.535131 + 0.844769i $$0.679738\pi$$
$$240$$ 0 0
$$241$$ −10.1572 −0.654280 −0.327140 0.944976i $$-0.606085\pi$$
−0.327140 + 0.944976i $$0.606085\pi$$
$$242$$ 0 0
$$243$$ 0 0
$$244$$ 0 0
$$245$$ 0.132589 0.00847081
$$246$$ 0 0
$$247$$ −12.7475 −0.811103
$$248$$ 0 0
$$249$$ 0 0
$$250$$ 0 0
$$251$$ −5.72950 −0.361643 −0.180822 0.983516i $$-0.557876\pi$$
−0.180822 + 0.983516i $$0.557876\pi$$
$$252$$ 0 0
$$253$$ 6.55627 0.412189
$$254$$ 0 0
$$255$$ 0 0
$$256$$ 0 0
$$257$$ 19.5269 1.21806 0.609028 0.793149i $$-0.291560\pi$$
0.609028 + 0.793149i $$0.291560\pi$$
$$258$$ 0 0
$$259$$ 12.1086 0.752389
$$260$$ 0 0
$$261$$ 0 0
$$262$$ 0 0
$$263$$ 29.0726 1.79270 0.896348 0.443352i $$-0.146211\pi$$
0.896348 + 0.443352i $$0.146211\pi$$
$$264$$ 0 0
$$265$$ −4.93606 −0.303220
$$266$$ 0 0
$$267$$ 0 0
$$268$$ 0 0
$$269$$ −11.8078 −0.719936 −0.359968 0.932965i $$-0.617212\pi$$
−0.359968 + 0.932965i $$0.617212\pi$$
$$270$$ 0 0
$$271$$ 9.13259 0.554765 0.277383 0.960760i $$-0.410533\pi$$
0.277383 + 0.960760i $$0.410533\pi$$
$$272$$ 0 0
$$273$$ 0 0
$$274$$ 0 0
$$275$$ 6.55627 0.395358
$$276$$ 0 0
$$277$$ 27.8564 1.67373 0.836865 0.547409i $$-0.184386\pi$$
0.836865 + 0.547409i $$0.184386\pi$$
$$278$$ 0 0
$$279$$ 0 0
$$280$$ 0 0
$$281$$ 11.9461 0.712645 0.356322 0.934363i $$-0.384031\pi$$
0.356322 + 0.934363i $$0.384031\pi$$
$$282$$ 0 0
$$283$$ −17.0076 −1.01099 −0.505497 0.862828i $$-0.668691\pi$$
−0.505497 + 0.862828i $$0.668691\pi$$
$$284$$ 0 0
$$285$$ 0 0
$$286$$ 0 0
$$287$$ −11.2818 −0.665943
$$288$$ 0 0
$$289$$ 24.2684 1.42755
$$290$$ 0 0
$$291$$ 0 0
$$292$$ 0 0
$$293$$ 23.9472 1.39901 0.699506 0.714626i $$-0.253403\pi$$
0.699506 + 0.714626i $$0.253403\pi$$
$$294$$ 0 0
$$295$$ −7.54623 −0.439359
$$296$$ 0 0
$$297$$ 0 0
$$298$$ 0 0
$$299$$ 7.06828 0.408769
$$300$$ 0 0
$$301$$ 18.0080 1.03796
$$302$$ 0 0
$$303$$ 0 0
$$304$$ 0 0
$$305$$ −2.70854 −0.155091
$$306$$ 0 0
$$307$$ 15.9400 0.909746 0.454873 0.890556i $$-0.349685\pi$$
0.454873 + 0.890556i $$0.349685\pi$$
$$308$$ 0 0
$$309$$ 0 0
$$310$$ 0 0
$$311$$ −8.16023 −0.462724 −0.231362 0.972868i $$-0.574318\pi$$
−0.231362 + 0.972868i $$0.574318\pi$$
$$312$$ 0 0
$$313$$ 2.84375 0.160738 0.0803692 0.996765i $$-0.474390\pi$$
0.0803692 + 0.996765i $$0.474390\pi$$
$$314$$ 0 0
$$315$$ 0 0
$$316$$ 0 0
$$317$$ 23.5269 1.32140 0.660702 0.750648i $$-0.270259\pi$$
0.660702 + 0.750648i $$0.270259\pi$$
$$318$$ 0 0
$$319$$ 47.0533 2.63448
$$320$$ 0 0
$$321$$ 0 0
$$322$$ 0 0
$$323$$ 11.5856 0.644641
$$324$$ 0 0
$$325$$ 7.06828 0.392078
$$326$$ 0 0
$$327$$ 0 0
$$328$$ 0 0
$$329$$ −4.72614 −0.260561
$$330$$ 0 0
$$331$$ −11.9326 −0.655877 −0.327938 0.944699i $$-0.606354\pi$$
−0.327938 + 0.944699i $$0.606354\pi$$
$$332$$ 0 0
$$333$$ 0 0
