Properties

Label 828.2.u.a.199.8
Level $828$
Weight $2$
Character 828.199
Analytic conductor $6.612$
Analytic rank $0$
Dimension $100$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(19,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([11, 0, 15])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.u (of order \(22\), degree \(10\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [100,7] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(100\)
Relative dimension: \(10\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 199.8
Character \(\chi\) \(=\) 828.199
Dual form 828.2.u.a.595.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.19684 - 0.753380i) q^{2} +(0.864836 - 1.80335i) q^{4} +(-1.65610 + 1.43502i) q^{5} +(3.14077 + 2.01845i) q^{7} +(-0.323539 - 2.80986i) q^{8} +(-0.900968 + 2.96516i) q^{10} +(0.162776 + 1.13213i) q^{11} +(2.71951 - 1.74772i) q^{13} +(5.27965 + 0.0495605i) q^{14} +(-2.50412 - 3.11920i) q^{16} +(1.03533 + 3.52600i) q^{17} +(1.68979 + 0.496168i) q^{19} +(1.15559 + 4.22759i) q^{20} +(1.04775 + 1.23235i) q^{22} +(4.46833 - 1.74184i) q^{23} +(-0.0281822 + 0.196011i) q^{25} +(1.93811 - 4.14056i) q^{26} +(6.35622 - 3.91827i) q^{28} +(8.53724 - 2.50676i) q^{29} +(-9.07531 - 4.14456i) q^{31} +(-5.34696 - 1.84662i) q^{32} +(3.89553 + 3.44005i) q^{34} +(-8.09797 + 1.16431i) q^{35} +(4.67281 + 4.04902i) q^{37} +(2.39621 - 0.679225i) q^{38} +(4.56803 + 4.18914i) q^{40} +(0.800388 + 0.923697i) q^{41} +(-1.14894 - 2.51582i) q^{43} +(2.18241 + 0.685568i) q^{44} +(4.03559 - 5.45106i) q^{46} +2.26417i q^{47} +(2.88240 + 6.31158i) q^{49} +(0.113942 + 0.255825i) q^{50} +(-0.799821 - 6.41571i) q^{52} +(-0.401905 + 0.625377i) q^{53} +(-1.89421 - 1.64135i) q^{55} +(4.65541 - 9.47819i) q^{56} +(8.32913 - 9.43197i) q^{58} +(-5.02299 - 7.81592i) q^{59} +(-3.25979 - 1.48870i) q^{61} +(-13.9841 + 1.87681i) q^{62} +(-7.79064 + 1.81820i) q^{64} +(-1.99577 + 6.79697i) q^{65} +(1.45310 - 10.1065i) q^{67} +(7.25398 + 1.18236i) q^{68} +(-8.81478 + 7.49435i) q^{70} +(-9.06545 - 1.30341i) q^{71} +(4.26223 + 1.25150i) q^{73} +(8.64304 + 1.32560i) q^{74} +(2.35616 - 2.61818i) q^{76} +(-1.77392 + 3.88434i) q^{77} +(-13.6810 + 8.79222i) q^{79} +(8.62320 + 1.57225i) q^{80} +(1.65383 + 0.502518i) q^{82} +(-3.52806 + 4.07160i) q^{83} +(-6.77449 - 4.35370i) q^{85} +(-3.27047 - 2.14544i) q^{86} +(3.12848 - 0.823669i) q^{88} +(5.59347 - 2.55445i) q^{89} +12.0691 q^{91} +(0.723225 - 9.56436i) q^{92} +(1.70578 + 2.70984i) q^{94} +(-3.51049 + 1.60318i) q^{95} +(-6.04072 + 5.23431i) q^{97} +(8.20478 + 5.38238i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 100 q + 7 q^{2} - 11 q^{4} + 22 q^{5} + 10 q^{8} - 11 q^{10} - 18 q^{13} + 11 q^{14} + 5 q^{16} + 22 q^{17} + 11 q^{20} - 16 q^{25} - 12 q^{26} - 11 q^{28} + 42 q^{29} + 27 q^{32} + 11 q^{34} - 22 q^{37}+ \cdots + 71 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(e\left(\frac{17}{22}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.19684 0.753380i 0.846291 0.532720i
\(3\) 0 0
\(4\) 0.864836 1.80335i 0.432418 0.901673i
\(5\) −1.65610 + 1.43502i −0.740633 + 0.641762i −0.941174 0.337924i \(-0.890275\pi\)
0.200541 + 0.979685i \(0.435730\pi\)
\(6\) 0 0
\(7\) 3.14077 + 2.01845i 1.18710 + 0.762903i 0.976678 0.214707i \(-0.0688798\pi\)
0.210422 + 0.977611i \(0.432516\pi\)
\(8\) −0.323539 2.80986i −0.114388 0.993436i
\(9\) 0 0
\(10\) −0.900968 + 2.96516i −0.284911 + 0.937667i
\(11\) 0.162776 + 1.13213i 0.0490789 + 0.341352i 0.999535 + 0.0304926i \(0.00970759\pi\)
−0.950456 + 0.310859i \(0.899383\pi\)
\(12\) 0 0
\(13\) 2.71951 1.74772i 0.754256 0.484731i −0.106143 0.994351i \(-0.533850\pi\)
0.860400 + 0.509620i \(0.170214\pi\)
\(14\) 5.27965 + 0.0495605i 1.41105 + 0.0132456i
\(15\) 0 0
\(16\) −2.50412 3.11920i −0.626030 0.779799i
\(17\) 1.03533 + 3.52600i 0.251103 + 0.855180i 0.984501 + 0.175380i \(0.0561153\pi\)
−0.733397 + 0.679800i \(0.762067\pi\)
\(18\) 0 0
\(19\) 1.68979 + 0.496168i 0.387665 + 0.113829i 0.469756 0.882796i \(-0.344342\pi\)
−0.0820914 + 0.996625i \(0.526160\pi\)
\(20\) 1.15559 + 4.22759i 0.258397 + 0.945318i
\(21\) 0 0
\(22\) 1.04775 + 1.23235i 0.223380 + 0.262737i
\(23\) 4.46833 1.74184i 0.931711 0.363199i
\(24\) 0 0
\(25\) −0.0281822 + 0.196011i −0.00563644 + 0.0392023i
\(26\) 1.93811 4.14056i 0.380094 0.812031i
