Properties

Label 828.2.u.a.595.8
Level $828$
Weight $2$
Character 828.595
Analytic conductor $6.612$
Analytic rank $0$
Dimension $100$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(19,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 0, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.u (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [100,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(100\)
Relative dimension: \(10\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 595.8
Character \(\chi\) \(=\) 828.595
Dual form 828.2.u.a.199.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19684 + 0.753380i) q^{2} +(0.864836 + 1.80335i) q^{4} +(-1.65610 - 1.43502i) q^{5} +(3.14077 - 2.01845i) q^{7} +(-0.323539 + 2.80986i) q^{8} +(-0.900968 - 2.96516i) q^{10} +(0.162776 - 1.13213i) q^{11} +(2.71951 + 1.74772i) q^{13} +(5.27965 - 0.0495605i) q^{14} +(-2.50412 + 3.11920i) q^{16} +(1.03533 - 3.52600i) q^{17} +(1.68979 - 0.496168i) q^{19} +(1.15559 - 4.22759i) q^{20} +(1.04775 - 1.23235i) q^{22} +(4.46833 + 1.74184i) q^{23} +(-0.0281822 - 0.196011i) q^{25} +(1.93811 + 4.14056i) q^{26} +(6.35622 + 3.91827i) q^{28} +(8.53724 + 2.50676i) q^{29} +(-9.07531 + 4.14456i) q^{31} +(-5.34696 + 1.84662i) q^{32} +(3.89553 - 3.44005i) q^{34} +(-8.09797 - 1.16431i) q^{35} +(4.67281 - 4.04902i) q^{37} +(2.39621 + 0.679225i) q^{38} +(4.56803 - 4.18914i) q^{40} +(0.800388 - 0.923697i) q^{41} +(-1.14894 + 2.51582i) q^{43} +(2.18241 - 0.685568i) q^{44} +(4.03559 + 5.45106i) q^{46} -2.26417i q^{47} +(2.88240 - 6.31158i) q^{49} +(0.113942 - 0.255825i) q^{50} +(-0.799821 + 6.41571i) q^{52} +(-0.401905 - 0.625377i) q^{53} +(-1.89421 + 1.64135i) q^{55} +(4.65541 + 9.47819i) q^{56} +(8.32913 + 9.43197i) q^{58} +(-5.02299 + 7.81592i) q^{59} +(-3.25979 + 1.48870i) q^{61} +(-13.9841 - 1.87681i) q^{62} +(-7.79064 - 1.81820i) q^{64} +(-1.99577 - 6.79697i) q^{65} +(1.45310 + 10.1065i) q^{67} +(7.25398 - 1.18236i) q^{68} +(-8.81478 - 7.49435i) q^{70} +(-9.06545 + 1.30341i) q^{71} +(4.26223 - 1.25150i) q^{73} +(8.64304 - 1.32560i) q^{74} +(2.35616 + 2.61818i) q^{76} +(-1.77392 - 3.88434i) q^{77} +(-13.6810 - 8.79222i) q^{79} +(8.62320 - 1.57225i) q^{80} +(1.65383 - 0.502518i) q^{82} +(-3.52806 - 4.07160i) q^{83} +(-6.77449 + 4.35370i) q^{85} +(-3.27047 + 2.14544i) q^{86} +(3.12848 + 0.823669i) q^{88} +(5.59347 + 2.55445i) q^{89} +12.0691 q^{91} +(0.723225 + 9.56436i) q^{92} +(1.70578 - 2.70984i) q^{94} +(-3.51049 - 1.60318i) q^{95} +(-6.04072 - 5.23431i) q^{97} +(8.20478 - 5.38238i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100 q + 7 q^{2} - 11 q^{4} + 22 q^{5} + 10 q^{8} - 11 q^{10} - 18 q^{13} + 11 q^{14} + 5 q^{16} + 22 q^{17} + 11 q^{20} - 16 q^{25} - 12 q^{26} - 11 q^{28} + 42 q^{29} + 27 q^{32} + 11 q^{34} - 22 q^{37}+ \cdots + 71 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{5}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19684 + 0.753380i 0.846291 + 0.532720i
\(3\) 0 0
\(4\) 0.864836 + 1.80335i 0.432418 + 0.901673i
\(5\) −1.65610 1.43502i −0.740633 0.641762i 0.200541 0.979685i \(-0.435730\pi\)
−0.941174 + 0.337924i \(0.890275\pi\)
\(6\) 0 0
\(7\) 3.14077 2.01845i 1.18710 0.762903i 0.210422 0.977611i \(-0.432516\pi\)
0.976678 + 0.214707i \(0.0688798\pi\)
\(8\) −0.323539 + 2.80986i −0.114388 + 0.993436i
\(9\) 0 0
\(10\) −0.900968 2.96516i −0.284911 0.937667i
\(11\) 0.162776 1.13213i 0.0490789 0.341352i −0.950456 0.310859i \(-0.899383\pi\)
0.999535 0.0304926i \(-0.00970759\pi\)
\(12\) 0 0
\(13\) 2.71951 + 1.74772i 0.754256 + 0.484731i 0.860400 0.509620i \(-0.170214\pi\)
−0.106143 + 0.994351i \(0.533850\pi\)
\(14\) 5.27965 0.0495605i 1.41105 0.0132456i
\(15\) 0 0
\(16\) −2.50412 + 3.11920i −0.626030 + 0.779799i
\(17\) 1.03533 3.52600i 0.251103 0.855180i −0.733397 0.679800i \(-0.762067\pi\)
0.984501 0.175380i \(-0.0561153\pi\)
\(18\) 0 0
\(19\) 1.68979 0.496168i 0.387665 0.113829i −0.0820914 0.996625i \(-0.526160\pi\)
0.469756 + 0.882796i \(0.344342\pi\)
\(20\) 1.15559 4.22759i 0.258397 0.945318i
\(21\) 0 0
\(22\) 1.04775 1.23235i 0.223380 0.262737i
\(23\) 4.46833 + 1.74184i 0.931711 + 0.363199i
\(24\) 0 0
\(25\) −0.0281822 0.196011i −0.00563644 0.0392023i
\(26\) 1.93811 + 4.14056i 0.380094 + 0.812031i
\(27\) 0 0
\(28\) 6.35622 + 3.91827i 1.20121 + 0.740484i
\(29\) 8.53724 + 2.50676i 1.58532 + 0.465493i 0.951414 0.307913i \(-0.0996306\pi\)
0.633910 + 0.773407i \(0.281449\pi\)
\(30\) 0 0
\(31\) −9.07531 + 4.14456i −1.62997 + 0.744384i −0.999494 0.0318213i \(-0.989869\pi\)
−0.630480 + 0.776205i \(0.717142\pi\)
\(32\) −5.34696 + 1.84662i −0.945218 + 0.326439i
\(33\) 0 0
\(34\) 3.89553 3.44005i 0.668078 0.589963i
\(35\) −8.09797 1.16431i −1.36881 0.196805i
\(36\) 0 0
\(37\) 4.67281 4.04902i 0.768206 0.665654i −0.179873 0.983690i \(-0.557569\pi\)
0.948079 + 0.318036i \(0.103023\pi\)
\(38\) 2.39621 + 0.679225i 0.388716 + 0.110185i
\(39\) 0 0
\(40\) 4.56803 4.18914i 0.722269 0.662361i
\(41\) 0.800388 0.923697i 0.125000 0.144257i −0.689800 0.724000i \(-0.742302\pi\)
0.814800 + 0.579743i \(0.196847\pi\)
\(42\) 0 0
\(43\) −1.14894 + 2.51582i −0.175212 + 0.383660i −0.976780 0.214243i \(-0.931272\pi\)
0.801569 + 0.597902i \(0.203999\pi\)
\(44\) 2.18241 0.685568i 0.329010 0.103353i
\(45\) 0 0
\(46\) 4.03559 + 5.45106i 0.595015 + 0.803714i
\(47\) 2.26417i 0.330263i −0.986272 0.165131i \(-0.947195\pi\)
0.986272 0.165131i \(-0.0528048\pi\)
\(48\) 0 0
\(49\) 2.88240 6.31158i 0.411771 0.901654i
\(50\) 0.113942 0.255825i 0.0161138 0.0361792i
\(51\) 0 0
\(52\) −0.799821 + 6.41571i −0.110915 + 0.889699i
\(53\) −0.401905 0.625377i −0.0552060 0.0859021i 0.812553 0.582887i \(-0.198077\pi\)
−0.867759 + 0.496985i \(0.834441\pi\)
\(54\) 0 0
\(55\) −1.89421 + 1.64135i −0.255416 + 0.221319i
\(56\) 4.65541 + 9.47819i 0.622105 + 1.26658i
\(57\) 0 0
\(58\) 8.32913 + 9.43197i 1.09367 + 1.23848i
\(59\) −5.02299 + 7.81592i −0.653937 + 1.01755i 0.343000 + 0.939336i \(0.388557\pi\)
−0.996937 + 0.0782107i \(0.975079\pi\)
\(60\) 0 0
\(61\) −3.25979 + 1.48870i −0.417374 + 0.190608i −0.613022 0.790066i \(-0.710046\pi\)
0.195648 + 0.980674i \(0.437319\pi\)
\(62\) −13.9841 1.87681i −1.77598 0.238355i
\(63\) 0 0
\(64\) −7.79064 1.81820i −0.973831 0.227275i
\(65\) −1.99577 6.79697i −0.247545 0.843060i
\(66\) 0 0
\(67\) 1.45310 + 10.1065i 0.177525 + 1.23471i 0.862467 + 0.506113i \(0.168918\pi\)
−0.684943 + 0.728597i \(0.740173\pi\)