$$334$$ 0 0
$$335$$ −7.37337 −0.402850
$$336$$ 0 0
$$337$$ 12.6073 0.686765 0.343382 0.939196i $$-0.388427\pi$$
0.343382 + 0.939196i $$0.388427\pi$$
$$338$$ 0 0
$$339$$ 0 0
$$340$$ 0 0
$$341$$ 26.9368 1.45871
$$342$$ 0 0
$$343$$ −18.6915 −1.00925
$$344$$ 0 0
$$345$$ 0 0
$$346$$ 0 0
$$347$$ 5.85132 0.314115 0.157058 0.987589i $$-0.449799\pi$$
0.157058 + 0.987589i $$0.449799\pi$$
$$348$$ 0 0
$$349$$ −29.7034 −1.58999 −0.794993 0.606618i $$-0.792526\pi$$
−0.794993 + 0.606618i $$0.792526\pi$$
$$350$$ 0 0
$$351$$ 0 0
$$352$$ 0 0
$$353$$ 10.1160 0.538419 0.269209 0.963082i $$-0.413238\pi$$
0.269209 + 0.963082i $$0.413238\pi$$
$$354$$ 0 0
$$355$$ 3.93569 0.208885
$$356$$ 0 0
$$357$$ 0 0
$$358$$ 0 0
$$359$$ −1.45775 −0.0769369 −0.0384684 0.999260i $$-0.512248\pi$$
−0.0384684 + 0.999260i $$0.512248\pi$$
$$360$$ 0 0
$$361$$ −15.7475 −0.828815
$$362$$ 0 0
$$363$$ 0 0
$$364$$ 0 0
$$365$$ 5.04462 0.264048
$$366$$ 0 0
$$367$$ 1.98959 0.103856 0.0519280 0.998651i $$-0.483463\pi$$
0.0519280 + 0.998651i $$0.483463\pi$$
$$368$$ 0 0
$$369$$ 0 0
$$370$$ 0 0
$$371$$ 12.9353 0.671569
$$372$$ 0 0
$$373$$ 5.12218 0.265217 0.132608 0.991169i $$-0.457665\pi$$
0.132608 + 0.991169i $$0.457665\pi$$
$$374$$ 0 0
$$375$$ 0 0
$$376$$ 0 0
$$377$$ 50.7280 2.61262
$$378$$ 0 0
$$379$$ −9.79084 −0.502922 −0.251461 0.967867i $$-0.580911\pi$$
−0.251461 + 0.967867i $$0.580911\pi$$
$$380$$ 0 0
$$381$$ 0 0
$$382$$ 0 0
$$383$$ −15.4176 −0.787804 −0.393902 0.919152i $$-0.628875\pi$$
−0.393902 + 0.919152i $$0.628875\pi$$
$$384$$ 0 0
$$385$$ −17.1812 −0.875635
$$386$$ 0 0
$$387$$ 0 0
$$388$$ 0 0
$$389$$ 38.3616 1.94501 0.972506 0.232877i $$-0.0748138\pi$$
0.972506 + 0.232877i $$0.0748138\pi$$
$$390$$ 0 0
$$391$$ −6.42405 −0.324878
$$392$$ 0 0
$$393$$ 0 0
$$394$$ 0 0
$$395$$ −6.11897 −0.307879
$$396$$ 0 0
$$397$$ 2.87102 0.144092 0.0720462 0.997401i $$-0.477047\pi$$
0.0720462 + 0.997401i $$0.477047\pi$$
$$398$$ 0 0
$$399$$ 0 0
$$400$$ 0 0
$$401$$ 29.8453 1.49040 0.745201 0.666840i $$-0.232354\pi$$
0.745201 + 0.666840i $$0.232354\pi$$
$$402$$ 0 0
$$403$$ 29.0405 1.44661
$$404$$ 0 0
$$405$$ 0 0
$$406$$ 0 0
$$407$$ 30.2937 1.50160
$$408$$ 0 0
$$409$$ −6.21788 −0.307454 −0.153727 0.988113i $$-0.549128\pi$$
−0.153727 + 0.988113i $$0.549128\pi$$
$$410$$ 0 0
$$411$$ 0 0
$$412$$ 0 0
$$413$$ 19.7755 0.973087
$$414$$ 0 0
$$415$$ −8.42405 −0.413520
$$416$$ 0 0
$$417$$ 0 0
$$418$$ 0 0
$$419$$ 33.6695 1.64487 0.822433 0.568863i $$-0.192616\pi$$
0.822433 + 0.568863i $$0.192616\pi$$
$$420$$ 0 0
$$421$$ 17.0149 0.829256 0.414628 0.909991i $$-0.363912\pi$$
0.414628 + 0.909991i $$0.363912\pi$$
$$422$$ 0 0
$$423$$ 0 0
$$424$$ 0 0
$$425$$ −6.42405 −0.311612
$$426$$ 0 0
$$427$$ 7.09793 0.343493
$$428$$ 0 0
$$429$$ 0 0
