Properties

Label 828.4.a.f
Level $828$
Weight $4$
Character orbit 828.a
Self dual yes
Analytic conductor $48.854$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,4,Mod(1,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 828.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,0,0,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(48.8535814848\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.1229.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 7x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 3 \beta_{2} + \beta_1 + 4) q^{5} + (3 \beta_{2} + 5 \beta_1 - 18) q^{7} + (11 \beta_{2} + 5 \beta_1 + 16) q^{11} + ( - 6 \beta_{2} - 11 \beta_1 - 9) q^{13} + ( - 5 \beta_{2} - 33 \beta_1 + 42) q^{17}+ \cdots + (177 \beta_{2} - 23 \beta_1 + 194) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 10 q^{5} - 46 q^{7} + 64 q^{11} - 44 q^{13} + 88 q^{17} - 94 q^{19} + 69 q^{23} + 181 q^{25} - 308 q^{29} - 140 q^{31} - 192 q^{35} + 26 q^{37} - 584 q^{41} - 478 q^{43} + 28 q^{47} + 695 q^{49} - 356 q^{53}+ \cdots + 736 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 7x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} + \nu - 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -\nu^{2} + \nu + 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{2} + \beta _1 + 10 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.841083
2.75153
−2.59261
0 0 0 −14.8525 0 −19.8565 0 0 0
1.2 0 0 0 8.78065 0 9.15411 0 0 0
1.3 0 0 0 16.0718 0 −35.2976 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(23\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 828.4.a.f 3
3.b odd 2 1 92.4.a.a 3
12.b even 2 1 368.4.a.k 3
15.d odd 2 1 2300.4.a.b 3
15.e even 4 2 2300.4.c.b 6
24.f even 2 1 1472.4.a.p 3
24.h odd 2 1 1472.4.a.w 3
69.c even 2 1 2116.4.a.a 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
92.4.a.a 3 3.b odd 2 1
368.4.a.k 3 12.b even 2 1
828.4.a.f 3 1.a even 1 1 trivial
1472.4.a.p 3 24.f even 2 1
1472.4.a.w 3 24.h odd 2 1
2116.4.a.a 3 69.c even 2 1
2300.4.a.b 3 15.d odd 2 1
2300.4.c.b 6 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{3} - 10T_{5}^{2} - 228T_{5} + 2096 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(828))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 10 T^{2} + \cdots + 2096 \) Copy content Toggle raw display
$7$ \( T^{3} + 46 T^{2} + \cdots - 6416 \) Copy content Toggle raw display
$11$ \( T^{3} - 64 T^{2} + \cdots + 88184 \) Copy content Toggle raw display
$13$ \( T^{3} + 44 T^{2} + \cdots - 3334 \) Copy content Toggle raw display
$17$ \( T^{3} - 88 T^{2} + \cdots + 1617496 \) Copy content Toggle raw display
$19$ \( T^{3} + 94 T^{2} + \cdots - 184984 \) Copy content Toggle raw display
$23$ \( (T - 23)^{3} \) Copy content Toggle raw display
$29$ \( T^{3} + 308 T^{2} + \cdots + 1008698 \) Copy content Toggle raw display
$31$ \( T^{3} + 140 T^{2} + \cdots - 1074768 \) Copy content Toggle raw display
$37$ \( T^{3} - 26 T^{2} + \cdots - 4672784 \) Copy content Toggle raw display
$41$ \( T^{3} + 584 T^{2} + \cdots - 21405186 \) Copy content Toggle raw display
$43$ \( T^{3} + 478 T^{2} + \cdots - 14441984 \) Copy content Toggle raw display
$47$ \( T^{3} - 28 T^{2} + \cdots + 25906224 \) Copy content Toggle raw display
$53$ \( T^{3} + 356 T^{2} + \cdots - 63184 \) Copy content Toggle raw display
$59$ \( T^{3} + 144 T^{2} + \cdots + 15495744 \) Copy content Toggle raw display
$61$ \( T^{3} + 1052 T^{2} + \cdots - 55378432 \) Copy content Toggle raw display
$67$ \( T^{3} + 2008 T^{2} + \cdots + 228170232 \) Copy content Toggle raw display
$71$ \( T^{3} + 360 T^{2} + \cdots - 7542816 \) Copy content Toggle raw display
$73$ \( T^{3} + 252 T^{2} + \cdots + 34560066 \) Copy content Toggle raw display
$79$ \( T^{3} + 720 T^{2} + \cdots - 932658192 \) Copy content Toggle raw display
$83$ \( T^{3} - 1404 T^{2} + \cdots + 464610136 \) Copy content Toggle raw display
$89$ \( T^{3} + 534 T^{2} + \cdots - 77599776 \) Copy content Toggle raw display
$97$ \( T^{3} - 736 T^{2} + \cdots + 67270584 \) Copy content Toggle raw display
show more
show less