\(27\) 0 0
\(28\) 6.35622 3.91827i 1.20121 0.740484i
\(29\) 8.53724 2.50676i 1.58532 0.465493i 0.633910 0.773407i \(-0.281449\pi\)
0.951414 + 0.307913i \(0.0996306\pi\)
\(30\) 0 0
\(31\) −9.07531 4.14456i −1.62997 0.744384i −0.630480 0.776205i \(-0.717142\pi\)
−0.999494 + 0.0318213i \(0.989869\pi\)
\(32\) −5.34696 1.84662i −0.945218 0.326439i
\(33\) 0 0
\(34\) 3.89553 + 3.44005i 0.668078 + 0.589963i
\(35\) −8.09797 + 1.16431i −1.36881 + 0.196805i
\(36\) 0 0
\(37\) 4.67281 + 4.04902i 0.768206 + 0.665654i 0.948079 0.318036i \(-0.103023\pi\)
−0.179873 + 0.983690i \(0.557569\pi\)
\(38\) 2.39621 0.679225i 0.388716 0.110185i
\(39\) 0 0
\(40\) 4.56803 + 4.18914i 0.722269 + 0.662361i
\(41\) 0.800388 + 0.923697i 0.125000 + 0.144257i 0.814800 0.579743i \(-0.196847\pi\)
−0.689800 + 0.724000i \(0.742302\pi\)
\(42\) 0 0
\(43\) −1.14894 2.51582i −0.175212 0.383660i 0.801569 0.597902i \(-0.203999\pi\)
−0.976780 + 0.214243i \(0.931272\pi\)
\(44\) 2.18241 + 0.685568i 0.329010 + 0.103353i
\(45\) 0 0
\(46\) 4.03559 5.45106i 0.595015 0.803714i
\(47\) 2.26417i 0.330263i 0.986272 + 0.165131i \(0.0528048\pi\)
−0.986272 + 0.165131i \(0.947195\pi\)
\(48\) 0 0
\(49\) 2.88240 + 6.31158i 0.411771 + 0.901654i
\(50\) 0.113942 + 0.255825i 0.0161138 + 0.0361792i
\(51\) 0 0
\(52\) −0.799821 6.41571i −0.110915 0.889699i
\(53\) −0.401905 + 0.625377i −0.0552060 + 0.0859021i −0.867759 0.496985i \(-0.834441\pi\)
0.812553 + 0.582887i \(0.198077\pi\)
\(54\) 0 0
\(55\) −1.89421 1.64135i −0.255416 0.221319i
\(56\) 4.65541 9.47819i 0.622105 1.26658i
\(57\) 0 0
\(58\) 8.32913 9.43197i 1.09367 1.23848i
\(59\) −5.02299 7.81592i −0.653937 1.01755i −0.996937 0.0782107i \(-0.975079\pi\)
0.343000 0.939336i \(-0.388557\pi\)
\(60\) 0 0
\(61\) −3.25979 1.48870i −0.417374 0.190608i 0.195648 0.980674i \(-0.437319\pi\)
−0.613022 + 0.790066i \(0.710046\pi\)
\(62\) −13.9841 + 1.87681i −1.77598 + 0.238355i
\(63\) 0 0
\(64\) −7.79064 + 1.81820i −0.973831 + 0.227275i
\(65\) −1.99577 + 6.79697i −0.247545 + 0.843060i
\(66\) 0 0
\(67\) 1.45310 10.1065i 0.177525 1.23471i −0.684943 0.728597i \(-0.740173\pi\)
0.862467 0.506113i \(-0.168918\pi\)
\(68\) 7.25398 + 1.18236i 0.879674 + 0.143382i
\(69\) 0 0
\(70\) −8.81478 + 7.49435i −1.05357 + 0.895746i
\(71\) −9.06545 1.30341i −1.07587 0.154687i −0.418472 0.908230i \(-0.637434\pi\)
−0.657399 + 0.753543i \(0.728343\pi\)
\(72\) 0 0
\(73\) 4.26223 + 1.25150i 0.498857 + 0.146478i 0.521475 0.853267i \(-0.325382\pi\)
−0.0226182 + 0.999744i \(0.507200\pi\)
\(74\) 8.64304 + 1.32560i 1.00473 + 0.154098i
\(75\) 0 0
\(76\) 2.35616 2.61818i 0.270270 0.300326i
\(77\) −1.77392 + 3.88434i −0.202157 + 0.442661i
\(78\) 0 0
\(79\) −13.6810 + 8.79222i −1.53923 + 0.989202i −0.551296 + 0.834310i \(0.685867\pi\)
−0.987931 + 0.154892i \(0.950497\pi\)
\(80\) 8.62320 + 1.57225i 0.964103 + 0.175783i
\(81\) 0 0
\(82\) 1.65383 + 0.502518i 0.182635 + 0.0554938i
\(83\) −3.52806 + 4.07160i −0.387255 + 0.446916i −0.915586 0.402123i \(-0.868273\pi\)
0.528331 + 0.849038i \(0.322818\pi\)
\(84\) 0 0
\(85\) −6.77449 4.35370i −0.734797 0.472225i
\(86\) −3.27047 2.14544i −0.352663 0.231349i
\(87\) 0 0
\(88\) 3.12848 0.823669i 0.333497 0.0878034i
\(89\) 5.59347 2.55445i 0.592907 0.270772i −0.0962809 0.995354i \(-0.530695\pi\)
0.689188 + 0.724583i \(0.257967\pi\)
\(90\) 0 0
\(91\) 12.0691 1.26518
\(92\) 0.723225 9.56436i 0.0754014 0.997153i
\(93\) 0 0
\(94\) 1.70578 + 2.70984i 0.175938 + 0.279499i
\(95\) −3.51049 + 1.60318i −0.360168 + 0.164483i
\(96\) 0 0
\(97\) −6.04072 + 5.23431i −0.613342 + 0.531464i −0.905193 0.425000i \(-0.860274\pi\)
0.291852 + 0.956464i \(0.405729\pi\)
\(98\) 8.20478 + 5.38238i 0.828808 + 0.543703i
\(99\) 0 0
\(100\) 0.329103 + 0.220340i 0.0329103 + 0.0220340i
\(101\) −10.4416 + 12.0503i −1.03898 + 1.19905i −0.0593535 + 0.998237i \(0.518904\pi\)
−0.979630 + 0.200813i \(0.935642\pi\)
\(102\) 0 0
\(103\) 2.55830 + 17.7934i 0.252077 + 1.75323i 0.585701 + 0.810527i \(0.300819\pi\)
−0.333624 + 0.942706i \(0.608272\pi\)
\(104\) −5.79073 7.07599i −0.567828 0.693858i
\(105\) 0 0
\(106\) −0.00986828 + 1.05126i −0.000958492 + 0.102108i
\(107\) 3.56732 7.81135i 0.344866 0.755151i −0.655134 0.755513i \(-0.727388\pi\)
1.00000 0.000361420i \(0.000115044\pi\)
\(108\) 0 0
\(109\) −2.90209 9.88360i −0.277970 0.946677i −0.973597 0.228274i \(-0.926692\pi\)
