Properties

Label 8280.2.a.bm
Level $8280$
Weight $2$
Character orbit 8280.a
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 2760)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{5} + (\beta_{2} - 2) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{5} + (\beta_{2} - 2) q^{7} + (\beta_{2} + \beta_1 - 1) q^{11} + ( - \beta_{2} + 3 \beta_1 - 1) q^{13} + (3 \beta_1 + 1) q^{17} + ( - \beta_{2} + \beta_1 - 1) q^{19} - q^{23} + q^{25} + ( - 2 \beta_{2} + 3 \beta_1 + 1) q^{29} + (3 \beta_{2} - 2) q^{31} + (\beta_{2} - 2) q^{35} + (3 \beta_{2} - 2 \beta_1 - 2) q^{37} + (2 \beta_{2} - \beta_1 + 5) q^{41} + ( - 4 \beta_{2} + 2 \beta_1 - 2) q^{43} + (3 \beta_{2} - 3 \beta_1 + 7) q^{47} + ( - 5 \beta_{2} + 2 \beta_1 + 1) q^{49} + ( - 3 \beta_1 + 7) q^{53} + (\beta_{2} + \beta_1 - 1) q^{55} + ( - 2 \beta_{2} + 3 \beta_1 - 5) q^{59} + (\beta_{2} - \beta_1 - 5) q^{61} + ( - \beta_{2} + 3 \beta_1 - 1) q^{65} + (\beta_{2} - 2 \beta_1 - 4) q^{67} + (6 \beta_{2} - 5 \beta_1 + 3) q^{71} + (3 \beta_{2} + 3 \beta_1 - 1) q^{73} + ( - 3 \beta_{2} + \beta_1 + 7) q^{77} + ( - 4 \beta_{2} + \beta_1 + 1) q^{83} + (3 \beta_1 + 1) q^{85} + ( - 2 \beta_1 + 4) q^{89} + (5 \beta_{2} - 5 \beta_1 + 1) q^{91} + ( - \beta_{2} + \beta_1 - 1) q^{95} + (2 \beta_{2} - 4 \beta_1 + 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{5} - 6 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{5} - 6 q^{7} - 2 q^{11} + 6 q^{17} - 2 q^{19} - 3 q^{23} + 3 q^{25} + 6 q^{29} - 6 q^{31} - 6 q^{35} - 8 q^{37} + 14 q^{41} - 4 q^{43} + 18 q^{47} + 5 q^{49} + 18 q^{53} - 2 q^{55} - 12 q^{59} - 16 q^{61} - 14 q^{67} + 4 q^{71} + 22 q^{77} + 4 q^{83} + 6 q^{85} + 10 q^{89} - 2 q^{91} - 2 q^{95} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 4x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 3 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.470683
−1.81361
2.34292
0 0 0 1.00000 0 −4.77846 0 0 0
1.2 0 0 0 1.00000 0 −1.71083 0 0 0
1.3 0 0 0 1.00000 0 0.489289 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.bm 3
3.b odd 2 1 2760.2.a.r 3
12.b even 2 1 5520.2.a.bx 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2760.2.a.r 3 3.b odd 2 1
5520.2.a.bx 3 12.b even 2 1
8280.2.a.bm 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\):

\( T_{7}^{3} + 6T_{7}^{2} + 5T_{7} - 4 \) Copy content Toggle raw display
\( T_{11}^{3} + 2T_{11}^{2} - 14T_{11} - 32 \) Copy content Toggle raw display
\( T_{13}^{3} - 34T_{13} + 76 \) Copy content Toggle raw display
\( T_{17}^{3} - 6T_{17}^{2} - 27T_{17} + 86 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T - 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 6 T^{2} + 5 T - 4 \) Copy content Toggle raw display
$11$ \( T^{3} + 2 T^{2} - 14 T - 32 \) Copy content Toggle raw display
$13$ \( T^{3} - 34T + 76 \) Copy content Toggle raw display
$17$ \( T^{3} - 6 T^{2} - 27 T + 86 \) Copy content Toggle raw display
$19$ \( T^{3} + 2 T^{2} - 6 T - 8 \) Copy content Toggle raw display
$23$ \( (T + 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} - 6 T^{2} - 31 T + 122 \) Copy content Toggle raw display
$31$ \( T^{3} + 6 T^{2} - 51 T - 64 \) Copy content Toggle raw display
$37$ \( T^{3} + 8 T^{2} - 35 T + 22 \) Copy content Toggle raw display
$41$ \( T^{3} - 14 T^{2} + 41 T + 58 \) Copy content Toggle raw display
$43$ \( T^{3} + 4 T^{2} - 92 T - 496 \) Copy content Toggle raw display
$47$ \( T^{3} - 18 T^{2} + 42 T + 272 \) Copy content Toggle raw display
$53$ \( T^{3} - 18 T^{2} + 69 T + 2 \) Copy content Toggle raw display
$59$ \( T^{3} + 12 T^{2} + 5 T - 64 \) Copy content Toggle raw display
$61$ \( T^{3} + 16 T^{2} + 78 T + 116 \) Copy content Toggle raw display
$67$ \( T^{3} + 14 T^{2} + 49 T + 4 \) Copy content Toggle raw display
$71$ \( T^{3} - 4 T^{2} - 235 T + 1376 \) Copy content Toggle raw display
$73$ \( T^{3} - 138T - 596 \) Copy content Toggle raw display
$79$ \( T^{3} \) Copy content Toggle raw display
$83$ \( T^{3} - 4 T^{2} - 95 T - 164 \) Copy content Toggle raw display
$89$ \( T^{3} - 10 T^{2} + 16 T + 16 \) Copy content Toggle raw display
$97$ \( T^{3} - 2 T^{2} - 64 T - 128 \) Copy content Toggle raw display
show more
show less