$$430$$ 0 0
$$431$$ −19.6422 −0.946129 −0.473065 0.881028i $$-0.656852\pi$$
−0.473065 + 0.881028i $$0.656852\pi$$
$$432$$ 0 0
$$433$$ −5.24476 −0.252047 −0.126023 0.992027i $$-0.540221\pi$$
−0.126023 + 0.992027i $$0.540221\pi$$
$$434$$ 0 0
$$435$$ 0 0
$$436$$ 0 0
$$437$$ −1.80348 −0.0862719
$$438$$ 0 0
$$439$$ 17.9194 0.855249 0.427624 0.903957i $$-0.359351\pi$$
0.427624 + 0.903957i $$0.359351\pi$$
$$440$$ 0 0
$$441$$ 0 0
$$442$$ 0 0
$$443$$ 9.75616 0.463529 0.231764 0.972772i $$-0.425550\pi$$
0.231764 + 0.972772i $$0.425550\pi$$
$$444$$ 0 0
$$445$$ 11.3838 0.539643
$$446$$ 0 0
$$447$$ 0 0
$$448$$ 0 0
$$449$$ 34.5703 1.63147 0.815736 0.578425i $$-0.196332\pi$$
0.815736 + 0.578425i $$0.196332\pi$$
$$450$$ 0 0
$$451$$ −28.2253 −1.32908
$$452$$ 0 0
$$453$$ 0 0
$$454$$ 0 0
$$455$$ −18.5230 −0.868370
$$456$$ 0 0
$$457$$ 30.0455 1.40547 0.702736 0.711451i $$-0.251962\pi$$
0.702736 + 0.711451i $$0.251962\pi$$
$$458$$ 0 0
$$459$$ 0 0
$$460$$ 0 0
$$461$$ 15.2849 0.711888 0.355944 0.934507i $$-0.384159\pi$$
0.355944 + 0.934507i $$0.384159\pi$$
$$462$$ 0 0
$$463$$ 4.89235 0.227367 0.113684 0.993517i $$-0.463735\pi$$
0.113684 + 0.993517i $$0.463735\pi$$
$$464$$ 0 0
$$465$$ 0 0
$$466$$ 0 0
$$467$$ 35.4972 1.64262 0.821308 0.570485i $$-0.193245\pi$$
0.821308 + 0.570485i $$0.193245\pi$$
$$468$$ 0 0
$$469$$ 19.3225 0.892228
$$470$$ 0 0
$$471$$ 0 0
$$472$$ 0 0
$$473$$ 45.0531 2.07154
$$474$$ 0 0
$$475$$ −1.80348 −0.0827491
$$476$$ 0 0
$$477$$ 0 0
$$478$$ 0 0
$$479$$ −7.80421 −0.356584 −0.178292 0.983978i $$-0.557057\pi$$
−0.178292 + 0.983978i $$0.557057\pi$$
$$480$$ 0 0
$$481$$ 32.6595 1.48915
$$482$$ 0 0
$$483$$ 0 0
$$484$$ 0 0
$$485$$ 17.9843 0.816625
$$486$$ 0 0
$$487$$ −21.5498 −0.976517 −0.488258 0.872699i $$-0.662368\pi$$
−0.488258 + 0.872699i $$0.662368\pi$$
$$488$$ 0 0
$$489$$ 0 0
$$490$$ 0 0
$$491$$ 15.8315 0.714465 0.357232 0.934016i $$-0.383720\pi$$
0.357232 + 0.934016i $$0.383720\pi$$
$$492$$ 0 0
$$493$$ −46.1044 −2.07644
$$494$$ 0 0
$$495$$ 0 0
$$496$$ 0 0
$$497$$ −10.3138 −0.462636
$$498$$ 0 0
$$499$$ −5.76357 −0.258013 −0.129006 0.991644i $$-0.541179\pi$$
−0.129006 + 0.991644i $$0.541179\pi$$
$$500$$ 0 0
$$501$$ 0 0
$$502$$ 0 0
$$503$$ 18.8075 0.838583 0.419291 0.907852i $$-0.362279\pi$$
0.419291 + 0.907852i $$0.362279\pi$$
$$504$$ 0 0
$$505$$ 1.67126 0.0743699
$$506$$ 0 0
$$507$$ 0 0
$$508$$ 0 0
$$509$$ −3.21675 −0.142580 −0.0712900 0.997456i $$-0.522712\pi$$
−0.0712900 + 0.997456i $$0.522712\pi$$
$$510$$ 0 0
$$511$$ −13.2198 −0.584810
$$512$$ 0 0
$$513$$ 0 0
$$514$$ 0 0
$$515$$ −6.72913 −0.296521
$$516$$ 0 0
$$517$$ −11.8241 −0.520022
$$518$$ 0 0
$$519$$ 0 0
$$520$$ 0 0
$$521$$ −14.9100 −0.653217 −0.326609 0.945160i $$-0.605906\pi$$