0.695627 0.718403i \(-0.255127\pi\)
\(110\) −3.50362 0.537359i −0.334057 0.0512352i
\(111\) 0 0
\(112\) −1.56892 14.8511i −0.148249 1.40330i
\(113\) −10.1971 1.46612i −0.959260 0.137921i −0.355139 0.934813i \(-0.615567\pi\)
−0.604121 + 0.796893i \(0.706476\pi\)
\(114\) 0 0
\(115\) −4.90044 + 9.29683i −0.456968 + 0.866934i
\(116\) 2.86275 17.5635i 0.265800 1.63073i
\(117\) 0 0
\(118\) −11.9001 5.57016i −1.09549 0.512775i
\(119\) −3.86533 + 13.1641i −0.354334 + 1.20675i
\(120\) 0 0
\(121\) 9.29919 2.73049i 0.845381 0.248226i
\(122\) −5.02300 + 0.674137i −0.454761 + 0.0610335i
\(123\) 0 0
\(124\) −15.3227 + 12.7816i −1.37602 + 1.14782i
\(125\) −6.15825 9.58242i −0.550811 0.857078i
\(126\) 0 0
\(127\) −2.28895 + 0.329102i −0.203112 + 0.0292031i −0.243120 0.969996i \(-0.578171\pi\)
0.0400079 + 0.999199i \(0.487262\pi\)
\(128\) −7.95433 + 8.04541i −0.703070 + 0.711120i
\(129\) 0 0
\(130\) 2.73209 + 9.63844i 0.239620 + 0.845347i
\(131\) −6.69494 + 10.4175i −0.584940 + 0.910184i 0.415060 + 0.909794i \(0.363761\pi\)
−1.00000 0.000390307i \(0.999876\pi\)
\(132\) 0 0
\(133\) 4.30576 + 4.96912i 0.373357 + 0.430877i
\(134\) −5.87494 13.1906i −0.507518 1.13950i
\(135\) 0 0
\(136\) 9.57260 4.04992i 0.820843 0.347278i
\(137\) 9.53713i 0.814812i 0.913247 + 0.407406i \(0.133567\pi\)
−0.913247 + 0.407406i \(0.866433\pi\)
\(138\) 0 0
\(139\) 14.8214i 1.25713i −0.777755 0.628567i \(-0.783642\pi\)
0.777755 0.628567i \(-0.216358\pi\)
\(140\) −4.90376 + 15.6104i −0.414443 + 1.31932i
\(141\) 0 0
\(142\) −11.8318 + 5.26976i −0.992905 + 0.442228i
\(143\) 2.42133 + 2.79436i 0.202482 + 0.233676i
\(144\) 0 0
\(145\) −10.5413 + 16.4026i −0.875407 + 1.36216i
\(146\) 6.04406 1.71324i 0.500210 0.141789i
\(147\) 0 0
\(148\) 11.3430 4.92497i 0.932389 0.404830i
\(149\) 11.6451 1.67432i 0.954006 0.137165i 0.352304 0.935886i \(-0.385398\pi\)
0.601703 + 0.798720i \(0.294489\pi\)
\(150\) 0 0
\(151\) −0.682332 1.06173i −0.0555274 0.0864023i 0.812380 0.583129i \(-0.198172\pi\)
−0.867907 + 0.496726i \(0.834535\pi\)
\(152\) 0.847449 4.90861i 0.0687372 0.398141i
\(153\) 0 0
\(154\) 0.803294 + 5.98535i 0.0647313 + 0.482313i
\(155\) 20.9772 6.15946i 1.68493 0.494740i
\(156\) 0 0
\(157\) 1.44386 4.91732i 0.115232 0.392445i −0.881598 0.472001i \(-0.843532\pi\)
0.996830 + 0.0795558i \(0.0253502\pi\)
\(158\) −9.74998 + 20.8298i −0.775667 + 1.65713i
\(159\) 0 0
\(160\) 11.5051 4.61482i 0.909555 0.364834i
\(161\) 17.5498 + 3.54838i 1.38312 + 0.279651i
\(162\) 0 0
\(163\) 9.67641 + 1.39126i 0.757915 + 0.108972i 0.510429 0.859920i \(-0.329487\pi\)
0.247486 + 0.968892i \(0.420396\pi\)
\(164\) 2.35795 0.644531i 0.184125 0.0503294i
\(165\) 0 0
\(166\) −1.15505 + 7.53101i −0.0896491 + 0.584519i
\(167\) −1.03844 3.53662i −0.0803572 0.273672i 0.909507 0.415689i \(-0.136459\pi\)
−0.989864 + 0.142017i \(0.954641\pi\)
\(168\) 0 0
\(169\) −1.05920 + 2.31932i −0.0814766 + 0.178409i
\(170\) −11.3880 0.106900i −0.873416 0.00819883i
\(171\) 0 0
\(172\) −5.53055 0.103841i −0.421700 0.00791776i
\(173\) −0.724466 5.03877i −0.0550801 0.383091i −0.998651 0.0519206i \(-0.983466\pi\)
0.943571 0.331170i \(-0.107443\pi\)
\(174\) 0 0
\(175\) −0.484153 + 0.558743i −0.0365986 + 0.0422370i
\(176\) 3.12374 3.34273i 0.235461 0.251968i
\(177\) 0 0
\(178\) 4.77000 7.27128i 0.357526 0.545005i
\(179\) 1.34857 1.16854i 0.100797 0.0873407i −0.603005 0.797738i \(-0.706030\pi\)
0.703801 + 0.710397i \(0.251485\pi\)
\(180\) 0 0
\(181\) −19.2255 + 8.77998i −1.42902 + 0.652611i −0.971598 0.236639i \(-0.923954\pi\)
−0.457421 + 0.889250i \(0.651227\pi\)
\(182\) 14.4447 9.09259i 1.07071 0.673988i
\(183\) 0 0
\(184\) −6.34002 11.9918i −0.467392 0.884050i
\(185\) −13.5491 −0.996150
\(186\) 0 0
\(187\) −3.82338 + 1.74608i −0.279593 + 0.127686i
\(188\) 4.08308 + 1.95813i 0.297789 + 0.142812i
\(189\) 0 0
\(190\) −2.99367 + 4.56348i −0.217184 + 0.331070i
\(191\) −17.7180 11.3867i −1.28203 0.823911i −0.290893 0.956756i \(-0.593952\pi\)
−0.991137 + 0.132845i \(0.957589\pi\)
\(192\) 0 0
\(193\) 0.606229 0.699625i 0.0436373 0.0503601i −0.733511 0.679677i \(-0.762120\pi\)
0.777149 + 0.629317i \(0.216665\pi\)
\(194\) −3.28632 + 10.8156i −0.235944 + 0.776513i
\(195\) 0 0
\(196\) 13.8748 + 0.260510i 0.991054 + 0.0186078i
\(197\) 7.17132 4.60873i 0.510936 0.328358i −0.259642 0.965705i \(-0.583604\pi\)