\(68\) 7.25398 1.18236i 0.879674 0.143382i
\(69\) 0 0
\(70\) −8.81478 7.49435i −1.05357 0.895746i
\(71\) −9.06545 + 1.30341i −1.07587 + 0.154687i −0.657399 0.753543i \(-0.728343\pi\)
−0.418472 + 0.908230i \(0.637434\pi\)
\(72\) 0 0
\(73\) 4.26223 1.25150i 0.498857 0.146478i −0.0226182 0.999744i \(-0.507200\pi\)
0.521475 + 0.853267i \(0.325382\pi\)
\(74\) 8.64304 1.32560i 1.00473 0.154098i
\(75\) 0 0
\(76\) 2.35616 + 2.61818i 0.270270 + 0.300326i
\(77\) −1.77392 3.88434i −0.202157 0.442661i
\(78\) 0 0
\(79\) −13.6810 8.79222i −1.53923 0.989202i −0.987931 0.154892i \(-0.950497\pi\)
−0.551296 0.834310i \(-0.685867\pi\)
\(80\) 8.62320 1.57225i 0.964103 0.175783i
\(81\) 0 0
\(82\) 1.65383 0.502518i 0.182635 0.0554938i
\(83\) −3.52806 4.07160i −0.387255 0.446916i 0.528331 0.849038i \(-0.322818\pi\)
−0.915586 + 0.402123i \(0.868273\pi\)
\(84\) 0 0
\(85\) −6.77449 + 4.35370i −0.734797 + 0.472225i
\(86\) −3.27047 + 2.14544i −0.352663 + 0.231349i
\(87\) 0 0
\(88\) 3.12848 + 0.823669i 0.333497 + 0.0878034i
\(89\) 5.59347 + 2.55445i 0.592907 + 0.270772i 0.689188 0.724583i \(-0.257967\pi\)
−0.0962809 + 0.995354i \(0.530695\pi\)
\(90\) 0 0
\(91\) 12.0691 1.26518
\(92\) 0.723225 + 9.56436i 0.0754014 + 0.997153i
\(93\) 0 0
\(94\) 1.70578 2.70984i 0.175938 0.279499i
\(95\) −3.51049 1.60318i −0.360168 0.164483i
\(96\) 0 0
\(97\) −6.04072 5.23431i −0.613342 0.531464i 0.291852 0.956464i \(-0.405729\pi\)
−0.905193 + 0.425000i \(0.860274\pi\)
\(98\) 8.20478 5.38238i 0.828808 0.543703i
\(99\) 0 0
\(100\) 0.329103 0.220340i 0.0329103 0.0220340i
\(101\) −10.4416 12.0503i −1.03898 1.19905i −0.979630 0.200813i \(-0.935642\pi\)
−0.0593535 0.998237i \(-0.518904\pi\)
\(102\) 0 0
\(103\) 2.55830 17.7934i 0.252077 1.75323i −0.333624 0.942706i \(-0.608272\pi\)
0.585701 0.810527i \(-0.300819\pi\)
\(104\) −5.79073 + 7.07599i −0.567828 + 0.693858i
\(105\) 0 0
\(106\) −0.00986828 1.05126i −0.000958492 0.102108i
\(107\) 3.56732 + 7.81135i 0.344866 + 0.755151i 1.00000 0.000361420i \(-0.000115044\pi\)
−0.655134 + 0.755513i \(0.727388\pi\)
\(108\) 0 0
\(109\) −2.90209 + 9.88360i −0.277970 + 0.946677i 0.695627 + 0.718403i \(0.255127\pi\)
−0.973597 + 0.228274i \(0.926692\pi\)
\(110\) −3.50362 + 0.537359i −0.334057 + 0.0512352i
\(111\) 0 0
\(112\) −1.56892 + 14.8511i −0.148249 + 1.40330i
\(113\) −10.1971 + 1.46612i −0.959260 + 0.137921i −0.604121 0.796893i \(-0.706476\pi\)
−0.355139 + 0.934813i \(0.615567\pi\)
\(114\) 0 0
\(115\) −4.90044 9.29683i −0.456968 0.866934i
\(116\) 2.86275 + 17.5635i 0.265800 + 1.63073i
\(117\) 0 0
\(118\) −11.9001 + 5.57016i −1.09549 + 0.512775i
\(119\) −3.86533 13.1641i −0.354334 1.20675i
\(120\) 0 0
\(121\) 9.29919 + 2.73049i 0.845381 + 0.248226i
\(122\) −5.02300 0.674137i −0.454761 0.0610335i
\(123\) 0 0
\(124\) −15.3227 12.7816i −1.37602 1.14782i
\(125\) −6.15825 + 9.58242i −0.550811 + 0.857078i
\(126\) 0 0
\(127\) −2.28895 0.329102i −0.203112 0.0292031i 0.0400079 0.999199i \(-0.487262\pi\)
−0.243120 + 0.969996i \(0.578171\pi\)
\(128\) −7.95433 8.04541i −0.703070 0.711120i
\(129\) 0 0
\(130\) 2.73209 9.63844i 0.239620 0.845347i
\(131\) −6.69494 10.4175i −0.584940 0.910184i −1.00000 0.000390307i \(-0.999876\pi\)
0.415060 0.909794i \(-0.363761\pi\)
\(132\) 0 0
\(133\) 4.30576 4.96912i 0.373357 0.430877i
\(134\) −5.87494 + 13.1906i −0.507518 + 1.13950i
\(135\) 0 0
\(136\) 9.57260 + 4.04992i 0.820843 + 0.347278i
\(137\) 9.53713i 0.814812i −0.913247 0.407406i \(-0.866433\pi\)
0.913247 0.407406i \(-0.133567\pi\)
\(138\) 0 0
\(139\) 14.8214i 1.25713i 0.777755 + 0.628567i \(0.216358\pi\)
−0.777755 + 0.628567i \(0.783642\pi\)
\(140\) −4.90376 15.6104i −0.414443 1.31932i
\(141\) 0 0
\(142\) −11.8318 5.26976i −0.992905 0.442228i
\(143\) 2.42133 2.79436i 0.202482 0.233676i
\(144\) 0 0
\(145\) −10.5413 16.4026i −0.875407 1.36216i
\(146\) 6.04406 + 1.71324i 0.500210 + 0.141789i
\(147\) 0 0
\(148\) 11.3430 + 4.92497i 0.932389 + 0.404830i
\(149\) 11.6451 + 1.67432i 0.954006 + 0.137165i 0.601703 0.798720i \(-0.294489\pi\)
0.352304 + 0.935886i \(0.385398\pi\)
\(150\) 0 0
\(151\) −0.682332 + 1.06173i −0.0555274 + 0.0864023i −0.867907 0.496726i \(-0.834535\pi\)
0.812380 + 0.583129i \(0.198172\pi\)
\(152\) 0.847449 + 4.90861i 0.0687372 + 0.398141i
\(153\) 0 0
\(154\) 0.803294 5.98535i 0.0647313 0.482313i
\(155\) 20.9772 + 6.15946i 1.68493 + 0.494740i
\(156\) 0 0
\(157\) 1.44386 + 4.91732i 0.115232 + 0.392445i 0.996830 0.0795558i \(-0.0253502\pi\)
−0.881598 + 0.472001i \(0.843532\pi\)
\(158\) −9.74998 20.8298i −0.775667 1.65713i
\(159\) 0 0
\(160\) 11.5051 + 4.61482i 0.909555 + 0.364834i
\(161\) 17.5498 3.54838i 1.38312 0.279651i
\(162\) 0 0
\(163\) 9.67641 1.39126i 0.757915 0.108972i 0.247486 0.968892i \(-0.420396\pi\)
0.510429 + 0.859920i \(0.329487\pi\)
\(164\) 2.35795 + 0.644531i 0.184125 + 0.0503294i
\(165\) 0 0
\(166\) −1.15505 7.53101i −0.0896491 0.584519i
\(167\) −1.03844 + 3.53662i −0.0803572 + 0.273672i −0.989864 0.142017i \(-0.954641\pi\)
0.909507 + 0.415689i \(0.136459\pi\)
\(168\) 0 0
\(169\) −1.05920 2.31932i −0.0814766 0.178409i
\(170\) −11.3880 + 0.106900i −0.873416 + 0.00819883i
\(171\) 0 0
\(172\) −5.53055 + 0.103841i −0.421700 + 0.00791776i
\(173\) −0.724466 + 5.03877i −0.0550801 + 0.383091i 0.943571 + 0.331170i \(0.107443\pi\)
−0.998651 + 0.0519206i \(0.983466\pi\)
\(174\) 0 0
\(175\) −0.484153 0.558743i −0.0365986 0.0422370i
\(176\) 3.12374 + 3.34273i 0.235461 + 0.251968i
\(177\) 0 0
\(178\) 4.77000 + 7.27128i 0.357526 + 0.545005i
\(179\) 1.34857 + 1.16854i 0.100797 + 0.0873407i 0.703801 0.710397i \(-0.251485\pi\)
−0.603005 + 0.797738i \(0.706030\pi\)
\(180\) 0 0
\(181\) −19.2255 8.77998i −1.42902 0.652611i −0.457421 0.889250i \(-0.651227\pi\)
−0.971598 + 0.236639i \(0.923954\pi\)
\(182\) 14.4447 + 9.09259i 1.07071 + 0.673988i
\(183\) 0 0
\(184\) −6.34002 + 11.9918i −0.467392 + 0.884050i
\(185\) −13.5491 −0.996150
\(186\) 0 0
\(187\) −3.82338 1.74608i −0.279593 0.127686i
\(188\) 4.08308 1.95813i 0.297789 0.142812i
\(189\) 0 0
\(190\) −2.99367 4.56348i −0.217184 0.331070i
\(191\) −17.7180 + 11.3867i −1.28203 + 0.823911i −0.991137 0.132845i \(-0.957589\pi\)
−0.290893 + 0.956756i \(0.593952\pi\)
\(192\) 0 0
\(193\) 0.606229 + 0.699625i 0.0436373 + 0.0503601i 0.777149 0.629317i \(-0.216665\pi\)
−0.733511 + 0.679677i \(0.762120\pi\)
\(194\) −3.28632 10.8156i −0.235944 0.776513i
\(195\) 0 0
\(196\) 13.8748 0.260510i 0.991054 0.0186078i