−0.326609 + 0.945160i $$0.605906\pi$$
$$522$$ 0 0
$$523$$ 12.3982 0.542134 0.271067 0.962561i $$-0.412624\pi$$
0.271067 + 0.962561i $$0.412624\pi$$
$$524$$ 0 0
$$525$$ 0 0
$$526$$ 0 0
$$527$$ −26.3936 −1.14972
$$528$$ 0 0
$$529$$ 1.00000 0.0434783
$$530$$ 0 0
$$531$$ 0 0
$$532$$ 0 0
$$533$$ −30.4296 −1.31805
$$534$$ 0 0
$$535$$ 17.9296 0.775166
$$536$$ 0 0
$$537$$ 0 0
$$538$$ 0 0
$$539$$ −0.869290 −0.0374430
$$540$$ 0 0
$$541$$ −30.8954 −1.32830 −0.664149 0.747600i $$-0.731206\pi$$
−0.664149 + 0.747600i $$0.731206\pi$$
$$542$$ 0 0
$$543$$ 0 0
$$544$$ 0 0
$$545$$ 12.6692 0.542688
$$546$$ 0 0
$$547$$ 14.2251 0.608220 0.304110 0.952637i $$-0.401641\pi$$
0.304110 + 0.952637i $$0.401641\pi$$
$$548$$ 0 0
$$549$$ 0 0
$$550$$ 0 0
$$551$$ −12.9433 −0.551401
$$552$$ 0 0
$$553$$ 16.0352 0.681886
$$554$$ 0 0
$$555$$ 0 0
$$556$$ 0 0
$$557$$ 14.6989 0.622811 0.311406 0.950277i $$-0.399200\pi$$
0.311406 + 0.950277i $$0.399200\pi$$
$$558$$ 0 0
$$559$$ 48.5715 2.05436
$$560$$ 0 0
$$561$$ 0 0
$$562$$ 0 0
$$563$$ −19.4972 −0.821710 −0.410855 0.911701i $$-0.634770\pi$$
−0.410855 + 0.911701i $$0.634770\pi$$
$$564$$ 0 0
$$565$$ 21.1708 0.890662
$$566$$ 0 0
$$567$$ 0 0
$$568$$ 0 0
$$569$$ 17.8854 0.749795 0.374898 0.927066i $$-0.377678\pi$$
0.374898 + 0.927066i $$0.377678\pi$$
$$570$$ 0 0
$$571$$ −23.3904 −0.978856 −0.489428 0.872044i $$-0.662794\pi$$
−0.489428 + 0.872044i $$0.662794\pi$$
$$572$$ 0 0
$$573$$ 0 0
$$574$$ 0 0
$$575$$ 1.00000 0.0417029
$$576$$ 0 0
$$577$$ −45.7515 −1.90466 −0.952329 0.305072i $$-0.901320\pi$$
−0.952329 + 0.305072i $$0.901320\pi$$
$$578$$ 0 0
$$579$$ 0 0
$$580$$ 0 0
$$581$$ 22.0759 0.915861
$$582$$ 0 0
$$583$$ 32.3622 1.34030
$$584$$ 0 0
$$585$$ 0 0
$$586$$ 0 0
$$587$$ −24.9839 −1.03120 −0.515599 0.856830i $$-0.672430\pi$$
−0.515599 + 0.856830i $$0.672430\pi$$
$$588$$ 0 0
$$589$$ −7.40969 −0.305311
$$590$$ 0 0
$$591$$ 0 0
$$592$$ 0 0
$$593$$ −25.3178 −1.03968 −0.519838 0.854265i $$-0.674008\pi$$
−0.519838 + 0.854265i $$0.674008\pi$$
$$594$$ 0 0
$$595$$ 16.8347 0.690155
$$596$$ 0 0
$$597$$ 0 0
$$598$$ 0 0
$$599$$ −5.23756 −0.214001 −0.107000 0.994259i $$-0.534125\pi$$
−0.107000 + 0.994259i $$0.534125\pi$$
$$600$$ 0 0
$$601$$ −26.1173 −1.06535 −0.532673 0.846321i $$-0.678812\pi$$
−0.532673 + 0.846321i $$0.678812\pi$$
$$602$$ 0 0
$$603$$ 0 0
$$604$$ 0 0
$$605$$ −31.9847 −1.30036
$$606$$ 0 0
$$607$$ −24.6631 −1.00105 −0.500523 0.865723i $$-0.666859\pi$$
−0.500523 + 0.865723i $$0.666859\pi$$
$$608$$ 0 0
$$609$$ 0 0
$$610$$ 0 0
$$611$$ −12.7475 −0.515708
$$612$$ 0 0
$$613$$ −4.60052 −0.185813 −0.0929067 0.995675i $$-0.529616\pi$$
−0.0929067 + 0.995675i $$0.529616\pi$$
$$614$$ 0 0
$$615$$ 0 0
$$616$$ 0 0
$$617$$ −18.9143 −0.761461 −0.380731 0.924686i $$-0.624327\pi$$