0.770577 + 0.637347i \(0.219968\pi\)
\(198\) 0 0
\(199\) 4.93644 10.8093i 0.349935 0.766250i −0.650045 0.759896i \(-0.725250\pi\)
0.999980 0.00635466i \(-0.00202276\pi\)
\(200\) 0.559883 + 0.0157707i 0.0395897 + 0.00111516i
\(201\) 0 0
\(202\) −3.41848 + 22.2888i −0.240524 + 1.56823i
\(203\) 31.8733 + 9.35884i 2.23707 + 0.656862i
\(204\) 0 0
\(205\) −2.65105 0.381164i −0.185158 0.0266216i
\(206\) 16.4671 + 19.3684i 1.14731 + 1.34946i
\(207\) 0 0
\(208\) −12.2615 4.10618i −0.850180 0.284713i
\(209\) −0.286671 + 1.99384i −0.0198294 + 0.137917i
\(210\) 0 0
\(211\) 5.81597 19.8074i 0.400388 1.36360i −0.474919 0.880030i \(-0.657523\pi\)
0.875307 0.483567i \(-0.160659\pi\)
\(212\) 0.780189 + 1.26562i 0.0535836 + 0.0869234i
\(213\) 0 0
\(214\) −1.61541 12.0365i −0.110427 0.822795i
\(215\) 5.51303 + 2.51772i 0.375985 + 0.171707i
\(216\) 0 0
\(217\) −20.1379 31.3352i −1.36705 2.12717i
\(218\) −10.9194 9.64268i −0.739558 0.653085i
\(219\) 0 0
\(220\) −4.59810 + 1.99643i −0.310004 + 0.134599i
\(221\) 8.97805 + 7.77952i 0.603929 + 0.523307i
\(222\) 0 0
\(223\) −7.55708 + 11.7591i −0.506060 + 0.787444i −0.996461 0.0840523i \(-0.973214\pi\)
0.490402 + 0.871497i \(0.336850\pi\)
\(224\) −13.0663 16.5924i −0.873028 1.10863i
\(225\) 0 0
\(226\) −13.3088 + 5.92757i −0.885287 + 0.394296i
\(227\) −11.7401 25.7073i −0.779220 1.70625i −0.705212 0.708996i \(-0.749148\pi\)
−0.0740076 0.997258i \(-0.523579\pi\)
\(228\) 0 0
\(229\) 10.5591i 0.697763i 0.937167 + 0.348882i \(0.113438\pi\)
−0.937167 + 0.348882i \(0.886562\pi\)
\(230\) 1.13903 + 14.8187i 0.0751052 + 0.977115i
\(231\) 0 0
\(232\) −9.80577 23.1774i −0.643781 1.52167i
\(233\) −3.77738 8.27132i −0.247465 0.541872i 0.744613 0.667496i \(-0.232634\pi\)
−0.992078 + 0.125624i \(0.959907\pi\)
\(234\) 0 0
\(235\) −3.24913 3.74970i −0.211950 0.244603i
\(236\) −18.4389 + 2.29870i −1.20027 + 0.149633i
\(237\) 0 0
\(238\) 5.29141 + 18.6674i 0.342991 + 1.21002i
\(239\) 3.93558 + 3.41020i 0.254572 + 0.220588i 0.772792 0.634660i \(-0.218860\pi\)
−0.518220 + 0.855247i \(0.673405\pi\)
\(240\) 0 0
\(241\) 14.9668 2.15190i 0.964097 0.138616i 0.357751 0.933817i \(-0.383544\pi\)
0.606346 + 0.795201i \(0.292635\pi\)
\(242\) 9.07251 10.2738i 0.583203 0.660423i
\(243\) 0 0
\(244\) −5.50382 + 4.59106i −0.352346 + 0.293912i
\(245\) −13.8308 6.31632i −0.883618 0.403535i
\(246\) 0 0
\(247\) 5.46257 1.60396i 0.347575 0.102057i
\(248\) −8.70941 + 26.8413i −0.553048 + 1.70442i
\(249\) 0 0
\(250\) −14.5896 6.82909i −0.922729 0.431910i
\(251\) −0.300202 + 2.08795i −0.0189486 + 0.131790i −0.997100 0.0761039i \(-0.975752\pi\)
0.978151 + 0.207894i \(0.0666610\pi\)
\(252\) 0 0
\(253\) 2.69934 + 4.77522i 0.169706 + 0.300216i
\(254\) −2.49156 + 2.11833i −0.156335 + 0.132916i
\(255\) 0 0
\(256\) −3.45878 + 15.6217i −0.216174 + 0.976355i
\(257\) −17.6327 5.17743i −1.09990 0.322959i −0.319087 0.947725i \(-0.603376\pi\)
−0.780812 + 0.624766i \(0.785194\pi\)
\(258\) 0 0
\(259\) 6.50350 + 22.1489i 0.404108 + 1.37627i
\(260\) 10.5313 + 9.47733i 0.653122 + 0.587759i
\(261\) 0 0
\(262\) −0.164386 + 17.5119i −0.0101558 + 1.08189i
\(263\) −8.46337 + 5.43908i −0.521874 + 0.335388i −0.774913 0.632068i \(-0.782206\pi\)
0.253039 + 0.967456i \(0.418570\pi\)
\(264\) 0 0
\(265\) −0.231833 1.61243i −0.0142414 0.0990510i
\(266\) 8.89693 + 2.70334i 0.545506 + 0.165753i
\(267\) 0 0
\(268\) −16.9689 11.3609i −1.03654 0.693980i
\(269\) −17.0822 10.9781i −1.04152 0.669346i −0.0961596 0.995366i \(-0.530656\pi\)
−0.945363 + 0.326020i \(0.894292\pi\)
\(270\) 0 0
\(271\) −4.88932 + 4.23662i −0.297005 + 0.257356i −0.790596 0.612338i \(-0.790229\pi\)
0.493591 + 0.869694i \(0.335684\pi\)
\(272\) 8.40570 12.0589i 0.509670 0.731178i
\(273\) 0 0
\(274\) 7.18509 + 11.4144i 0.434067 + 0.689568i
\(275\) −0.226499 −0.0136584
\(276\) 0 0
\(277\) 20.6386 1.24005 0.620026 0.784582i \(-0.287122\pi\)
0.620026 + 0.784582i \(0.287122\pi\)
\(278\) −11.1661 17.7388i −0.669701 1.06390i
\(279\) 0 0
\(280\) 5.89157 + 22.3775i 0.352089 + 1.33731i
\(281\) 13.0739 11.3286i 0.779923 0.675807i −0.170987 0.985273i \(-0.554696\pi\)
0.950911 + 0.309466i \(0.100150\pi\)
\(282\) 0 0
\(283\) −1.50653 0.968186i −0.0895537 0.0575527i 0.495098 0.868837i \(-0.335132\pi\)
−0.584651 + 0.811285i \(0.698769\pi\)
