Properties

Label 8280.2.a.br
Level $8280$
Weight $2$
Character orbit 8280.a
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.20087896.1
Defining polynomial: \( x^{5} - x^{4} - 21x^{3} + 5x^{2} + 84x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 2760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3,\beta_4\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + (\beta_1 - 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} + (\beta_1 - 1) q^{7} + ( - \beta_{2} + 1) q^{11} + ( - \beta_{4} + 1) q^{13} + ( - \beta_{3} - \beta_1 - 2) q^{17} + ( - \beta_{3} - 1) q^{19} + q^{23} + q^{25} + ( - \beta_{2} + \beta_1 - 2) q^{29} + (\beta_{4} - \beta_{2} + \beta_1 + 1) q^{31} + ( - \beta_1 + 1) q^{35} + (\beta_1 + 1) q^{37} + ( - \beta_{4} + \beta_{3} + \beta_{2} - \beta_1 - 2) q^{41} + ( - \beta_{4} + \beta_{3}) q^{43} + ( - \beta_{3} - 1) q^{47} + (\beta_{4} - \beta_{2} - \beta_1 + 4) q^{49} + ( - \beta_{4} + \beta_{3} + \beta_{2} + \beta_1) q^{53} + (\beta_{2} - 1) q^{55} + (\beta_{4} - \beta_{3} - \beta_{2} + 3 \beta_1 - 2) q^{59} + ( - \beta_{4} - \beta_{3} + \beta_{2} + 3) q^{61} + (\beta_{4} - 1) q^{65} + ( - \beta_{3} - \beta_{2} + \beta_1 - 1) q^{67} + (\beta_{2} + \beta_1 - 2) q^{71} + ( - \beta_{3} - 2 \beta_1 + 3) q^{73} + ( - 2 \beta_{4} + \beta_{3} + 2 \beta_1 - 3) q^{77} + ( - \beta_{4} + 2 \beta_{3} + \beta_{2} + 4) q^{79} + (\beta_{3} + \beta_1 + 4) q^{83} + (\beta_{3} + \beta_1 + 2) q^{85} + (2 \beta_{4} - \beta_{3} - \beta_{2} - 4) q^{89} + (3 \beta_{3} - 2 \beta_{2} + 5) q^{91} + (\beta_{3} + 1) q^{95} + (\beta_{4} - \beta_{3} + 2 \beta_{2}) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{5} - 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{5} - 4 q^{7} + 4 q^{11} + 4 q^{13} - 10 q^{17} - 4 q^{19} + 5 q^{23} + 5 q^{25} - 10 q^{29} + 6 q^{31} + 4 q^{35} + 6 q^{37} - 12 q^{41} - 2 q^{43} - 4 q^{47} + 19 q^{49} - 4 q^{55} - 6 q^{59} + 16 q^{61} - 4 q^{65} - 4 q^{67} - 8 q^{71} + 14 q^{73} - 16 q^{77} + 18 q^{79} + 20 q^{83} + 10 q^{85} - 18 q^{89} + 20 q^{91} + 4 q^{95} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{5} - x^{4} - 21x^{3} + 5x^{2} + 84x - 4 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} - \nu - 8 ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{4} + 4\nu^{3} + 13\nu^{2} - 36\nu - 20 ) / 8 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{4} - 21\nu^{2} - 16\nu + 60 ) / 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} - 21\nu^{2} + 60 ) / 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{4} - \beta_{3} + 4\beta _1 + 16 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 15\beta_{4} - 11\beta_{3} + 4\beta_{2} + 8\beta _1 + 12 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 37\beta_{4} - 21\beta_{3} + 84\beta _1 + 216 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.0475116
2.27399
−2.39144
−3.43588
4.50582
0 0 0 −1.00000 0 −5.02263 0 0 0
1.2 0 0 0 −1.00000 0 −3.55148 0 0 0
1.3 0 0 0 −1.00000 0 −0.944775 0 0 0
