Properties

Label 8280.2.a.bj
Level $8280$
Weight $2$
Character orbit 8280.a
Self dual yes
Analytic conductor $66.116$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8280,2,Mod(1,8280)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8280, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8280.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8280 = 2^{3} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8280.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(66.1161328736\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.2597.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 9x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 920)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{5} + ( - \beta_1 + 1) q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} + ( - \beta_1 + 1) q^{7} + ( - \beta_1 - 2) q^{11} - \beta_{2} q^{13} + ( - \beta_{2} - 3) q^{17} + ( - \beta_{2} - 4) q^{19} - q^{23} + q^{25} + (\beta_{2} + \beta_1 - 5) q^{29} + (\beta_1 - 3) q^{31} + (\beta_1 - 1) q^{35} + ( - \beta_{2} - 3 \beta_1 + 3) q^{37} + (\beta_{2} - 3) q^{41} + 8 q^{43} - 2 \beta_{2} q^{47} + (\beta_{2} - 2 \beta_1) q^{49} + ( - \beta_{2} - 3 \beta_1 + 1) q^{53} + (\beta_1 + 2) q^{55} + (\beta_{2} + \beta_1 + 5) q^{59} + (2 \beta_{2} - \beta_1 + 4) q^{61} + \beta_{2} q^{65} + ( - \beta_{2} - 3 \beta_1 + 3) q^{67} + ( - \beta_{2} + 2 \beta_1 + 7) q^{71} + ( - 2 \beta_{2} - 4 \beta_1 + 6) q^{73} + (\beta_{2} + \beta_1 + 4) q^{77} - 4 \beta_1 q^{79} + ( - \beta_{2} + \beta_1 + 5) q^{83} + (\beta_{2} + 3) q^{85} + ( - 4 \beta_1 + 4) q^{89} + (3 \beta_1 - 2) q^{91} + (\beta_{2} + 4) q^{95} + (3 \beta_1 - 2) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - 3 q^{5} + 2 q^{7} - 7 q^{11} - q^{13} - 10 q^{17} - 13 q^{19} - 3 q^{23} + 3 q^{25} - 13 q^{29} - 8 q^{31} - 2 q^{35} + 5 q^{37} - 8 q^{41} + 24 q^{43} - 2 q^{47} - q^{49} - q^{53} + 7 q^{55} + 17 q^{59} + 13 q^{61} + q^{65} + 5 q^{67} + 22 q^{71} + 12 q^{73} + 14 q^{77} - 4 q^{79} + 15 q^{83} + 10 q^{85} + 8 q^{89} - 3 q^{91} + 13 q^{95} - 3 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 9x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.07912
0.878468
−2.95759
0 0 0 −1.00000 0 −2.07912 0 0 0
1.2 0 0 0 −1.00000 0 0.121532 0 0 0
1.3 0 0 0 −1.00000 0 3.95759 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(23\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 8280.2.a.bj 3
3.b odd 2 1 920.2.a.h 3
12.b even 2 1 1840.2.a.s 3
15.d odd 2 1 4600.2.a.x 3
15.e even 4 2 4600.2.e.p 6
24.f even 2 1 7360.2.a.cc 3
24.h odd 2 1 7360.2.a.by 3
60.h even 2 1 9200.2.a.ce 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
920.2.a.h 3 3.b odd 2 1
1840.2.a.s 3 12.b even 2 1
4600.2.a.x 3 15.d odd 2 1
4600.2.e.p 6 15.e even 4 2
7360.2.a.by 3 24.h odd 2 1
7360.2.a.cc 3 24.f even 2 1
8280.2.a.bj 3 1.a even 1 1 trivial
9200.2.a.ce 3 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(8280))\):

\( T_{7}^{3} - 2T_{7}^{2} - 8T_{7} + 1 \) Copy content Toggle raw display
\( T_{11}^{3} + 7T_{11}^{2} + 7T_{11} - 14 \) Copy content Toggle raw display
\( T_{13}^{3} + T_{13}^{2} - 23T_{13} - 50 \) Copy content Toggle raw display
\( T_{17}^{3} + 10T_{17}^{2} + 10T_{17} - 83 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( (T + 1)^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - 2 T^{2} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{3} + 7 T^{2} + \cdots - 14 \) Copy content Toggle raw display
$13$ \( T^{3} + T^{2} + \cdots - 50 \) Copy content Toggle raw display
$17$ \( T^{3} + 10 T^{2} + \cdots - 83 \) Copy content Toggle raw display
$19$ \( T^{3} + 13 T^{2} + \cdots - 62 \) Copy content Toggle raw display
$23$ \( (T + 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 13 T^{2} + \cdots - 76 \) Copy content Toggle raw display
$31$ \( T^{3} + 8 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$37$ \( T^{3} - 5 T^{2} + \cdots + 496 \) Copy content Toggle raw display
$41$ \( T^{3} + 8 T^{2} + \cdots - 1 \) Copy content Toggle raw display
$43$ \( (T - 8)^{3} \) Copy content Toggle raw display
$47$ \( T^{3} + 2 T^{2} + \cdots - 400 \) Copy content Toggle raw display
$53$ \( T^{3} + T^{2} + \cdots + 300 \) Copy content Toggle raw display
$59$ \( T^{3} - 17 T^{2} + \cdots - 36 \) Copy content Toggle raw display
$61$ \( T^{3} - 13 T^{2} + \cdots + 720 \) Copy content Toggle raw display
$67$ \( T^{3} - 5 T^{2} + \cdots + 496 \) Copy content Toggle raw display
$71$ \( T^{3} - 22 T^{2} + \cdots + 225 \) Copy content Toggle raw display
$73$ \( T^{3} - 12 T^{2} + \cdots + 2120 \) Copy content Toggle raw display
$79$ \( T^{3} + 4 T^{2} + \cdots - 512 \) Copy content Toggle raw display
$83$ \( T^{3} - 15 T^{2} + \cdots + 36 \) Copy content Toggle raw display
$89$ \( T^{3} - 8 T^{2} + \cdots + 64 \) Copy content Toggle raw display
$97$ \( T^{3} + 3 T^{2} + \cdots + 50 \) Copy content Toggle raw display
show more
show less