\(284\) −10.1906 + 15.2209i −0.604703 + 0.903195i
\(285\) 0 0
\(286\) 5.00316 + 1.52021i 0.295843 + 0.0898922i
\(287\) 0.649399 + 4.51667i 0.0383328 + 0.266610i
\(288\) 0 0
\(289\) 2.94056 1.88978i 0.172974 0.111164i
\(290\) −0.258828 + 27.5728i −0.0151989 + 1.61913i
\(291\) 0 0
\(292\) 5.94303 6.60394i 0.347789 0.386466i
\(293\) 4.05277 + 13.8025i 0.236765 + 0.806349i 0.989059 + 0.147521i \(0.0471294\pi\)
−0.752294 + 0.658828i \(0.771052\pi\)
\(294\) 0 0
\(295\) 19.5346 + 5.73588i 1.13735 + 0.333956i
\(296\) 9.86534 14.4400i 0.573411 0.839307i
\(297\) 0 0
\(298\) 12.6759 10.7771i 0.734296 0.624301i
\(299\) 9.10741 12.5464i 0.526695 0.725575i
\(300\) 0 0
\(301\) 1.46952 10.2207i 0.0847015 0.589112i
\(302\) −1.61653 0.756661i −0.0930206 0.0435409i
\(303\) 0 0
\(304\) −2.68379 6.51326i −0.153926 0.373561i
\(305\) 7.53487 2.21244i 0.431446 0.126684i
\(306\) 0 0
\(307\) 0.0421634 + 0.0192554i 0.00240639 + 0.00109896i 0.416618 0.909082i \(-0.363215\pi\)
−0.414211 + 0.910181i \(0.635943\pi\)
\(308\) 5.47066 + 6.55830i 0.311720 + 0.373694i
\(309\) 0 0
\(310\) 20.4659 23.1757i 1.16238 1.31629i
\(311\) 7.22360 1.03860i 0.409613 0.0588934i 0.0655712 0.997848i \(-0.479113\pi\)
0.344041 + 0.938954i \(0.388204\pi\)
\(312\) 0 0
\(313\) 16.9083 + 14.6511i 0.955713 + 0.828130i 0.985195 0.171435i \(-0.0548405\pi\)
−0.0294826 + 0.999565i \(0.509386\pi\)
\(314\) −1.97655 6.97300i −0.111543 0.393509i
\(315\) 0 0
\(316\) 4.02363 + 32.2753i 0.226347 + 1.81563i
\(317\) 4.71950 + 5.44659i 0.265074 + 0.305911i 0.872646 0.488353i \(-0.162402\pi\)
−0.607573 + 0.794264i \(0.707857\pi\)
\(318\) 0 0
\(319\) 4.22765 + 9.25726i 0.236703 + 0.518307i
\(320\) 10.2930 14.1909i 0.575394 0.793294i
\(321\) 0 0
\(322\) 23.6776 8.97488i 1.31950 0.500150i
\(323\) 6.47190i 0.360106i
\(324\) 0 0
\(325\) 0.265932 + 0.582309i 0.0147512 + 0.0323007i
\(326\) 12.6292 5.62491i 0.699468 0.311535i
\(327\) 0 0
\(328\) 2.33650 2.54783i 0.129012 0.140680i
\(329\) −4.57012 + 7.11124i −0.251959 + 0.392055i
\(330\) 0 0
\(331\) −15.8808 13.7608i −0.872886 0.756360i 0.0981803 0.995169i \(-0.468698\pi\)
−0.971067 + 0.238808i \(0.923243\pi\)
\(332\) 4.29131 + 9.88357i 0.235516 + 0.542432i
\(333\) 0 0
\(334\) −3.90727 3.45041i −0.213796 0.188798i
\(335\) 12.0966 + 18.8227i 0.660909 + 1.02839i
\(336\) 0 0
\(337\) −21.0240 9.60132i −1.14525 0.523017i −0.249850 0.968284i \(-0.580381\pi\)
−0.895398 + 0.445267i \(0.853109\pi\)
\(338\) 0.479643 + 3.57382i 0.0260891 + 0.194390i
\(339\) 0 0
\(340\) −13.7101 + 8.45152i −0.743532 + 0.458348i
\(341\) 3.21495 10.9491i 0.174099 0.592928i
\(342\) 0 0
\(343\) 0.0326215 0.226887i 0.00176139 0.0122508i
\(344\) −6.69739 + 4.04233i −0.361099 + 0.217948i
\(345\) 0 0
\(346\) −4.66318 5.48479i −0.250694 0.294864i
\(347\) 13.8830 + 1.99607i 0.745277 + 0.107155i 0.504483 0.863422i \(-0.331683\pi\)
0.240794 + 0.970576i \(0.422592\pi\)
\(348\) 0 0
\(349\) −5.34964 1.57080i −0.286360 0.0840828i 0.135398 0.990791i \(-0.456769\pi\)
−0.421758 + 0.906708i \(0.638587\pi\)
\(350\) −0.158507 + 1.03348i −0.00847253 + 0.0552416i
\(351\) 0 0
\(352\) 1.22026 6.35407i 0.0650400 0.338673i
\(353\) 0.464795 1.01776i 0.0247385 0.0541699i −0.896859 0.442316i \(-0.854157\pi\)
0.921598 + 0.388146i \(0.126884\pi\)
\(354\) 0 0
\(355\) 16.8838 10.8505i 0.896097 0.575887i
\(356\) 0.230870 12.2962i 0.0122361 0.651695i
\(357\) 0 0
\(358\) 0.733658 2.41453i 0.0387750 0.127612i
\(359\) −10.1453 + 11.7083i −0.535451 + 0.617943i −0.957431 0.288662i \(-0.906790\pi\)
0.421980 + 0.906605i \(0.361335\pi\)
\(360\) 0 0
\(361\) −13.3746 8.59533i −0.703926 0.452386i
\(362\) −16.3951 + 24.9923i −0.861707 + 1.31357i
\(363\) 0 0
\(364\) 10.4378 21.7647i 0.547087 1.14078i
\(365\) −8.85464 + 4.04378i −0.463473 + 0.211661i
\(366\) 0 0
\(367\) −0.817746 −0.0426860 −0.0213430 0.999772i \(-0.506794\pi\)
−0.0213430 + 0.999772i \(0.506794\pi\)
\(368\) −16.6224 9.57582i −0.866502 0.499174i
\(369\) 0 0
\(370\) −16.2161 + 10.2076i −0.843033 + 0.530669i
\(371\) −2.52459 + 1.15294i −0.131070 + 0.0598577i
\(372\) 0 0
\(373\) 6.00992 5.20762i 0.311182 0.269641i −0.485241 0.874380i \(-0.661268\pi\)
0.796423 + 0.604740i \(0.206723\pi\)
\(374\) −3.26050 + 4.97023i −0.168596 + 0.257004i
\(375\) 0 0
\(376\) 6.36200 0.732547i 0.328095 0.0377782i
\(377\) 18.8360 21.7379i 0.970102 1.11956i