−0.380731 + 0.924686i $$0.624327\pi$$
$$618$$ 0 0
$$619$$ −47.9686 −1.92802 −0.964010 0.265865i $$-0.914343\pi$$
−0.964010 + 0.265865i $$0.914343\pi$$
$$620$$ 0 0
$$621$$ 0 0
$$622$$ 0 0
$$623$$ −29.8320 −1.19519
$$624$$ 0 0
$$625$$ 1.00000 0.0400000
$$626$$ 0 0
$$627$$ 0 0
$$628$$ 0 0
$$629$$ −29.6828 −1.18353
$$630$$ 0 0
$$631$$ −29.5445 −1.17615 −0.588074 0.808807i $$-0.700114\pi$$
−0.588074 + 0.808807i $$0.700114\pi$$
$$632$$ 0 0
$$633$$ 0 0
$$634$$ 0 0
$$635$$ 4.04425 0.160491
$$636$$ 0 0
$$637$$ −0.937178 −0.0371323
$$638$$ 0 0
$$639$$ 0 0
$$640$$ 0 0
$$641$$ 43.2557 1.70850 0.854248 0.519865i $$-0.174018\pi$$
0.854248 + 0.519865i $$0.174018\pi$$
$$642$$ 0 0
$$643$$ −37.2455 −1.46882 −0.734410 0.678707i $$-0.762541\pi$$
−0.734410 + 0.678707i $$0.762541\pi$$
$$644$$ 0 0
$$645$$ 0 0
$$646$$ 0 0
$$647$$ −41.9007 −1.64729 −0.823643 0.567109i $$-0.808062\pi$$
−0.823643 + 0.567109i $$0.808062\pi$$
$$648$$ 0 0
$$649$$ 49.4751 1.94207
$$650$$ 0 0
$$651$$ 0 0
$$652$$ 0 0
$$653$$ −36.4697 −1.42717 −0.713584 0.700570i $$-0.752929\pi$$
−0.713584 + 0.700570i $$0.752929\pi$$
$$654$$ 0 0
$$655$$ 0 0
$$656$$ 0 0
$$657$$ 0 0
$$658$$ 0 0
$$659$$ 17.8247 0.694350 0.347175 0.937800i $$-0.387141\pi$$
0.347175 + 0.937800i $$0.387141\pi$$
$$660$$ 0 0
$$661$$ −2.70189 −0.105091 −0.0525456 0.998619i $$-0.516733\pi$$
−0.0525456 + 0.998619i $$0.516733\pi$$
$$662$$ 0 0
$$663$$ 0 0
$$664$$ 0 0
$$665$$ 4.72614 0.183272
$$666$$ 0 0
$$667$$ 7.17684 0.277889
$$668$$ 0 0
$$669$$ 0 0
$$670$$ 0 0
$$671$$ 17.7579 0.685537
$$672$$ 0 0
$$673$$ 8.19652 0.315953 0.157976 0.987443i $$-0.449503\pi$$
0.157976 + 0.987443i $$0.449503\pi$$
$$674$$ 0 0
$$675$$ 0 0
$$676$$ 0 0
$$677$$ −26.8759 −1.03292 −0.516462 0.856310i $$-0.672751\pi$$
−0.516462 + 0.856310i $$0.672751\pi$$
$$678$$ 0 0
$$679$$ −47.1292 −1.80865
$$680$$ 0 0
$$681$$ 0 0
$$682$$ 0 0
$$683$$ 17.1252 0.655277 0.327638 0.944803i $$-0.393747\pi$$
0.327638 + 0.944803i $$0.393747\pi$$
$$684$$ 0 0
$$685$$ 5.75316 0.219817
$$686$$ 0 0
$$687$$ 0 0
$$688$$ 0 0
$$689$$ 34.8895 1.32918
$$690$$ 0 0
$$691$$ 15.7042 0.597414 0.298707 0.954345i $$-0.403445\pi$$
0.298707 + 0.954345i $$0.403445\pi$$
$$692$$ 0 0
$$693$$ 0 0
$$694$$ 0 0
$$695$$ −4.50161 −0.170756
$$696$$ 0 0
$$697$$ 27.6561 1.04755
$$698$$ 0 0
$$699$$ 0 0
$$700$$ 0 0
$$701$$ 6.81955 0.257571 0.128785 0.991672i $$-0.458892\pi$$
0.128785 + 0.991672i $$0.458892\pi$$
$$702$$ 0 0
$$703$$ −8.33309 −0.314289
$$704$$ 0 0
$$705$$ 0 0
$$706$$ 0 0
$$707$$ −4.37965 −0.164714
$$708$$ 0 0
$$709$$ 23.0955 0.867368 0.433684 0.901065i $$-0.357213\pi$$
0.433684 + 0.901065i $$0.357213\pi$$
$$710$$ 0 0
$$711$$ 0 0
$$712$$ 0 0
$$713$$ 4.10856 0.153867
$$714$$ 0 0
$$715$$ −46.3416 −1.73308