\(197\) 7.17132 + 4.60873i 0.510936 + 0.328358i 0.770577 0.637347i \(-0.219968\pi\)
−0.259642 + 0.965705i \(0.583604\pi\)
\(198\) 0 0
\(199\) 4.93644 + 10.8093i 0.349935 + 0.766250i 0.999980 + 0.00635466i \(0.00202276\pi\)
−0.650045 + 0.759896i \(0.725250\pi\)
\(200\) 0.559883 0.0157707i 0.0395897 0.00111516i
\(201\) 0 0
\(202\) −3.41848 22.2888i −0.240524 1.56823i
\(203\) 31.8733 9.35884i 2.23707 0.656862i
\(204\) 0 0
\(205\) −2.65105 + 0.381164i −0.185158 + 0.0266216i
\(206\) 16.4671 19.3684i 1.14731 1.34946i
\(207\) 0 0
\(208\) −12.2615 + 4.10618i −0.850180 + 0.284713i
\(209\) −0.286671 1.99384i −0.0198294 0.137917i
\(210\) 0 0
\(211\) 5.81597 + 19.8074i 0.400388 + 1.36360i 0.875307 + 0.483567i \(0.160659\pi\)
−0.474919 + 0.880030i \(0.657523\pi\)
\(212\) 0.780189 1.26562i 0.0535836 0.0869234i
\(213\) 0 0
\(214\) −1.61541 + 12.0365i −0.110427 + 0.822795i
\(215\) 5.51303 2.51772i 0.375985 0.171707i
\(216\) 0 0
\(217\) −20.1379 + 31.3352i −1.36705 + 2.12717i
\(218\) −10.9194 + 9.64268i −0.739558 + 0.653085i
\(219\) 0 0
\(220\) −4.59810 1.99643i −0.310004 0.134599i
\(221\) 8.97805 7.77952i 0.603929 0.523307i
\(222\) 0 0
\(223\) −7.55708 11.7591i −0.506060 0.787444i 0.490402 0.871497i \(-0.336850\pi\)
−0.996461 + 0.0840523i \(0.973214\pi\)
\(224\) −13.0663 + 16.5924i −0.873028 + 1.10863i
\(225\) 0 0
\(226\) −13.3088 5.92757i −0.885287 0.394296i
\(227\) −11.7401 + 25.7073i −0.779220 + 1.70625i −0.0740076 + 0.997258i \(0.523579\pi\)
−0.705212 + 0.708996i \(0.749148\pi\)
\(228\) 0 0
\(229\) 10.5591i 0.697763i −0.937167 0.348882i \(-0.886562\pi\)
0.937167 0.348882i \(-0.113438\pi\)
\(230\) 1.13903 14.8187i 0.0751052 0.977115i
\(231\) 0 0
\(232\) −9.80577 + 23.1774i −0.643781 + 1.52167i
\(233\) −3.77738 + 8.27132i −0.247465 + 0.541872i −0.992078 0.125624i \(-0.959907\pi\)
0.744613 + 0.667496i \(0.232634\pi\)
\(234\) 0 0
\(235\) −3.24913 + 3.74970i −0.211950 + 0.244603i
\(236\) −18.4389 2.29870i −1.20027 0.149633i
\(237\) 0 0
\(238\) 5.29141 18.6674i 0.342991 1.21002i
\(239\) 3.93558 3.41020i 0.254572 0.220588i −0.518220 0.855247i \(-0.673405\pi\)
0.772792 + 0.634660i \(0.218860\pi\)
\(240\) 0 0
\(241\) 14.9668 + 2.15190i 0.964097 + 0.138616i 0.606346 0.795201i \(-0.292635\pi\)
0.357751 + 0.933817i \(0.383544\pi\)
\(242\) 9.07251 + 10.2738i 0.583203 + 0.660423i
\(243\) 0 0
\(244\) −5.50382 4.59106i −0.352346 0.293912i
\(245\) −13.8308 + 6.31632i −0.883618 + 0.403535i
\(246\) 0 0
\(247\) 5.46257 + 1.60396i 0.347575 + 0.102057i
\(248\) −8.70941 26.8413i −0.553048 1.70442i
\(249\) 0 0
\(250\) −14.5896 + 6.82909i −0.922729 + 0.431910i
\(251\) −0.300202 2.08795i −0.0189486 0.131790i 0.978151 0.207894i \(-0.0666610\pi\)
−0.997100 + 0.0761039i \(0.975752\pi\)
\(252\) 0 0
\(253\) 2.69934 4.77522i 0.169706 0.300216i
\(254\) −2.49156 2.11833i −0.156335 0.132916i
\(255\) 0 0
\(256\) −3.45878 15.6217i −0.216174 0.976355i
\(257\) −17.6327 + 5.17743i −1.09990 + 0.322959i −0.780812 0.624766i \(-0.785194\pi\)
−0.319087 + 0.947725i \(0.603376\pi\)
\(258\) 0 0
\(259\) 6.50350 22.1489i 0.404108 1.37627i
\(260\) 10.5313 9.47733i 0.653122 0.587759i
\(261\) 0 0
\(262\) −0.164386 17.5119i −0.0101558 1.08189i
\(263\) −8.46337 5.43908i −0.521874 0.335388i 0.253039 0.967456i \(-0.418570\pi\)
−0.774913 + 0.632068i \(0.782206\pi\)
\(264\) 0 0
\(265\) −0.231833 + 1.61243i −0.0142414 + 0.0990510i
\(266\) 8.89693 2.70334i 0.545506 0.165753i
\(267\) 0 0
\(268\) −16.9689 + 11.3609i −1.03654 + 0.693980i
\(269\) −17.0822 + 10.9781i −1.04152 + 0.669346i −0.945363 0.326020i \(-0.894292\pi\)
−0.0961596 + 0.995366i \(0.530656\pi\)
\(270\) 0 0
\(271\) −4.88932 4.23662i −0.297005 0.257356i 0.493591 0.869694i \(-0.335684\pi\)
−0.790596 + 0.612338i \(0.790229\pi\)
\(272\) 8.40570 + 12.0589i 0.509670 + 0.731178i
\(273\) 0 0
\(274\) 7.18509 11.4144i 0.434067 0.689568i
\(275\) −0.226499 −0.0136584
\(276\) 0 0
\(277\) 20.6386 1.24005 0.620026 0.784582i \(-0.287122\pi\)
0.620026 + 0.784582i \(0.287122\pi\)
\(278\) −11.1661 + 17.7388i −0.669701 + 1.06390i
\(279\) 0 0
\(280\) 5.89157 22.3775i 0.352089 1.33731i
\(281\) 13.0739 + 11.3286i 0.779923 + 0.675807i 0.950911 0.309466i \(-0.100150\pi\)
−0.170987 + 0.985273i \(0.554696\pi\)
\(282\) 0 0
\(283\) −1.50653 + 0.968186i −0.0895537 + 0.0575527i −0.584651 0.811285i \(-0.698769\pi\)
0.495098 + 0.868837i \(0.335132\pi\)
\(284\) −10.1906 15.2209i −0.604703 0.903195i
\(285\) 0 0
\(286\) 5.00316 1.52021i 0.295843 0.0898922i
\(287\) 0.649399 4.51667i 0.0383328 0.266610i
\(288\) 0 0
\(289\) 2.94056 + 1.88978i 0.172974 + 0.111164i
\(290\) −0.258828 27.5728i −0.0151989 1.61913i
\(291\) 0 0
\(292\) 5.94303 + 6.60394i 0.347789 + 0.386466i
\(293\) 4.05277 13.8025i 0.236765 0.806349i −0.752294 0.658828i \(-0.771052\pi\)
0.989059 0.147521i \(-0.0471294\pi\)
\(294\) 0 0
\(295\) 19.5346 5.73588i 1.13735 0.333956i
\(296\) 9.86534 + 14.4400i 0.573411 + 0.839307i
\(297\) 0 0
\(298\) 12.6759 + 10.7771i 0.734296 + 0.624301i
\(299\) 9.10741 + 12.5464i 0.526695 + 0.725575i
\(300\) 0 0
\(301\) 1.46952 + 10.2207i 0.0847015 + 0.589112i
\(302\) −1.61653 + 0.756661i −0.0930206 + 0.0435409i
\(303\) 0 0
\(304\) −2.68379 + 6.51326i −0.153926 + 0.373561i
\(305\) 7.53487 + 2.21244i 0.431446 + 0.126684i
\(306\) 0 0
\(307\) 0.0421634 0.0192554i 0.00240639 0.00109896i −0.414211 0.910181i \(-0.635943\pi\)
0.416618 + 0.909082i \(0.363215\pi\)
\(308\) 5.47066 6.55830i 0.311720 0.373694i
\(309\) 0 0
\(310\) 20.4659 + 23.1757i 1.16238 + 1.31629i
\(311\) 7.22360 + 1.03860i 0.409613 + 0.0588934i 0.344041 0.938954i \(-0.388204\pi\)
0.0655712 + 0.997848i \(0.479113\pi\)
\(312\) 0 0
\(313\) 16.9083 14.6511i 0.955713 0.828130i −0.0294826 0.999565i \(-0.509386\pi\)
0.985195 + 0.171435i \(0.0548405\pi\)
\(314\) −1.97655 + 6.97300i −0.111543 + 0.393509i
\(315\) 0 0
\(316\) 4.02363 32.2753i 0.226347 1.81563i
\(317\) 4.71950 5.44659i 0.265074 0.305911i −0.607573 0.794264i \(-0.707857\pi\)
0.872646 + 0.488353i \(0.162402\pi\)
\(318\) 0 0
\(319\) 4.22765 9.25726i 0.236703 0.518307i
\(320\) 10.2930 + 14.1909i 0.575394 + 0.793294i
\(321\) 0 0
\(322\) 23.6776 + 8.97488i 1.31950 + 0.500150i
\(323\) 6.47190i 0.360106i
\(324\) 0 0
\(325\) 0.265932 0.582309i 0.0147512 0.0323007i
\(326\) 12.6292 + 5.62491i 0.699468 + 0.311535i
\(327\) 0 0
\(328\) 2.33650 + 2.54783i 0.129012 + 0.140680i
\(329\) −4.57012 7.11124i −0.251959 0.392055i
\(330\) 0 0