\(378\) 0 0
\(379\) −2.85196 19.8358i −0.146495 1.01890i −0.921899 0.387431i \(-0.873362\pi\)
0.775403 0.631467i \(-0.217547\pi\)
\(380\) −0.144895 + 7.71711i −0.00743296 + 0.395880i
\(381\) 0 0
\(382\) −29.7841 0.279585i −1.52388 0.0143048i
\(383\) 0.939261 2.05669i 0.0479940 0.105092i −0.884116 0.467267i \(-0.845239\pi\)
0.932110 + 0.362175i \(0.117966\pi\)
\(384\) 0 0
\(385\) −2.63632 8.97848i −0.134359 0.457586i
\(386\) 0.198473 1.29406i 0.0101020 0.0658658i
\(387\) 0 0
\(388\) 4.21505 + 15.4203i 0.213987 + 0.782848i
\(389\) 8.33260 + 1.19805i 0.422480 + 0.0607434i 0.350276 0.936646i \(-0.386088\pi\)
0.0722037 + 0.997390i \(0.476997\pi\)
\(390\) 0 0
\(391\) 10.7679 + 13.9519i 0.544557 + 0.705580i
\(392\) 16.8021 10.1412i 0.848633 0.512207i
\(393\) 0 0
\(394\) 5.11078 10.9186i 0.257477 0.550073i
\(395\) 10.0401 34.1933i 0.505170 1.72045i
\(396\) 0 0
\(397\) −3.23260 + 0.949177i −0.162239 + 0.0476378i −0.361844 0.932239i \(-0.617853\pi\)
0.199604 + 0.979877i \(0.436034\pi\)
\(398\) −2.23540 16.6560i −0.112050 0.834888i
\(399\) 0 0
\(400\) 0.681970 0.402930i 0.0340985 0.0201465i
\(401\) −8.46186 13.1669i −0.422565 0.657525i 0.563071 0.826409i \(-0.309620\pi\)
−0.985636 + 0.168884i \(0.945984\pi\)
\(402\) 0 0
\(403\) −31.9239 + 4.58997i −1.59024 + 0.228643i
\(404\) 12.7006 + 29.2515i 0.631877 + 1.45531i
\(405\) 0 0
\(406\) 45.1979 12.8117i 2.24313 0.635834i
\(407\) −3.82341 + 5.94934i −0.189519 + 0.294898i
\(408\) 0 0
\(409\) 13.5096 + 15.5909i 0.668008 + 0.770923i 0.984063 0.177818i \(-0.0569039\pi\)
−0.316055 + 0.948741i \(0.602358\pi\)
\(410\) −3.46004 + 1.54106i −0.170879 + 0.0761075i
\(411\) 0 0
\(412\) 34.3001 + 10.7748i 1.68985 + 0.530838i
\(413\) 34.6867i 1.70682i
\(414\) 0 0
\(415\) 11.8058i 0.579526i
\(416\) −17.7685 + 4.32312i −0.871172 + 0.211958i
\(417\) 0 0
\(418\) 1.15902 + 2.60227i 0.0566895 + 0.127281i
\(419\) −6.55475 7.56458i −0.320220 0.369554i 0.572703 0.819763i \(-0.305895\pi\)
−0.892923 + 0.450209i \(0.851349\pi\)
\(420\) 0 0
\(421\) −10.1364 + 15.7726i −0.494020 + 0.768710i −0.995327 0.0965595i \(-0.969216\pi\)
0.501307 + 0.865269i \(0.332853\pi\)
\(422\) −7.96173 28.0879i −0.387571 1.36730i
\(423\) 0 0
\(424\) 1.88725 + 0.926965i 0.0916532 + 0.0450174i
\(425\) −0.720313 + 0.103565i −0.0349403 + 0.00502366i
\(426\) 0 0
\(427\) −7.23340 11.2554i −0.350049 0.544687i
\(428\) −11.0014 13.1887i −0.531774 0.637498i
\(429\) 0 0
\(430\) 8.49499 1.14011i 0.409665 0.0549812i
\(431\) −2.71944 + 0.798501i −0.130991 + 0.0384624i −0.346571 0.938024i \(-0.612654\pi\)
0.215580 + 0.976486i \(0.430836\pi\)
\(432\) 0 0
\(433\) 5.21341 17.7552i 0.250540 0.853262i −0.734156 0.678981i \(-0.762422\pi\)
0.984696 0.174281i \(-0.0557600\pi\)
\(434\) −47.7091 22.3316i −2.29011 1.07195i
\(435\) 0 0
\(436\) −20.3334 3.31422i −0.973793 0.158722i
\(437\) 8.41480 0.726312i 0.402534 0.0347442i
\(438\) 0 0
\(439\) 3.02122 + 0.434385i 0.144195 + 0.0207321i 0.214034 0.976826i \(-0.431340\pi\)
−0.0698394 + 0.997558i \(0.522249\pi\)
\(440\) −3.99910 + 5.85352i −0.190650 + 0.279056i
\(441\) 0 0
\(442\) 16.6062 + 2.54693i 0.789876 + 0.121145i
\(443\) 4.88374 + 16.6325i 0.232034 + 0.790234i 0.990379 + 0.138381i \(0.0441899\pi\)
−0.758345 + 0.651853i \(0.773992\pi\)
\(444\) 0 0
\(445\) −5.59768 + 12.2572i −0.265355 + 0.581047i
\(446\) −0.185555 + 19.7670i −0.00878626 + 0.935996i
\(447\) 0 0
\(448\) −28.1386 10.0145i −1.32942 0.473140i
\(449\) −0.0379424 0.263895i −0.00179061 0.0124540i 0.988907 0.148539i \(-0.0474571\pi\)
−0.990697 + 0.136085i \(0.956548\pi\)
\(450\) 0 0
\(451\) −0.915465 + 1.05650i −0.0431076 + 0.0497488i
\(452\) −11.4627 + 17.1209i −0.539161 + 0.805300i
\(453\) 0 0
\(454\) −33.4184 21.9227i −1.56840 1.02888i
\(455\) −19.9876 + 17.3194i −0.937034 + 0.811945i
\(456\) 0 0
\(457\) 26.5005 12.1024i 1.23964 0.566124i 0.315771 0.948835i \(-0.397737\pi\)
0.923868 + 0.382711i \(0.125010\pi\)
\(458\) 7.95500 + 12.6375i 0.371713 + 0.590511i
\(459\) 0 0
\(460\) 12.5273 + 16.8774i 0.584090 + 0.786914i
\(461\) 8.90884 0.414926 0.207463 0.978243i \(-0.433479\pi\)
0.207463 + 0.978243i \(0.433479\pi\)
\(462\) 0 0
\(463\) 10.0885 4.60724i 0.468850 0.214117i −0.166958 0.985964i \(-0.553394\pi\)
0.635808 + 0.771847i \(0.280667\pi\)
\(464\) −29.1973 20.3521i −1.35545 0.944823i
\(465\) 0 0