$$716$$ 0 0
$$717$$ 0 0
$$718$$ 0 0
$$719$$ 22.5152 0.839675 0.419838 0.907599i $$-0.362087\pi$$
0.419838 + 0.907599i $$0.362087\pi$$
$$720$$ 0 0
$$721$$ 17.6342 0.656732
$$722$$ 0 0
$$723$$ 0 0
$$724$$ 0 0
$$725$$ 7.17684 0.266541
$$726$$ 0 0
$$727$$ −3.45998 −0.128323 −0.0641617 0.997940i $$-0.520437\pi$$
−0.0641617 + 0.997940i $$0.520437\pi$$
$$728$$ 0 0
$$729$$ 0 0
$$730$$ 0 0
$$731$$ −44.1445 −1.63274
$$732$$ 0 0
$$733$$ −16.2835 −0.601446 −0.300723 0.953711i $$-0.597228\pi$$
−0.300723 + 0.953711i $$0.597228\pi$$
$$734$$ 0 0
$$735$$ 0 0
$$736$$ 0 0
$$737$$ 48.3418 1.78069
$$738$$ 0 0
$$739$$ 24.2459 0.891899 0.445949 0.895058i $$-0.352866\pi$$
0.445949 + 0.895058i $$0.352866\pi$$
$$740$$ 0 0
$$741$$ 0 0
$$742$$ 0 0
$$743$$ −30.7202 −1.12702 −0.563508 0.826111i $$-0.690549\pi$$
−0.563508 + 0.826111i $$0.690549\pi$$
$$744$$ 0 0
$$745$$ −14.1572 −0.518678
$$746$$ 0 0
$$747$$ 0 0
$$748$$ 0 0
$$749$$ −46.9860 −1.71683
$$750$$ 0 0
$$751$$ −37.3493 −1.36290 −0.681448 0.731867i $$-0.738649\pi$$
−0.681448 + 0.731867i $$0.738649\pi$$
$$752$$ 0 0
$$753$$ 0 0
$$754$$ 0 0
$$755$$ 18.9847 0.690923
$$756$$ 0 0
$$757$$ 18.8930 0.686677 0.343338 0.939212i $$-0.388442\pi$$
0.343338 + 0.939212i $$0.388442\pi$$
$$758$$ 0 0
$$759$$ 0 0
$$760$$ 0 0
$$761$$ 37.5549 1.36137 0.680683 0.732578i $$-0.261683\pi$$
0.680683 + 0.732578i $$0.261683\pi$$
$$762$$ 0 0
$$763$$ −33.2005 −1.20194
$$764$$ 0 0
$$765$$ 0 0
$$766$$ 0 0
$$767$$ 53.3389 1.92596
$$768$$ 0 0
$$769$$ −35.8799 −1.29386 −0.646931 0.762549i $$-0.723948\pi$$
−0.646931 + 0.762549i $$0.723948\pi$$
$$770$$ 0 0
$$771$$ 0 0
$$772$$ 0 0
$$773$$ 32.3745 1.16443 0.582215 0.813035i $$-0.302186\pi$$
0.582215 + 0.813035i $$0.302186\pi$$
$$774$$ 0 0
$$775$$ 4.10856 0.147584
$$776$$ 0 0
$$777$$ 0 0
$$778$$ 0 0
$$779$$ 7.76411 0.278178
$$780$$ 0 0
$$781$$ −25.8035 −0.923321
$$782$$ 0 0
$$783$$ 0 0
$$784$$ 0 0
$$785$$ −8.22753 −0.293653
$$786$$ 0 0
$$787$$ −47.7278 −1.70131 −0.850656 0.525723i $$-0.823795\pi$$
−0.850656 + 0.525723i $$0.823795\pi$$
$$788$$ 0 0
$$789$$ 0 0
$$790$$ 0 0
$$791$$ −55.4796 −1.97263
$$792$$ 0 0
$$793$$ 19.1447 0.679849
$$794$$ 0 0
$$795$$ 0 0
$$796$$ 0 0
$$797$$ 12.8427 0.454910 0.227455 0.973789i $$-0.426959\pi$$
0.227455 + 0.973789i $$0.426959\pi$$
$$798$$ 0 0
$$799$$ 11.5856 0.409870
$$800$$ 0 0
$$801$$ 0 0
$$802$$ 0 0
$$803$$ −33.0739 −1.16715
$$804$$ 0 0
$$805$$ −2.62057 −0.0923631
$$806$$ 0 0
$$807$$ 0 0
$$808$$ 0 0
$$809$$ −8.84864 −0.311102 −0.155551 0.987828i $$-0.549715\pi$$
−0.155551 + 0.987828i $$0.549715\pi$$
$$810$$ 0 0
$$811$$ 30.4149 1.06801 0.534006 0.845480i $$-0.320686\pi$$
0.534006 + 0.845480i $$0.320686\pi$$
$$812$$ 0 0
$$813$$ 0 0
$$814$$ 0 0
$$815$$ −0.264439 −0.00926289