\(331\) −15.8808 + 13.7608i −0.872886 + 0.756360i −0.971067 0.238808i \(-0.923243\pi\)
0.0981803 + 0.995169i \(0.468698\pi\)
\(332\) 4.29131 9.88357i 0.235516 0.542432i
\(333\) 0 0
\(334\) −3.90727 + 3.45041i −0.213796 + 0.188798i
\(335\) 12.0966 18.8227i 0.660909 1.02839i
\(336\) 0 0
\(337\) −21.0240 + 9.60132i −1.14525 + 0.523017i −0.895398 0.445267i \(-0.853109\pi\)
−0.249850 + 0.968284i \(0.580381\pi\)
\(338\) 0.479643 3.57382i 0.0260891 0.194390i
\(339\) 0 0
\(340\) −13.7101 8.45152i −0.743532 0.458348i
\(341\) 3.21495 + 10.9491i 0.174099 + 0.592928i
\(342\) 0 0
\(343\) 0.0326215 + 0.226887i 0.00176139 + 0.0122508i
\(344\) −6.69739 4.04233i −0.361099 0.217948i
\(345\) 0 0
\(346\) −4.66318 + 5.48479i −0.250694 + 0.294864i
\(347\) 13.8830 1.99607i 0.745277 0.107155i 0.240794 0.970576i \(-0.422592\pi\)
0.504483 + 0.863422i \(0.331683\pi\)
\(348\) 0 0
\(349\) −5.34964 + 1.57080i −0.286360 + 0.0840828i −0.421758 0.906708i \(-0.638587\pi\)
0.135398 + 0.990791i \(0.456769\pi\)
\(350\) −0.158507 1.03348i −0.00847253 0.0552416i
\(351\) 0 0
\(352\) 1.22026 + 6.35407i 0.0650400 + 0.338673i
\(353\) 0.464795 + 1.01776i 0.0247385 + 0.0541699i 0.921598 0.388146i \(-0.126884\pi\)
−0.896859 + 0.442316i \(0.854157\pi\)
\(354\) 0 0
\(355\) 16.8838 + 10.8505i 0.896097 + 0.575887i
\(356\) 0.230870 + 12.2962i 0.0122361 + 0.651695i
\(357\) 0 0
\(358\) 0.733658 + 2.41453i 0.0387750 + 0.127612i
\(359\) −10.1453 11.7083i −0.535451 0.617943i 0.421980 0.906605i \(-0.361335\pi\)
−0.957431 + 0.288662i \(0.906790\pi\)
\(360\) 0 0
\(361\) −13.3746 + 8.59533i −0.703926 + 0.452386i
\(362\) −16.3951 24.9923i −0.861707 1.31357i
\(363\) 0 0
\(364\) 10.4378 + 21.7647i 0.547087 + 1.14078i
\(365\) −8.85464 4.04378i −0.463473 0.211661i
\(366\) 0 0
\(367\) −0.817746 −0.0426860 −0.0213430 0.999772i \(-0.506794\pi\)
−0.0213430 + 0.999772i \(0.506794\pi\)
\(368\) −16.6224 + 9.57582i −0.866502 + 0.499174i
\(369\) 0 0
\(370\) −16.2161 10.2076i −0.843033 0.530669i
\(371\) −2.52459 1.15294i −0.131070 0.0598577i
\(372\) 0 0
\(373\) 6.00992 + 5.20762i 0.311182 + 0.269641i 0.796423 0.604740i \(-0.206723\pi\)
−0.485241 + 0.874380i \(0.661268\pi\)
\(374\) −3.26050 4.97023i −0.168596 0.257004i
\(375\) 0 0
\(376\) 6.36200 + 0.732547i 0.328095 + 0.0377782i
\(377\) 18.8360 + 21.7379i 0.970102 + 1.11956i
\(378\) 0 0
\(379\) −2.85196 + 19.8358i −0.146495 + 1.01890i 0.775403 + 0.631467i \(0.217547\pi\)
−0.921899 + 0.387431i \(0.873362\pi\)
\(380\) −0.144895 7.71711i −0.00743296 0.395880i
\(381\) 0 0
\(382\) −29.7841 + 0.279585i −1.52388 + 0.0143048i
\(383\) 0.939261 + 2.05669i 0.0479940 + 0.105092i 0.932110 0.362175i \(-0.117966\pi\)
−0.884116 + 0.467267i \(0.845239\pi\)
\(384\) 0 0
\(385\) −2.63632 + 8.97848i −0.134359 + 0.457586i
\(386\) 0.198473 + 1.29406i 0.0101020 + 0.0658658i
\(387\) 0 0
\(388\) 4.21505 15.4203i 0.213987 0.782848i
\(389\) 8.33260 1.19805i 0.422480 0.0607434i 0.0722037 0.997390i \(-0.476997\pi\)
0.350276 + 0.936646i \(0.386088\pi\)
\(390\) 0 0
\(391\) 10.7679 13.9519i 0.544557 0.705580i
\(392\) 16.8021 + 10.1412i 0.848633 + 0.512207i
\(393\) 0 0
\(394\) 5.11078 + 10.9186i 0.257477 + 0.550073i
\(395\) 10.0401 + 34.1933i 0.505170 + 1.72045i
\(396\) 0 0
\(397\) −3.23260 0.949177i −0.162239 0.0476378i 0.199604 0.979877i \(-0.436034\pi\)
−0.361844 + 0.932239i \(0.617853\pi\)
\(398\) −2.23540 + 16.6560i −0.112050 + 0.834888i
\(399\) 0 0
\(400\) 0.681970 + 0.402930i 0.0340985 + 0.0201465i
\(401\) −8.46186 + 13.1669i −0.422565 + 0.657525i −0.985636 0.168884i \(-0.945984\pi\)
0.563071 + 0.826409i \(0.309620\pi\)
\(402\) 0 0
\(403\) −31.9239 4.58997i −1.59024 0.228643i
\(404\) 12.7006 29.2515i 0.631877 1.45531i
\(405\) 0 0
\(406\) 45.1979 + 12.8117i 2.24313 + 0.635834i
\(407\) −3.82341 5.94934i −0.189519 0.294898i
\(408\) 0 0
\(409\) 13.5096 15.5909i 0.668008 0.770923i −0.316055 0.948741i \(-0.602358\pi\)
0.984063 + 0.177818i \(0.0569039\pi\)
\(410\) −3.46004 1.54106i −0.170879 0.0761075i
\(411\) 0 0
\(412\) 34.3001 10.7748i 1.68985 0.530838i
\(413\) 34.6867i 1.70682i
\(414\) 0 0
\(415\) 11.8058i 0.579526i
\(416\) −17.7685 4.32312i −0.871172 0.211958i
\(417\) 0 0
\(418\) 1.15902 2.60227i 0.0566895 0.127281i
\(419\) −6.55475 + 7.56458i −0.320220 + 0.369554i −0.892923 0.450209i \(-0.851349\pi\)
0.572703 + 0.819763i \(0.305895\pi\)
\(420\) 0 0
\(421\) −10.1364 15.7726i −0.494020 0.768710i 0.501307 0.865269i \(-0.332853\pi\)
−0.995327 + 0.0965595i \(0.969216\pi\)
\(422\) −7.96173 + 28.0879i −0.387571 + 1.36730i
\(423\) 0 0
\(424\) 1.88725 0.926965i 0.0916532 0.0450174i
\(425\) −0.720313 0.103565i −0.0349403 0.00502366i
\(426\) 0 0
\(427\) −7.23340 + 11.2554i −0.350049 + 0.544687i
\(428\) −11.0014 + 13.1887i −0.531774 + 0.637498i
\(429\) 0 0
\(430\) 8.49499 + 1.14011i 0.409665 + 0.0549812i
\(431\) −2.71944 0.798501i −0.130991 0.0384624i 0.215580 0.976486i \(-0.430836\pi\)
−0.346571 + 0.938024i \(0.612654\pi\)
\(432\) 0 0
\(433\) 5.21341 + 17.7552i 0.250540 + 0.853262i 0.984696 + 0.174281i \(0.0557600\pi\)
−0.734156 + 0.678981i \(0.762422\pi\)
\(434\) −47.7091 + 22.3316i −2.29011 + 1.07195i
\(435\) 0 0
\(436\) −20.3334 + 3.31422i −0.973793 + 0.158722i
\(437\) 8.41480 + 0.726312i 0.402534 + 0.0347442i
\(438\) 0 0
\(439\) 3.02122 0.434385i 0.144195 0.0207321i −0.0698394 0.997558i \(-0.522249\pi\)
0.214034 + 0.976826i \(0.431340\pi\)
\(440\) −3.99910 5.85352i −0.190650 0.279056i
\(441\) 0 0
\(442\) 16.6062 2.54693i 0.789876 0.121145i
\(443\) 4.88374 16.6325i 0.232034 0.790234i −0.758345 0.651853i \(-0.773992\pi\)
0.990379 0.138381i \(-0.0441899\pi\)
\(444\) 0 0
\(445\) −5.59768 12.2572i −0.265355 0.581047i
\(446\) −0.185555 19.7670i −0.00878626 0.935996i
\(447\) 0 0
\(448\) −28.1386 + 10.0145i −1.32942 + 0.473140i
\(449\) −0.0379424 + 0.263895i −0.00179061 + 0.0124540i −0.990697 0.136085i \(-0.956548\pi\)
0.988907 + 0.148539i \(0.0474571\pi\)
\(450\) 0 0
\(451\) −0.915465 1.05650i −0.0431076 0.0497488i
\(452\) −11.4627 17.1209i −0.539161 0.805300i
\(453\) 0 0
\(454\) −33.4184 + 21.9227i −1.56840 + 1.02888i
\(455\) −19.9876 17.3194i −0.937034 0.811945i
\(456\) 0 0
\(457\) 26.5005 + 12.1024i 1.23964 + 0.566124i 0.923868 0.382711i \(-0.125010\pi\)
0.315771 + 0.948835i \(0.397737\pi\)
\(458\) 7.95500 12.6375i 0.371713 0.590511i
\(459\) 0 0
\(460\) 12.5273 16.8774i 0.584090 0.786914i
\(461\) 8.90884 0.414926 0.207463 0.978243i \(-0.433479\pi\)
0.207463 + 0.978243i \(0.433479\pi\)