1.4 0 0 0 −1.00000 0 2.62057 0 0 0
1.5 0 0 0 −1.00000 0 2.89831 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.5
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.br 5
3.b odd 2 1 2760.2.a.w 5
12.b even 2 1 5520.2.a.cc 5
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2760.2.a.w 5 3.b odd 2 1
5520.2.a.cc 5 12.b even 2 1
8280.2.a.br 5 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\):

\( T_{7}^{5} + 4T_{7}^{4} - 19T_{7}^{3} - 54T_{7}^{2} + 104T_{7} + 128 \) Copy content Toggle raw display
\( T_{11}^{5} - 4T_{11}^{4} - 46T_{11}^{3} + 160T_{11}^{2} + 408T_{11} - 1312 \) Copy content Toggle raw display
\( T_{13}^{5} - 4T_{13}^{4} - 66T_{13}^{3} + 248T_{13}^{2} + 968T_{13} - 3584 \) Copy content Toggle raw display
\( T_{17}^{5} + 10T_{17}^{4} - 25T_{17}^{3} - 584T_{17}^{2} - 2148T_{17} - 2416 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{5} \) Copy content Toggle raw display
$3$ \( T^{5} \) Copy content Toggle raw display
$5$ \( (T + 1)^{5} \) Copy content Toggle raw display
$7$ \( T^{5} + 4 T^{4} - 19 T^{3} - 54 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$11$ \( T^{5} - 4 T^{4} - 46 T^{3} + \cdots - 1312 \) Copy content Toggle raw display
$13$ \( T^{5} - 4 T^{4} - 66 T^{3} + \cdots - 3584 \) Copy content Toggle raw display
$17$ \( T^{5} + 10 T^{4} - 25 T^{3} + \cdots - 2416 \) Copy content Toggle raw display
$19$ \( T^{5} + 4 T^{4} - 54 T^{3} - 120 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$23$ \( (T - 1)^{5} \) Copy content Toggle raw display
$29$ \( T^{5} + 10 T^{4} - 25 T^{3} + \cdots - 1424 \) Copy content Toggle raw display
$31$ \( T^{5} - 6 T^{4} - 79 T^{3} + \cdots - 4096 \) Copy content Toggle raw display
$37$ \( T^{5} - 6 T^{4} - 11 T^{3} + 76 T^{2} + \cdots - 112 \) Copy content Toggle raw display
$41$ \( T^{5} + 12 T^{4} - 53 T^{3} + \cdots - 1912 \) Copy content Toggle raw display
$43$ \( T^{5} + 2 T^{4} - 84 T^{3} - 40 T^{2} + \cdots + 128 \) Copy content Toggle raw display
$47$ \( T^{5} + 4 T^{4} - 54 T^{3} - 120 T^{2} + \cdots + 512 \) Copy content Toggle raw display
$53$ \( T^{5} - 141 T^{3} - 202 T^{2} + \cdots + 2344 \) Copy content Toggle raw display
$59$ \( T^{5} + 6 T^{4} - 269 T^{3} + \cdots + 53248 \) Copy content Toggle raw display
$61$ \( T^{5} - 16 T^{4} - 126 T^{3} + \cdots + 25856 \) Copy content Toggle raw display
$67$ \( T^{5} + 4 T^{4} - 123 T^{3} + \cdots - 6176 \) Copy content Toggle raw display
$71$ \( T^{5} + 8 T^{4} - 65 T^{3} + \cdots + 6464 \) Copy content Toggle raw display
$73$ \( T^{5} - 14 T^{4} - 42 T^{3} + \cdots - 656 \) Copy content Toggle raw display
$79$ \( T^{5} - 18 T^{4} - 88 T^{3} + \cdots - 32768 \) Copy content Toggle raw display
$83$ \( T^{5} - 20 T^{4} + 95 T^{3} + \cdots + 9056 \) Copy content Toggle raw display
$89$ \( T^{5} + 18 T^{4} - 120 T^{3} + \cdots + 3328 \) Copy content Toggle raw display
$97$ \( T^{5} - 4 T^{4} - 364 T^{3} + \cdots - 13952 \) Copy content Toggle raw display
show more
show less