$$816$$ 0 0
$$817$$ −12.3930 −0.433578
$$818$$ 0 0
$$819$$ 0 0
$$820$$ 0 0
$$821$$ −31.2463 −1.09050 −0.545251 0.838273i $$-0.683566\pi$$
−0.545251 + 0.838273i $$0.683566\pi$$
$$822$$ 0 0
$$823$$ −50.6232 −1.76462 −0.882308 0.470673i $$-0.844011\pi$$
−0.882308 + 0.470673i $$0.844011\pi$$
$$824$$ 0 0
$$825$$ 0 0
$$826$$ 0 0
$$827$$ 32.5478 1.13180 0.565898 0.824475i $$-0.308529\pi$$
0.565898 + 0.824475i $$0.308529\pi$$
$$828$$ 0 0
$$829$$ −29.0119 −1.00763 −0.503813 0.863813i $$-0.668070\pi$$
−0.503813 + 0.863813i $$0.668070\pi$$
$$830$$ 0 0
$$831$$ 0 0
$$832$$ 0 0
$$833$$ 0.851759 0.0295117
$$834$$ 0 0
$$835$$ 9.45775 0.327299
$$836$$ 0 0
$$837$$ 0 0
$$838$$ 0 0
$$839$$ 1.97993 0.0683547 0.0341774 0.999416i $$-0.489119\pi$$
0.0341774 + 0.999416i $$0.489119\pi$$
$$840$$ 0 0
$$841$$ 22.5071 0.776106
$$842$$ 0 0
$$843$$ 0 0
$$844$$ 0 0
$$845$$ −36.9606 −1.27148
$$846$$ 0 0
$$847$$ 83.8182 2.88003
$$848$$ 0 0
$$849$$ 0 0
$$850$$ 0 0
$$851$$ 4.62057 0.158391
$$852$$ 0 0
$$853$$ −11.1781 −0.382732 −0.191366 0.981519i $$-0.561292\pi$$
−0.191366 + 0.981519i $$0.561292\pi$$
$$854$$ 0 0
$$855$$ 0 0
$$856$$ 0 0
$$857$$ −29.2491 −0.999130 −0.499565 0.866276i $$-0.666507\pi$$
−0.499565 + 0.866276i $$0.666507\pi$$
$$858$$ 0 0
$$859$$ 47.5143 1.62117 0.810584 0.585623i $$-0.199150\pi$$
0.810584 + 0.585623i $$0.199150\pi$$
$$860$$ 0 0
$$861$$ 0 0
$$862$$ 0 0
$$863$$ 16.5628 0.563806 0.281903 0.959443i $$-0.409034\pi$$
0.281903 + 0.959443i $$0.409034\pi$$
$$864$$ 0 0
$$865$$ −0.758851 −0.0258017
$$866$$ 0 0
$$867$$ 0 0
$$868$$ 0 0
$$869$$ 40.1176 1.36090
$$870$$ 0 0
$$871$$ 52.1171 1.76592
$$872$$ 0 0
$$873$$ 0 0
$$874$$ 0 0
$$875$$ −2.62057 −0.0885916
$$876$$ 0 0
$$877$$ −4.80976 −0.162414 −0.0812070 0.996697i $$-0.525877\pi$$
−0.0812070 + 0.996697i $$0.525877\pi$$
$$878$$ 0 0
$$879$$ 0 0
$$880$$ 0 0
$$881$$ −29.8046 −1.00414 −0.502072 0.864826i $$-0.667429\pi$$
−0.502072 + 0.864826i $$0.667429\pi$$
$$882$$ 0 0
$$883$$ −22.1579 −0.745673 −0.372836 0.927897i $$-0.621615\pi$$
−0.372836 + 0.927897i $$0.621615\pi$$
$$884$$ 0 0
$$885$$ 0 0
$$886$$ 0 0
$$887$$ −31.3425 −1.05238 −0.526189 0.850367i $$-0.676380\pi$$
−0.526189 + 0.850367i $$0.676380\pi$$
$$888$$ 0 0
$$889$$ −10.5983 −0.355455
$$890$$ 0 0
$$891$$ 0 0
$$892$$ 0 0
$$893$$ 3.25252 0.108842
$$894$$ 0 0
$$895$$ 21.9606 0.734063
$$896$$ 0 0
$$897$$ 0 0
$$898$$ 0 0
$$899$$ 29.4865 0.983430
$$900$$ 0 0
$$901$$ −31.7095 −1.05640
$$902$$ 0 0
$$903$$ 0 0
$$904$$ 0 0
$$905$$ 14.4727 0.481087
$$906$$ 0 0
$$907$$ 11.3541 0.377006 0.188503 0.982073i $$-0.439636\pi$$
0.188503 + 0.982073i $$0.439636\pi$$
$$908$$ 0 0
$$909$$ 0 0
$$910$$ 0 0
$$911$$ −5.23245 −0.173359 −0.0866794 0.996236i $$-0.527626\pi$$
−0.0866794 + 0.996236i $$0.527626\pi$$