\(462\) 0 0
\(463\) 10.0885 + 4.60724i 0.468850 + 0.214117i 0.635808 0.771847i \(-0.280667\pi\)
−0.166958 + 0.985964i \(0.553394\pi\)
\(464\) −29.1973 + 20.3521i −1.35545 + 0.944823i
\(465\) 0 0
\(466\) −10.7524 + 7.05361i −0.498093 + 0.326752i
\(467\) 29.0694 18.6818i 1.34517 0.864489i 0.347844 0.937552i \(-0.386914\pi\)
0.997327 + 0.0730634i \(0.0232775\pi\)
\(468\) 0 0
\(469\) 24.9634 + 28.8093i 1.15270 + 1.33029i
\(470\) −6.71363 + 2.03994i −0.309677 + 0.0940956i
\(471\) 0 0
\(472\) −20.3365 16.6427i −0.936064 0.766040i
\(473\) 2.66123 + 1.71027i 0.122364 + 0.0786383i
\(474\) 0 0
\(475\) −0.144877 0.317235i −0.00664739 0.0145558i
\(476\) 20.3966 18.3553i 0.934876 0.841315i
\(477\) 0 0
\(478\) 7.27943 1.11646i 0.332953 0.0510658i
\(479\) 27.9632 8.21073i 1.27767 0.375158i 0.428627 0.903481i \(-0.358997\pi\)
0.849043 + 0.528323i \(0.177179\pi\)
\(480\) 0 0
\(481\) 19.7843 2.84456i 0.902087 0.129701i
\(482\) 16.2916 + 13.8512i 0.742063 + 0.630904i
\(483\) 0 0
\(484\) 3.11825 + 19.1311i 0.141739 + 0.869595i
\(485\) 2.49270 + 17.3371i 0.113188 + 0.787239i
\(486\) 0 0
\(487\) −5.43992 18.5267i −0.246506 0.839523i −0.986055 0.166420i \(-0.946779\pi\)
0.739549 0.673103i \(-0.235039\pi\)
\(488\) −3.12836 9.64122i −0.141614 0.436437i
\(489\) 0 0
\(490\) −21.3118 2.86026i −0.962770 0.129213i
\(491\) −9.74561 + 4.45067i −0.439813 + 0.200856i −0.622999 0.782222i \(-0.714086\pi\)
0.183186 + 0.983078i \(0.441359\pi\)
\(492\) 0 0
\(493\) 17.6776 27.5070i 0.796161 1.23885i
\(494\) 5.32942 + 6.03507i 0.239782 + 0.271531i
\(495\) 0 0
\(496\) 9.79796 38.6861i 0.439942 1.73706i
\(497\) −25.8416 + 22.3919i −1.15916 + 1.00441i
\(498\) 0 0
\(499\) −4.94897 7.70075i −0.221546 0.344733i 0.712633 0.701537i \(-0.247503\pi\)
−0.934179 + 0.356804i \(0.883866\pi\)
\(500\) −22.6063 2.81824i −1.01098 0.126035i
\(501\) 0 0
\(502\) 1.21373 2.72510i 0.0541714 0.121627i
\(503\) −10.3583 + 22.6815i −0.461853 + 1.01132i 0.525208 + 0.850974i \(0.323987\pi\)
−0.987061 + 0.160344i \(0.948740\pi\)
\(504\) 0 0
\(505\) 34.9406i 1.55484i
\(506\) 6.82823 3.68153i 0.303552 0.163664i
\(507\) 0 0
\(508\) −1.38608 4.41240i −0.0614975 0.195768i
\(509\) 14.7254 32.2441i 0.652691 1.42919i −0.236488 0.971634i \(-0.575997\pi\)
0.889179 0.457559i \(-0.151276\pi\)
\(510\) 0 0
\(511\) 10.8606 12.5338i 0.480445 0.554463i
\(512\) 7.62947 21.3024i 0.337178 0.941441i
\(513\) 0 0
\(514\) −25.0041 7.08761i −1.10288 0.312621i
\(515\) −29.7707 + 25.7965i −1.31185 + 1.13673i
\(516\) 0 0
\(517\) −2.56334 0.368553i −0.112736 0.0162090i
\(518\) 24.4702 21.6090i 1.07516 0.949445i
\(519\) 0 0
\(520\) 19.7443 3.40875i 0.865843 0.149484i
\(521\) −0.527552 + 0.240925i −0.0231125 + 0.0105551i −0.426938 0.904281i \(-0.640408\pi\)
0.403825 + 0.914836i \(0.367680\pi\)
\(522\) 0 0
\(523\) 16.1023 + 4.72806i 0.704104 + 0.206744i 0.614135 0.789201i \(-0.289505\pi\)
0.0899692 + 0.995945i \(0.471323\pi\)
\(524\) 12.9964 21.0828i 0.567750 0.921005i
\(525\) 0 0
\(526\) −6.03158 12.8858i −0.262989 0.561849i
\(527\) 5.21778 + 36.2905i 0.227290 + 1.58084i
\(528\) 0 0
\(529\) 16.9320 + 15.5663i 0.736172 + 0.676794i
\(530\) −1.49224 + 1.75516i −0.0648188 + 0.0762393i
\(531\) 0 0
\(532\) 12.6848 + 3.46731i 0.549957 + 0.150327i
\(533\) 3.79103 1.11315i 0.164208 0.0482157i
\(534\) 0 0
\(535\) 5.30160 18.0556i 0.229208 0.780612i
\(536\) −28.8681 + 0.813153i −1.24691 + 0.0351228i
\(537\) 0 0
\(538\) −28.7153 + 0.269553i −1.23801 + 0.0116213i
\(539\) −6.67637 4.29064i −0.287572 0.184811i
\(540\) 0 0
\(541\) −1.23736 + 8.60605i −0.0531984 + 0.370003i 0.945780 + 0.324808i \(0.105300\pi\)
−0.998978 + 0.0451944i \(0.985609\pi\)
\(542\) −2.65993 8.75405i −0.114254 0.376019i
\(543\) 0 0
\(544\) 0.975311 + 20.7652i 0.0418161 + 0.890302i
\(545\) 18.9894 12.2037i 0.813415 0.522750i
\(546\) 0 0
\(547\) 16.9263 + 14.6667i 0.723717 + 0.627104i 0.936774 0.349936i \(-0.113797\pi\)
−0.213057 + 0.977040i \(0.568342\pi\)
\(548\) 17.1988 8.24805i 0.734694 0.352339i
\(549\) 0 0
\(550\) −0.271082 0.170640i −0.0115590 0.00727610i
\(551\) 15.6699 0.667561
\(552\) 0 0
\(553\) −60.7154 −2.58188
\(554\) 24.7010 + 15.5487i 1.04944 + 0.660601i
\(555\) 0 0
\(556\) −26.7281 + 12.8181i −1.13352 + 0.543607i
\(557\) 1.28707 + 1.11525i 0.0545347 + 0.0472546i 0.681702 0.731630i \(-0.261240\pi\)
−0.627167 + 0.778885i \(0.715786\pi\)
\(558\) 0 0
\(559\) −7.52152 + 4.83378i −0.318126 + 0.204447i
\(560\) 23.9100 22.3436i 1.01038 0.944189i
\(561\) 0 0
\(562\) 7.11258 + 23.4081i 0.300026 + 0.987411i
\(563\) −0.711102 + 4.94582i −0.0299694 + 0.208442i −0.999304 0.0373029i \(-0.988123\pi\)
0.969335 + 0.245745i \(0.0790324\pi\)
\(564\) 0 0
\(565\) 18.9913 + 12.2050i 0.798972 + 0.513468i
\(566\) −2.53248 + 0.0237726i −0.106448 + 0.000999236i
\(567\) 0 0
\(568\) −0.729388 25.8944i −0.0306045 1.08650i
\(569\) −1.02167 + 3.47948i −0.0428305 + 0.145867i −0.978132 0.207984i \(-0.933310\pi\)
0.935302 + 0.353851i \(0.115128\pi\)
\(570\) 0 0
\(571\) 32.1866 9.45084i 1.34697 0.395506i 0.472817 0.881160i \(-0.343237\pi\)
0.874151 + 0.485655i \(0.161419\pi\)
\(572\) 7.13326 + 1.94983i 0.298257 + 0.0815266i
\(573\) 0 0
\(574\) 4.17999 4.91647i 0.174470 0.205209i
\(575\) 0.215494 0.924932i 0.00898671 0.0385724i
\(576\) 0 0
\(577\) −2.41627 16.8056i −0.100591 0.699625i −0.976242 0.216681i \(-0.930477\pi\)
0.875652 0.482943i \(-0.160432\pi\)
\(578\) 2.09564 + 4.47712i 0.0871672 + 0.186223i
\(579\) 0 0
\(580\) 20.4630 33.1952i 0.849682 1.37835i
\(581\) −19.2992 5.66674i −0.800664 0.235096i
\(582\) 0 0
\(583\) −0.773432 + 0.353215i −0.0320323 + 0.0146287i
\(584\) 2.13756 + 12.3812i 0.0884527 + 0.512338i
\(585\) 0 0
\(586\) 15.2490 13.4660i 0.629931 0.556276i
\(587\) −19.9892 2.87401i −0.825041 0.118623i −0.283154 0.959074i \(-0.591381\pi\)
−0.541887 + 0.840451i \(0.682290\pi\)
\(588\) 0 0
\(589\) −13.2790 + 11.5063i −0.547151 + 0.474109i
\(590\) 27.7010 + 7.85209i 1.14043 + 0.323265i
\(591\) 0 0
\(592\) 0.928402 + 24.7146i 0.0381571 + 1.01577i
\(593\) 17.7814 20.5208i 0.730193 0.842688i −0.262300 0.964986i \(-0.584481\pi\)
0.992493 + 0.122298i \(0.0390265\pi\)
\(594\) 0 0
\(595\) −12.4894 + 27.3480i −0.512016 + 1.12116i
\(596\) 7.05175 + 22.4482i 0.288851 + 0.919515i
\(597\) 0 0
\(598\) 1.44790 + 21.8773i 0.0592089 + 0.894629i
\(599\) 4.57335i 0.186862i −0.995626 0.0934309i \(-0.970217\pi\)
0.995626 0.0934309i \(-0.0297834\pi\)
\(600\) 0 0