\(466\) −10.7524 7.05361i −0.498093 0.326752i
\(467\) 29.0694 + 18.6818i 1.34517 + 0.864489i 0.997327 0.0730634i \(-0.0232775\pi\)
0.347844 + 0.937552i \(0.386914\pi\)
\(468\) 0 0
\(469\) 24.9634 28.8093i 1.15270 1.33029i
\(470\) −6.71363 2.03994i −0.309677 0.0940956i
\(471\) 0 0
\(472\) −20.3365 + 16.6427i −0.936064 + 0.766040i
\(473\) 2.66123 1.71027i 0.122364 0.0786383i
\(474\) 0 0
\(475\) −0.144877 + 0.317235i −0.00664739 + 0.0145558i
\(476\) 20.3966 + 18.3553i 0.934876 + 0.841315i
\(477\) 0 0
\(478\) 7.27943 + 1.11646i 0.332953 + 0.0510658i
\(479\) 27.9632 + 8.21073i 1.27767 + 0.375158i 0.849043 0.528323i \(-0.177179\pi\)
0.428627 + 0.903481i \(0.358997\pi\)
\(480\) 0 0
\(481\) 19.7843 + 2.84456i 0.902087 + 0.129701i
\(482\) 16.2916 13.8512i 0.742063 0.630904i
\(483\) 0 0
\(484\) 3.11825 19.1311i 0.141739 0.869595i
\(485\) 2.49270 17.3371i 0.113188 0.787239i
\(486\) 0 0
\(487\) −5.43992 + 18.5267i −0.246506 + 0.839523i 0.739549 + 0.673103i \(0.235039\pi\)
−0.986055 + 0.166420i \(0.946779\pi\)
\(488\) −3.12836 + 9.64122i −0.141614 + 0.436437i
\(489\) 0 0
\(490\) −21.3118 + 2.86026i −0.962770 + 0.129213i
\(491\) −9.74561 4.45067i −0.439813 0.200856i 0.183186 0.983078i \(-0.441359\pi\)
−0.622999 + 0.782222i \(0.714086\pi\)
\(492\) 0 0
\(493\) 17.6776 + 27.5070i 0.796161 + 1.23885i
\(494\) 5.32942 6.03507i 0.239782 0.271531i
\(495\) 0 0
\(496\) 9.79796 + 38.6861i 0.439942 + 1.73706i
\(497\) −25.8416 22.3919i −1.15916 1.00441i
\(498\) 0 0
\(499\) −4.94897 + 7.70075i −0.221546 + 0.344733i −0.934179 0.356804i \(-0.883866\pi\)
0.712633 + 0.701537i \(0.247503\pi\)
\(500\) −22.6063 + 2.81824i −1.01098 + 0.126035i
\(501\) 0 0
\(502\) 1.21373 + 2.72510i 0.0541714 + 0.121627i
\(503\) −10.3583 22.6815i −0.461853 1.01132i −0.987061 0.160344i \(-0.948740\pi\)
0.525208 0.850974i \(-0.323987\pi\)
\(504\) 0 0
\(505\) 34.9406i 1.55484i
\(506\) 6.82823 + 3.68153i 0.303552 + 0.163664i
\(507\) 0 0
\(508\) −1.38608 + 4.41240i −0.0614975 + 0.195768i
\(509\) 14.7254 + 32.2441i 0.652691 + 1.42919i 0.889179 + 0.457559i \(0.151276\pi\)
−0.236488 + 0.971634i \(0.575997\pi\)
\(510\) 0 0
\(511\) 10.8606 + 12.5338i 0.480445 + 0.554463i
\(512\) 7.62947 + 21.3024i 0.337178 + 0.941441i
\(513\) 0 0
\(514\) −25.0041 + 7.08761i −1.10288 + 0.312621i
\(515\) −29.7707 25.7965i −1.31185 1.13673i
\(516\) 0 0
\(517\) −2.56334 + 0.368553i −0.112736 + 0.0162090i
\(518\) 24.4702 + 21.6090i 1.07516 + 0.949445i
\(519\) 0 0
\(520\) 19.7443 + 3.40875i 0.865843 + 0.149484i
\(521\) −0.527552 0.240925i −0.0231125 0.0105551i 0.403825 0.914836i \(-0.367680\pi\)
−0.426938 + 0.904281i \(0.640408\pi\)
\(522\) 0 0
\(523\) 16.1023 4.72806i 0.704104 0.206744i 0.0899692 0.995945i \(-0.471323\pi\)
0.614135 + 0.789201i \(0.289505\pi\)
\(524\) 12.9964 + 21.0828i 0.567750 + 0.921005i
\(525\) 0 0
\(526\) −6.03158 + 12.8858i −0.262989 + 0.561849i
\(527\) 5.21778 36.2905i 0.227290 1.58084i
\(528\) 0 0
\(529\) 16.9320 15.5663i 0.736172 0.676794i
\(530\) −1.49224 1.75516i −0.0648188 0.0762393i
\(531\) 0 0
\(532\) 12.6848 3.46731i 0.549957 0.150327i
\(533\) 3.79103 + 1.11315i 0.164208 + 0.0482157i
\(534\) 0 0
\(535\) 5.30160 + 18.0556i 0.229208 + 0.780612i
\(536\) −28.8681 0.813153i −1.24691 0.0351228i
\(537\) 0 0
\(538\) −28.7153 0.269553i −1.23801 0.0116213i
\(539\) −6.67637 + 4.29064i −0.287572 + 0.184811i
\(540\) 0 0
\(541\) −1.23736 8.60605i −0.0531984 0.370003i −0.998978 0.0451944i \(-0.985609\pi\)
0.945780 0.324808i \(-0.105300\pi\)
\(542\) −2.65993 + 8.75405i −0.114254 + 0.376019i
\(543\) 0 0
\(544\) 0.975311 20.7652i 0.0418161 0.890302i
\(545\) 18.9894 + 12.2037i 0.813415 + 0.522750i
\(546\) 0 0
\(547\) 16.9263 14.6667i 0.723717 0.627104i −0.213057 0.977040i \(-0.568342\pi\)
0.936774 + 0.349936i \(0.113797\pi\)
\(548\) 17.1988 + 8.24805i 0.734694 + 0.352339i
\(549\) 0 0
\(550\) −0.271082 + 0.170640i −0.0115590 + 0.00727610i
\(551\) 15.6699 0.667561
\(552\) 0 0
\(553\) −60.7154 −2.58188
\(554\) 24.7010 15.5487i 1.04944 0.660601i
\(555\) 0 0
\(556\) −26.7281 12.8181i −1.13352 0.543607i
\(557\) 1.28707 1.11525i 0.0545347 0.0472546i −0.627167 0.778885i \(-0.715786\pi\)
0.681702 + 0.731630i \(0.261240\pi\)
\(558\) 0 0
\(559\) −7.52152 4.83378i −0.318126 0.204447i
\(560\) 23.9100 + 22.3436i 1.01038 + 0.944189i
\(561\) 0 0
\(562\) 7.11258 23.4081i 0.300026 0.987411i