$$912$$ 0 0
$$913$$ 55.2303 1.82786
$$914$$ 0 0
$$915$$ 0 0
$$916$$ 0 0
$$917$$ 0 0
$$918$$ 0 0
$$919$$ 58.1349 1.91769 0.958846 0.283925i $$-0.0916368\pi$$
0.958846 + 0.283925i $$0.0916368\pi$$
$$920$$ 0 0
$$921$$ 0 0
$$922$$ 0 0
$$923$$ −27.8186 −0.915661
$$924$$ 0 0
$$925$$ 4.62057 0.151924
$$926$$ 0 0
$$927$$ 0 0
$$928$$ 0 0
$$929$$ 31.9681 1.04884 0.524419 0.851460i $$-0.324283\pi$$
0.524419 + 0.851460i $$0.324283\pi$$
$$930$$ 0 0
$$931$$ 0.239121 0.00783688
$$932$$ 0 0
$$933$$ 0 0
$$934$$ 0 0
$$935$$ 42.1178 1.37740
$$936$$ 0 0
$$937$$ 44.2567 1.44580 0.722902 0.690951i $$-0.242808\pi$$
0.722902 + 0.690951i $$0.242808\pi$$
$$938$$ 0 0
$$939$$ 0 0
$$940$$ 0 0
$$941$$ −18.4144 −0.600292 −0.300146 0.953893i $$-0.597035\pi$$
−0.300146 + 0.953893i $$0.597035\pi$$
$$942$$ 0 0
$$943$$ −4.30508 −0.140193
$$944$$ 0 0
$$945$$ 0 0
$$946$$ 0 0
$$947$$ −48.8625 −1.58782 −0.793909 0.608037i $$-0.791957\pi$$
−0.793909 + 0.608037i $$0.791957\pi$$
$$948$$ 0 0
$$949$$ −35.6568 −1.15747
$$950$$ 0 0
$$951$$ 0 0
$$952$$ 0 0
$$953$$ 49.0643 1.58935 0.794674 0.607037i $$-0.207642\pi$$
0.794674 + 0.607037i $$0.207642\pi$$
$$954$$ 0 0
$$955$$ −11.9400 −0.386371
$$956$$ 0 0
$$957$$ 0 0
$$958$$ 0 0
$$959$$ −15.0766 −0.486849
$$960$$ 0 0
$$961$$ −14.1197 −0.455475
$$962$$ 0 0
$$963$$ 0 0
$$964$$ 0 0
$$965$$ −11.6342 −0.374518
$$966$$ 0 0
$$967$$ −20.4921 −0.658981 −0.329491 0.944159i $$-0.606877\pi$$
−0.329491 + 0.944159i $$0.606877\pi$$
$$968$$ 0 0
$$969$$ 0 0
$$970$$ 0 0
$$971$$ 13.8581 0.444728 0.222364 0.974964i $$-0.428623\pi$$
0.222364 + 0.974964i $$0.428623\pi$$
$$972$$ 0 0
$$973$$ 11.7968 0.378188
$$974$$ 0 0
$$975$$ 0 0
$$976$$ 0 0
$$977$$ 10.1668 0.325266 0.162633 0.986687i $$-0.448001\pi$$
0.162633 + 0.986687i $$0.448001\pi$$
$$978$$ 0 0
$$979$$ −74.6351 −2.38535
$$980$$ 0 0
$$981$$ 0 0
$$982$$ 0 0
$$983$$ −50.6875 −1.61668 −0.808341 0.588715i $$-0.799634\pi$$
−0.808341 + 0.588715i $$0.799634\pi$$
$$984$$ 0 0
$$985$$ 24.6181 0.784399
$$986$$ 0 0
$$987$$ 0 0
$$988$$ 0 0
$$989$$ 6.87176 0.218509
$$990$$ 0 0
$$991$$ 19.9799 0.634684 0.317342 0.948311i $$-0.397210\pi$$
0.317342 + 0.948311i $$0.397210\pi$$
$$992$$ 0 0
$$993$$ 0 0
$$994$$ 0 0
$$995$$ −18.7291 −0.593753
$$996$$ 0 0
$$997$$ −7.41454 −0.234821 −0.117410 0.993083i $$-0.537459\pi$$
−0.117410 + 0.993083i $$0.537459\pi$$
$$998$$ 0 0
$$999$$ 0 0
Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000

## Twists

By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8280.2.a.br.1.4 5
3.2 odd 2 2760.2.a.w.1.4 5
12.11 even 2 5520.2.a.cc.1.2 5

By twisted newform
Twist Min Dim Char Parity Ord Type
2760.2.a.w.1.4 5 3.2 odd 2
5520.2.a.cc.1.2 5 12.11 even 2
8280.2.a.br.1.4 5 1.1 even 1 trivial