\(601\) 7.98506 17.4848i 0.325717 0.713221i −0.673956 0.738771i \(-0.735406\pi\)
0.999674 + 0.0255499i \(0.00813368\pi\)
\(602\) −5.94131 + 13.3396i −0.242150 + 0.543683i
\(603\) 0 0
\(604\) −2.50477 0.312260i −0.101918 0.0127057i
\(605\) −11.4821 17.8665i −0.466814 0.726377i
\(606\) 0 0
\(607\) −16.2200 + 14.0547i −0.658350 + 0.570464i −0.918654 0.395063i \(-0.870723\pi\)
0.260304 + 0.965527i \(0.416177\pi\)
\(608\) −8.11903 + 5.77339i −0.329270 + 0.234142i
\(609\) 0 0
\(610\) 7.35120 + 8.32455i 0.297642 + 0.337051i
\(611\) 3.95714 6.15743i 0.160089 0.249103i
\(612\) 0 0
\(613\) −23.9891 + 10.9555i −0.968912 + 0.442487i −0.836054 0.548648i \(-0.815143\pi\)
−0.132858 + 0.991135i \(0.542416\pi\)
\(614\) 0.0649693 + 0.00871954i 0.00262195 + 0.000351892i
\(615\) 0 0
\(616\) 11.4884 3.72773i 0.462880 0.150194i
\(617\) −2.46606 8.39862i −0.0992797 0.338116i 0.894842 0.446383i \(-0.147288\pi\)
−0.994122 + 0.108267i \(0.965470\pi\)
\(618\) 0 0
\(619\) −5.92703 41.2234i −0.238227 1.65691i −0.660788 0.750573i \(-0.729778\pi\)
0.422560 0.906335i \(-0.361132\pi\)
\(620\) 7.03419 + 43.1561i 0.282500 + 1.73319i
\(621\) 0 0
\(622\) 7.86301 + 6.68515i 0.315278 + 0.268050i
\(623\) 22.7239 3.26720i 0.910413 0.130898i
\(624\) 0 0
\(625\) 22.9997 6.75331i 0.919987 0.270133i
\(626\) 31.2743 4.79662i 1.24997 0.191711i
\(627\) 0 0
\(628\) −7.61893 + 6.85645i −0.304029 + 0.273602i
\(629\) −9.43893 20.6684i −0.376355 0.824102i
\(630\) 0 0
\(631\) −11.5707 7.43606i −0.460624 0.296025i 0.289674 0.957126i \(-0.406453\pi\)
−0.750297 + 0.661101i \(0.770090\pi\)
\(632\) 29.1312 35.5970i 1.15878 1.41597i
\(633\) 0 0
\(634\) 9.75183 2.96310i 0.387295 0.117680i
\(635\) 3.31848 + 3.82973i 0.131690 + 0.151978i
\(636\) 0 0
\(637\) 18.8696 12.1268i 0.747641 0.480480i
\(638\) 12.0340 7.89440i 0.476432 0.312542i
\(639\) 0 0
\(640\) 1.62786 + 24.7387i 0.0643470 + 0.977882i
\(641\) 22.0233 + 10.0577i 0.869868 + 0.397255i 0.799786 0.600286i \(-0.204946\pi\)
0.0700824 + 0.997541i \(0.477674\pi\)
\(642\) 0 0
\(643\) 2.43251 0.0959288 0.0479644 0.998849i \(-0.484727\pi\)
0.0479644 + 0.998849i \(0.484727\pi\)
\(644\) 21.5767 + 28.5797i 0.850241 + 1.12620i
\(645\) 0 0
\(646\) 4.87580 7.74581i 0.191836 0.304755i
\(647\) 44.7251 + 20.4253i 1.75833 + 0.803001i 0.985780 + 0.168043i \(0.0537446\pi\)
0.772547 + 0.634958i \(0.218983\pi\)
\(648\) 0 0
\(649\) 8.03105 + 6.95895i 0.315246 + 0.273163i
\(650\) 0.756977 0.496581i 0.0296911 0.0194775i
\(651\) 0 0
\(652\) 10.8774 + 16.2467i 0.425993 + 0.636270i
\(653\) 1.36207 + 1.57192i 0.0533021 + 0.0615139i 0.781775 0.623561i \(-0.214315\pi\)
−0.728472 + 0.685075i \(0.759769\pi\)
\(654\) 0 0
\(655\) −3.86187 + 26.8599i −0.150896 + 1.04950i
\(656\) 0.876927 + 4.80961i 0.0342382 + 0.187784i
\(657\) 0 0
\(658\) −0.112213 11.9540i −0.00437453 0.466017i
\(659\) −7.38557 16.1722i −0.287701 0.629978i 0.709503 0.704702i \(-0.248919\pi\)
−0.997204 + 0.0747248i \(0.976192\pi\)
\(660\) 0 0
\(661\) 10.9719 37.3667i 0.426756 1.45340i −0.413149 0.910663i \(-0.635571\pi\)
0.839905 0.542734i \(-0.182611\pi\)
\(662\) −29.3738 + 4.50513i −1.14164 + 0.175097i
\(663\) 0 0
\(664\) 12.5821 8.59603i 0.488280 0.333591i
\(665\) −14.2616 + 2.05051i −0.553041 + 0.0795153i
\(666\) 0 0
\(667\) 33.7808 + 26.0716i 1.30800 + 1.00949i
\(668\) −7.27583 + 1.18592i −0.281510 + 0.0458845i
\(669\) 0 0
\(670\) 28.6584 13.4144i 1.10717 0.518242i
\(671\) 1.15479 + 3.93285i 0.0445801 + 0.151826i
\(672\) 0 0
\(673\) −33.1659 9.73838i −1.27845 0.375387i −0.429120 0.903248i \(-0.641176\pi\)
−0.849331 + 0.527860i \(0.822994\pi\)
\(674\) −32.3957 4.34783i −1.24784 0.167472i
\(675\) 0 0
\(676\) 3.26650 3.91593i 0.125635 0.150613i
\(677\) 5.84218 9.09061i 0.224533 0.349380i −0.710649 0.703546i \(-0.751599\pi\)
0.935183 + 0.354166i \(0.115235\pi\)
\(678\) 0 0
\(679\) −29.5377 4.24688i −1.13355 0.162980i
\(680\) −10.0415 20.4440i −0.385074 0.783991i
\(681\) 0 0
\(682\) −4.40108 + 15.5264i −0.168526 + 0.594536i
\(683\) −15.2977 23.8036i −0.585349 0.910821i −1.00000 0.000840079i \(-0.999733\pi\)
0.414651 0.909981i \(-0.363904\pi\)
\(684\) 0 0
\(685\) −13.6860 + 15.7945i −0.522915 + 0.603476i
\(686\) −0.131890 + 0.296123i −0.00503558 + 0.0113060i
\(687\) 0 0
\(688\) −4.97028 9.88369i −0.189490 0.376812i
\(689\) 2.40314i 0.0915523i
\(690\) 0 0
\(691\) 13.6014i 0.517422i −0.965955 0.258711i \(-0.916702\pi\)
0.965955 0.258711i \(-0.0832977\pi\)
\(692\) −9.71319 + 3.05125i −0.369240 + 0.115991i
\(693\) 0 0
\(694\) 18.1194 + 8.07019i 0.687805 + 0.306340i
\(695\) 21.2690 24.5458i 0.806780 0.931074i
\(696\) 0 0
\(697\) −2.42829 3.77849i −0.0919780 0.143121i
\(698\) −7.58605 2.15033i −0.287136 0.0813911i
\(699\) 0 0
\(700\) 0.588894 1.35632i 0.0222581 0.0512640i
\(701\) −20.6692 2.97178i −0.780664 0.112243i −0.259550 0.965730i \(-0.583574\pi\)
−0.521114 + 0.853487i \(0.674483\pi\)
\(702\) 0 0
\(703\) 5.88709 9.16050i 0.222036 0.345495i
\(704\) −3.32658 + 8.52410i −0.125375 + 0.321264i
\(705\) 0 0
\(706\) −0.210476 + 1.56826i −0.00792138 + 0.0590222i
\(707\) −57.1178 16.7713i −2.14814 0.630750i
\(708\) 0 0
\(709\) −14.6578 49.9199i −0.550486 1.87478i −0.480000 0.877269i \(-0.659363\pi\)
−0.0704858 0.997513i \(-0.522455\pi\)
\(710\) 12.0325 + 25.7062i 0.451572 + 0.964737i
\(711\) 0 0
\(712\) −8.98737 + 14.8904i −0.336816 + 0.558042i
\(713\) −47.7707 + 2.71148i −1.78903 + 0.101546i
\(714\) 0 0
\(715\) −8.01995 + 1.15310i −0.299929 + 0.0431233i
\(716\) −0.940993 + 3.44252i −0.0351665 + 0.128653i
\(717\) 0 0
\(718\) −3.32148 21.6563i −0.123956 0.808205i
\(719\) 4.77265 16.2541i 0.177990 0.606177i −0.821370 0.570396i \(-0.806790\pi\)
0.999360 0.0357815i \(-0.0113920\pi\)
\(720\) 0 0
\(721\) −27.8800 61.0488i −1.03831 2.27357i
\(722\) −22.4828 + 0.211047i −0.836722 + 0.00785437i
\(723\) 0 0
\(724\) −0.793531 42.2635i −0.0294913 1.57071i
\(725\) 0.250755 1.74404i 0.00931281 0.0647721i
\(726\) 0 0
\(727\) −21.5901 24.9163i −0.800731 0.924093i 0.197690 0.980265i \(-0.436656\pi\)
−0.998421 + 0.0561715i \(0.982111\pi\)
\(728\) −3.90481 + 33.9124i −0.144722 + 1.25688i
\(729\) 0 0
\(730\) −7.55106 11.5107i −0.279477 0.426029i
\(731\) 7.68126 + 6.65585i 0.284102 + 0.246176i
\(732\) 0 0
\(733\) 7.07169 + 3.22953i 0.261199 + 0.119286i 0.541711 0.840565i \(-0.317777\pi\)
−0.280512 + 0.959851i \(0.590504\pi\)
\(734\) −0.978709 0.616074i −0.0361248 0.0227397i
\(735\) 0 0
\(736\) −27.1085 1.06228i −0.999233 0.0391562i
\(737\) 11.6785 0.430183
\(738\) 0 0
\(739\) 0.342533 + 0.156430i 0.0126003 + 0.00575436i 0.421705 0.906733i \(-0.361432\pi\)
−0.409105 + 0.912487i \(0.634159\pi\)
\(740\) −11.7177 24.4337i −0.430753 0.898202i
\(741\) 0 0
\(742\) −2.15292 3.28186i −0.0790360 0.120481i
\(743\) 2.19442 1.41027i 0.0805055 0.0517377i −0.499769 0.866159i \(-0.666582\pi\)
0.580274 + 0.814421i \(0.302945\pi\)
\(744\) 0 0
\(745\) −16.8829 19.4839i −0.618541 0.713834i
\(746\) 3.26957 + 10.7604i 0.119707 + 0.393967i
\(747\) 0 0
\(748\) −0.157810 8.40495i −0.00577009 0.307315i
\(749\) 26.9710 + 17.3332i 0.985498 + 0.633341i
\(750\) 0 0
\(751\) −16.6578 36.4756i −0.607853 1.33101i −0.924033 0.382313i \(-0.875128\pi\)
0.316180 0.948699i \(-0.397600\pi\)
\(752\) 7.06239 + 5.66975i 0.257539 + 0.206754i
\(753\) 0 0
\(754\) 6.16670 + 40.2073i 0.224578 + 1.46427i
\(755\) 2.65362 0.779172i 0.0965750 0.0283570i
\(756\) 0 0
\(757\) −26.3015 + 3.78158i −0.955943 + 0.137444i −0.602594 0.798048i \(-0.705866\pi\)
−0.353349 + 0.935492i \(0.614957\pi\)
\(758\) −18.3573 + 21.5916i −0.666766 + 0.784243i
\(759\) 0 0
\(760\) 5.64051 9.34529i 0.204603 0.338989i
\(761\) −6.22185 43.2739i −0.225542 1.56868i −0.716559 0.697527i \(-0.754284\pi\)
0.491017 0.871150i \(-0.336625\pi\)
\(762\) 0 0
\(763\) 10.8348 + 36.8999i 0.392245 + 1.33587i
\(764\) −35.8573 22.1041i −1.29727 0.799699i
\(765\) 0 0
\(766\) −0.425332 + 3.16915i −0.0153679 + 0.114506i
\(767\) −27.3201 + 12.4767i −0.986473 + 0.450507i
\(768\) 0 0
\(769\) −18.0559 + 28.0956i −0.651113 + 1.01315i 0.346074 + 0.938207i \(0.387515\pi\)
−0.997188 + 0.0749451i \(0.976122\pi\)
\(770\) −9.91945 + 8.75962i −0.357472 + 0.315675i
\(771\) 0 0
\(772\) −0.737379 + 1.69830i −0.0265388 + 0.0611232i
\(773\) 29.6254 25.6706i 1.06555 0.923306i 0.0683198 0.997663i \(-0.478236\pi\)
0.997232 + 0.0743579i \(0.0236907\pi\)
\(774\) 0 0
\(775\) 1.06814 + 1.66206i 0.0383688 + 0.0597030i
\(776\) 16.6621 15.2801i 0.598134 0.548523i
\(777\) 0 0
\(778\) 10.8754 + 4.84375i 0.389900 + 0.173657i
\(779\) 0.894181 1.95798i 0.0320374 0.0701520i
\(780\) 0 0
\(781\) 10.4755i 0.374842i
\(782\) 23.3986 8.58586i 0.836731 0.307030i
\(783\) 0 0
\(784\) 12.4692 + 24.7957i 0.445328 + 0.885561i
\(785\) 4.66529 10.2156i 0.166511 0.364609i
\(786\) 0 0
\(787\) −24.5886 + 28.3768i −0.876490 + 1.01152i 0.123326 + 0.992366i \(0.460644\pi\)
−0.999816 + 0.0191574i \(0.993902\pi\)
\(788\) −2.10912 + 16.9182i −0.0751343 + 0.602685i
\(789\) 0 0
\(790\) −13.7443 + 48.4878i −0.488999 + 1.72512i
\(791\) −29.0674 + 25.1871i −1.03352 + 0.895549i
\(792\) 0 0
\(793\) −11.4669 1.64869i −0.407200 0.0585466i
\(794\) −3.15380 3.57139i −0.111924 0.126744i
\(795\) 0 0
\(796\) −15.2237 + 18.2504i −0.539589 + 0.646867i
\(797\) −30.2453 + 13.8126i −1.07134 + 0.489266i −0.871416 0.490545i \(-0.836798\pi\)
−0.199927 + 0.979811i \(0.564070\pi\)
\(798\) 0 0
\(799\) −7.98345 2.34415i −0.282434 0.0829302i
\(800\) 0.512647 + 0.996024i 0.0181248 + 0.0352148i
\(801\) 0 0
\(802\) −20.0472 + 9.38365i −0.707890 + 0.331348i
\(803\) −0.723081 5.02914i −0.0255170 0.177474i
\(804\) 0 0
\(805\) −34.1564 19.3079i −1.20385 0.680515i
\(806\) −34.7497 29.5443i −1.22401 1.04065i
\(807\) 0 0
\(808\) 37.2380 25.4408i 1.31003 0.895006i
\(809\) 21.3600 6.27186i 0.750977 0.220507i 0.116225 0.993223i \(-0.462921\pi\)
0.634752 + 0.772716i \(0.281102\pi\)
\(810\) 0 0
\(811\) −10.2056 + 34.7572i −0.358368 + 1.22049i 0.561240 + 0.827653i \(0.310324\pi\)
−0.919608 + 0.392837i \(0.871494\pi\)
\(812\) 44.4424 + 49.3847i 1.55962 + 1.73306i
\(813\) 0 0
\(814\) −0.0938789 10.0009i −0.00329046 0.350530i
\(815\) −18.0216 11.5818i −0.631270 0.405693i
\(816\) 0 0
\(817\) −0.693197 + 4.82129i −0.0242519 + 0.168676i
\(818\) 27.9147 8.48192i 0.976016 0.296563i
\(819\) 0 0
\(820\) −2.98010 4.45112i −0.104069 0.155440i
\(821\) −8.19631 + 5.26745i −0.286053 + 0.183835i −0.675796 0.737088i \(-0.736200\pi\)
0.389743 + 0.920924i \(0.372564\pi\)
\(822\) 0 0
\(823\) −28.9373 25.0743i −1.00869 0.874036i −0.0166394 0.999862i \(-0.505297\pi\)
−0.992052 + 0.125825i \(0.959842\pi\)
\(824\) 49.1692 + 12.9453i 1.71289 + 0.450972i
\(825\) 0 0
\(826\) −26.1323 + 41.5143i −0.909258 + 1.44447i
\(827\) 14.2948 0.497077 0.248539 0.968622i \(-0.420050\pi\)
0.248539 + 0.968622i \(0.420050\pi\)
\(828\) 0 0
\(829\) 17.8480 0.619887 0.309944 0.950755i \(-0.399690\pi\)
0.309944 + 0.950755i \(0.399690\pi\)
\(830\) −8.89428 + 14.1297i −0.308725 + 0.490447i
\(831\) 0 0
\(832\) −18.0090 18.5605i −0.624351 0.643470i
\(833\) −19.2704 16.6979i −0.667679 0.578547i
\(834\) 0 0
\(835\) 6.79490 4.36682i 0.235147 0.151120i
\(836\) 3.34766 2.24131i 0.115781 0.0775173i
\(837\) 0 0
\(838\) −13.5440 + 4.11535i −0.467869 + 0.142162i
\(839\) 2.11741 14.7269i 0.0731011 0.508430i −0.920069 0.391756i \(-0.871868\pi\)
0.993170 0.116674i \(-0.0372232\pi\)
\(840\) 0 0
\(841\) 42.2042 + 27.1230i 1.45532 + 0.935276i
\(842\) −0.248887 26.5138i −0.00857722 0.913727i
\(843\) 0 0
\(844\) −30.6897 + 27.6184i −1.05638 + 0.950663i
\(845\) −1.57413 + 5.36100i −0.0541518 + 0.184424i
\(846\) 0 0
\(847\) 34.7180 10.1941i 1.19292 0.350274i
\(848\) 2.95709 + 0.312396i 0.101547 + 0.0107277i
\(849\) 0 0
\(850\) −0.784073 0.666621i −0.0268935 0.0228649i
\(851\) 27.9324 9.95304i 0.957511 0.341186i
\(852\) 0 0
\(853\) 2.41211 + 16.7766i 0.0825892 + 0.574421i 0.988531 + 0.151018i \(0.0482552\pi\)
−0.905942 + 0.423402i \(0.860836\pi\)
\(854\) −17.1368 + 8.02137i −0.586409 + 0.274485i
\(855\) 0 0
\(856\) −23.1030 + 7.49641i −0.789643 + 0.256222i
\(857\) −29.5877 8.68772i −1.01070 0.296767i −0.265857 0.964012i \(-0.585655\pi\)
−0.744838 + 0.667246i \(0.767473\pi\)
\(858\) 0 0
\(859\) 25.1115 11.4680i 0.856792 0.391284i 0.0619346 0.998080i \(-0.480273\pi\)
0.794857 + 0.606797i \(0.207546\pi\)
\(860\) 9.30818 + 7.76449i 0.317406 + 0.264767i
\(861\) 0 0
\(862\) −2.65315 3.00445i −0.0903668 0.102332i
\(863\) −43.5095 6.25573i −1.48108 0.212947i −0.646112 0.763243i \(-0.723606\pi\)
−0.834970 + 0.550296i \(0.814515\pi\)
\(864\) 0 0
\(865\) 8.43054 7.30511i 0.286647 0.248381i
\(866\) −7.13685 + 25.1778i −0.242520 + 0.855576i
\(867\) 0 0
\(868\) −73.9242 9.21583i −2.50915 0.312806i
\(869\) −12.1809 + 14.0575i −0.413209 + 0.476869i
\(870\) 0 0
\(871\) −13.7117 + 30.0245i −0.464603 + 1.01734i
\(872\) −26.8326 11.3522i −0.908667 0.384434i
\(873\) 0 0
\(874\) 9.52395 + 7.20882i 0.322152 + 0.243842i
\(875\) 42.5263i 1.43765i
\(876\) 0 0
\(877\) −20.7018 + 45.3307i −0.699051 + 1.53071i 0.142066 + 0.989857i \(0.454625\pi\)
−0.841118 + 0.540852i \(0.818102\pi\)
\(878\) 3.94316 + 1.75624i 0.133075 + 0.0592701i
\(879\) 0 0
\(880\) −0.376346 10.0186i −0.0126866 0.337725i
\(881\) −7.62978 11.8722i −0.257054 0.399984i 0.688609 0.725133i \(-0.258222\pi\)
−0.945663 + 0.325149i \(0.894585\pi\)
\(882\) 0 0
\(883\) −17.3903 + 15.0687i −0.585229 + 0.507104i −0.896397 0.443251i \(-0.853825\pi\)
0.311169 + 0.950355i \(0.399280\pi\)
\(884\) 21.7937 + 9.46252i 0.733002 + 0.318259i
\(885\) 0 0
\(886\) 18.3757 16.2271i 0.617342 0.545159i
\(887\) −10.8614 + 16.9006i −0.364689 + 0.567468i −0.974306 0.225229i \(-0.927687\pi\)
0.609616 + 0.792697i \(0.291323\pi\)
\(888\) 0 0
\(889\) −7.85336 + 3.58651i −0.263393 + 0.120288i
\(890\) 2.53483 18.8871i 0.0849678 0.633095i
\(891\) 0 0
\(892\) 14.6700 23.7977i 0.491188 0.796805i
\(893\) −1.12341 3.82598i −0.0375934 0.128031i
\(894\) 0 0
\(895\) −0.556486 3.87044i −0.0186013 0.129375i
\(896\) −41.2220 9.21336i −1.37713 0.307797i
\(897\) 0 0
\(898\) −0.244224 + 0.287255i −0.00814988 + 0.00958581i
\(899\) −87.8675 + 12.6334i −2.93054 + 0.421349i
\(900\) 0 0
\(901\) −2.62118 + 0.769648i −0.0873242 + 0.0256407i
\(902\) −0.299713 1.95416i −0.00997937 0.0650663i
\(903\) 0 0
\(904\) −0.820437 29.1267i −0.0272873 0.968740i
\(905\) 19.2399 + 42.1296i 0.639557 + 1.40043i
\(906\) 0 0
\(907\) −3.20468 2.05952i −0.106410 0.0683853i 0.486354 0.873762i \(-0.338327\pi\)
−0.592763 + 0.805377i \(0.701963\pi\)
\(908\) −56.5125 + 1.06107i −1.87543 + 0.0352128i
\(909\) 0 0
\(910\) −10.8738 35.7867i −0.360464 1.18632i
\(911\) 13.7808 + 15.9039i 0.456580 + 0.526921i 0.936630 0.350320i \(-0.113927\pi\)
−0.480050 + 0.877241i \(0.659382\pi\)
\(912\) 0 0
\(913\) −5.18388 + 3.33148i −0.171561 + 0.110256i
\(914\) 22.5990 + 34.4495i 0.747510 + 1.13949i
\(915\) 0 0
\(916\) 19.0417 9.13187i 0.629155 0.301725i
\(917\) −42.0546 19.2057i −1.38877 0.634228i
\(918\) 0 0
\(919\) 5.41672 0.178681 0.0893406 0.996001i \(-0.471524\pi\)
0.0893406 + 0.996001i \(0.471524\pi\)
\(920\) 27.7083 10.7617i 0.913515 0.354802i
\(921\) 0 0
\(922\) 10.6624 + 6.71175i 0.351148 + 0.221040i
\(923\) −26.9316 12.2992i −0.886464 0.404834i
\(924\) 0 0
\(925\) −0.925343 0.801814i −0.0304251 0.0263635i
\(926\) 8.60323 + 13.1146i 0.282720 + 0.430971i
\(927\) 0 0
\(928\) −50.2773 + 2.36145i −1.65043 + 0.0775184i
\(929\) 7.06195 + 8.14992i 0.231695 + 0.267390i 0.859677 0.510837i \(-0.170665\pi\)
−0.627983 + 0.778227i \(0.716119\pi\)
\(930\) 0 0
\(931\) 1.73906 12.0954i 0.0569953 0.396411i
\(932\) −18.1829 + 0.341398i −0.595600 + 0.0111829i
\(933\) 0 0
\(934\) 48.8658 0.458707i 1.59894 0.0150094i
\(935\) 3.82625 + 8.37832i 0.125132 + 0.274000i
\(936\) 0 0
\(937\) 10.1361 34.5205i 0.331133 1.12773i −0.610759 0.791817i \(-0.709136\pi\)
0.941891 0.335917i \(-0.109046\pi\)
\(938\) 8.17276 + 53.2870i 0.266850 + 1.73988i
\(939\) 0 0
\(940\) −9.57198 2.61644i −0.312203 0.0853388i
\(941\) 38.2159 5.49462i 1.24580 0.179120i 0.512301 0.858806i \(-0.328793\pi\)
0.733503 + 0.679687i \(0.237884\pi\)
\(942\) 0 0
\(943\) 5.18533 2.73323i 0.168858 0.0890063i
\(944\) −11.8012 35.2397i −0.384098 1.14695i
\(945\) 0 0
\(946\) 1.89658 + 4.05184i 0.0616630 + 0.131737i
\(947\) 14.4334 + 49.1557i 0.469023 + 1.59735i 0.766252 + 0.642540i \(0.222119\pi\)
−0.297229 + 0.954806i \(0.596062\pi\)
\(948\) 0 0
\(949\) 13.7785 + 4.04572i 0.447268 + 0.131330i
\(950\) 0.0656054 0.488826i 0.00212852 0.0158596i
\(951\) 0 0
\(952\) 38.2399 6.60194i 1.23936 0.213970i
\(953\) 11.8788 18.4837i 0.384790 0.598746i −0.593788 0.804622i \(-0.702368\pi\)
0.978578 + 0.205876i \(0.0660044\pi\)
\(954\) 0 0
\(955\) 45.6830 + 6.56823i 1.47827 + 0.212543i
\(956\) 9.55341 + 4.14795i 0.308979 + 0.134154i
\(957\) 0 0
\(958\) 39.6532 + 11.2400i 1.28114 + 0.363148i
\(959\) −19.2502 29.9540i −0.621623 0.967264i
\(960\) 0 0
\(961\) 44.8832 51.7980i 1.44785 1.67090i
\(962\) 25.8216 + 11.5007i 0.832523 + 0.370796i
\(963\) 0 0
\(964\) 9.06320 + 28.8514i 0.291906 + 0.929240i
\(965\) 2.02860i 0.0653031i
\(966\) 0 0
\(967\) 57.4779i 1.84836i −0.381952 0.924182i \(-0.624748\pi\)
0.381952 0.924182i \(-0.375252\pi\)
\(968\) −10.6809 + 25.2460i −0.343299 + 0.811438i
\(969\) 0 0
\(970\) −10.0781 + 22.6277i −0.323588 + 0.726531i
\(971\) 14.7913 17.0701i 0.474675 0.547804i −0.467031 0.884241i \(-0.654676\pi\)
0.941706 + 0.336437i \(0.109222\pi\)
\(972\) 0 0
\(973\) 29.9163 + 46.5506i 0.959072 + 1.49234i
\(974\) 7.44693 26.2717i 0.238615 0.841800i
\(975\) 0 0
\(976\) 3.51937 13.8958i 0.112652 0.444794i
\(977\) −11.7808 1.69383i −0.376903 0.0541904i −0.0487397 0.998812i \(-0.515520\pi\)
−0.328163 + 0.944621i \(0.606430\pi\)
\(978\) 0 0
\(979\) 3.80247 5.91676i 0.121528 0.189101i
\(980\) −23.3519 19.4792i −0.745949 0.622239i
\(981\) 0 0
\(982\) −15.0169 2.01543i −0.479210 0.0643148i
\(983\) −36.5695 10.7378i −1.16639 0.342482i −0.359475 0.933155i \(-0.617044\pi\)
−0.806911 + 0.590673i \(0.798862\pi\)
\(984\) 0 0
\(985\) −5.26283 17.9236i −0.167688 0.571092i
\(986\) 41.8805 19.6033i 1.33375 0.624297i
\(987\) 0 0
\(988\) 1.83174 + 11.2381i 0.0582754 + 0.357531i
\(989\) −9.51601 + 9.24027i −0.302592 + 0.293823i
\(990\) 0 0
\(991\) −11.4588 + 1.64753i −0.364002 + 0.0523356i −0.321889 0.946777i \(-0.604318\pi\)
−0.0421126 + 0.999113i \(0.513409\pi\)
\(992\) 40.8719 38.9194i 1.29769 1.23569i
\(993\) 0 0
\(994\) −47.7978 + 7.33087i −1.51606 + 0.232521i
\(995\) 7.33632 24.9852i 0.232577 0.792085i
\(996\) 0 0
\(997\) 16.0331 + 35.1076i 0.507773 + 1.11187i 0.973864 + 0.227132i \(0.0729348\pi\)
−0.466091 + 0.884737i \(0.654338\pi\)
\(998\) −0.121516 12.9450i −0.00384651 0.409767i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.u.a.595.8 100
3.2 odd 2 92.2.h.a.43.3 yes 100
4.3 odd 2 inner 828.2.u.a.595.4 100
12.11 even 2 92.2.h.a.43.7 yes 100
23.15 odd 22 inner 828.2.u.a.199.4 100
69.38 even 22 92.2.h.a.15.7 yes 100
92.15 even 22 inner 828.2.u.a.199.8 100
276.107 odd 22 92.2.h.a.15.3 100
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.2.h.a.15.3 100 276.107 odd 22
92.2.h.a.15.7 yes 100 69.38 even 22
92.2.h.a.43.3 yes 100 3.2 odd 2
92.2.h.a.43.7 yes 100 12.11 even 2
828.2.u.a.199.4 100 23.15 odd 22 inner
828.2.u.a.199.8 100 92.15 even 22 inner
828.2.u.a.595.4 100 4.3 odd 2 inner
828.2.u.a.595.8 100 1.1 even 1 trivial