\(563\) −0.711102 4.94582i −0.0299694 0.208442i 0.969335 0.245745i \(-0.0790324\pi\)
−0.999304 + 0.0373029i \(0.988123\pi\)
\(564\) 0 0
\(565\) 18.9913 12.2050i 0.798972 0.513468i
\(566\) −2.53248 0.0237726i −0.106448 0.000999236i
\(567\) 0 0
\(568\) −0.729388 + 25.8944i −0.0306045 + 1.08650i
\(569\) −1.02167 3.47948i −0.0428305 0.145867i 0.935302 0.353851i \(-0.115128\pi\)
−0.978132 + 0.207984i \(0.933310\pi\)
\(570\) 0 0
\(571\) 32.1866 + 9.45084i 1.34697 + 0.395506i 0.874151 0.485655i \(-0.161419\pi\)
0.472817 + 0.881160i \(0.343237\pi\)
\(572\) 7.13326 1.94983i 0.298257 0.0815266i
\(573\) 0 0
\(574\) 4.17999 + 4.91647i 0.174470 + 0.205209i
\(575\) 0.215494 + 0.924932i 0.00898671 + 0.0385724i
\(576\) 0 0
\(577\) −2.41627 + 16.8056i −0.100591 + 0.699625i 0.875652 + 0.482943i \(0.160432\pi\)
−0.976242 + 0.216681i \(0.930477\pi\)
\(578\) 2.09564 4.47712i 0.0871672 0.186223i
\(579\) 0 0
\(580\) 20.4630 + 33.1952i 0.849682 + 1.37835i
\(581\) −19.2992 + 5.66674i −0.800664 + 0.235096i
\(582\) 0 0
\(583\) −0.773432 0.353215i −0.0320323 0.0146287i
\(584\) 2.13756 12.3812i 0.0884527 0.512338i
\(585\) 0 0
\(586\) 15.2490 + 13.4660i 0.629931 + 0.556276i
\(587\) −19.9892 + 2.87401i −0.825041 + 0.118623i −0.541887 0.840451i \(-0.682290\pi\)
−0.283154 + 0.959074i \(0.591381\pi\)
\(588\) 0 0
\(589\) −13.2790 11.5063i −0.547151 0.474109i
\(590\) 27.7010 7.85209i 1.14043 0.323265i
\(591\) 0 0
\(592\) 0.928402 24.7146i 0.0381571 1.01577i
\(593\) 17.7814 + 20.5208i 0.730193 + 0.842688i 0.992493 0.122298i \(-0.0390265\pi\)
−0.262300 + 0.964986i \(0.584481\pi\)
\(594\) 0 0
\(595\) −12.4894 27.3480i −0.512016 1.12116i
\(596\) 7.05175 22.4482i 0.288851 0.919515i
\(597\) 0 0
\(598\) 1.44790 21.8773i 0.0592089 0.894629i
\(599\) 4.57335i 0.186862i 0.995626 + 0.0934309i \(0.0297834\pi\)
−0.995626 + 0.0934309i \(0.970217\pi\)
\(600\) 0 0
\(601\) 7.98506 + 17.4848i 0.325717 + 0.713221i 0.999674 0.0255499i \(-0.00813368\pi\)
−0.673956 + 0.738771i \(0.735406\pi\)
\(602\) −5.94131 13.3396i −0.242150 0.543683i
\(603\) 0 0
\(604\) −2.50477 + 0.312260i −0.101918 + 0.0127057i
\(605\) −11.4821 + 17.8665i −0.466814 + 0.726377i
\(606\) 0 0
\(607\) −16.2200 14.0547i −0.658350 0.570464i 0.260304 0.965527i \(-0.416177\pi\)
−0.918654 + 0.395063i \(0.870723\pi\)
\(608\) −8.11903 5.77339i −0.329270 0.234142i
\(609\) 0 0
\(610\) 7.35120 8.32455i 0.297642 0.337051i
\(611\) 3.95714 + 6.15743i 0.160089 + 0.249103i
\(612\) 0 0
\(613\) −23.9891 10.9555i −0.968912 0.442487i −0.132858 0.991135i \(-0.542416\pi\)
−0.836054 + 0.548648i \(0.815143\pi\)
\(614\) 0.0649693 0.00871954i 0.00262195 0.000351892i
\(615\) 0 0
\(616\) 11.4884 + 3.72773i 0.462880 + 0.150194i
\(617\) −2.46606 + 8.39862i −0.0992797 + 0.338116i −0.994122 0.108267i \(-0.965470\pi\)
0.894842 + 0.446383i \(0.147288\pi\)
\(618\) 0 0
\(619\) −5.92703 + 41.2234i −0.238227 + 1.65691i 0.422560 + 0.906335i \(0.361132\pi\)
−0.660788 + 0.750573i \(0.729778\pi\)
\(620\) 7.03419 43.1561i 0.282500 1.73319i
\(621\) 0 0
\(622\) 7.86301 6.68515i 0.315278 0.268050i
\(623\) 22.7239 + 3.26720i 0.910413 + 0.130898i
\(624\) 0 0
\(625\) 22.9997 + 6.75331i 0.919987 + 0.270133i
\(626\) 31.2743 + 4.79662i 1.24997 + 0.191711i
\(627\) 0 0
\(628\) −7.61893 6.85645i −0.304029 0.273602i
\(629\) −9.43893 + 20.6684i −0.376355 + 0.824102i
\(630\) 0 0
\(631\) −11.5707 + 7.43606i −0.460624 + 0.296025i −0.750297 0.661101i \(-0.770090\pi\)
0.289674 + 0.957126i \(0.406453\pi\)
\(632\) 29.1312 + 35.5970i 1.15878 + 1.41597i
\(633\) 0 0
\(634\) 9.75183 + 2.96310i 0.387295 + 0.117680i
\(635\) 3.31848 3.82973i 0.131690 0.151978i
\(636\) 0 0
\(637\) 18.8696 + 12.1268i 0.747641 + 0.480480i
\(638\) 12.0340 + 7.89440i 0.476432 + 0.312542i
\(639\) 0 0
\(640\) 1.62786 24.7387i 0.0643470 0.977882i
\(641\) 22.0233 10.0577i 0.869868 0.397255i 0.0700824 0.997541i \(-0.477674\pi\)
0.799786 + 0.600286i \(0.204946\pi\)
\(642\) 0 0
\(643\) 2.43251 0.0959288 0.0479644 0.998849i \(-0.484727\pi\)
0.0479644 + 0.998849i \(0.484727\pi\)
\(644\) 21.5767 28.5797i 0.850241 1.12620i
\(645\) 0 0
\(646\) 4.87580 + 7.74581i 0.191836 + 0.304755i
\(647\) 44.7251 20.4253i 1.75833 0.803001i 0.772547 0.634958i \(-0.218983\pi\)
0.985780 0.168043i \(-0.0537446\pi\)
\(648\) 0 0
\(649\) 8.03105 6.95895i 0.315246 0.273163i
\(650\) 0.756977 + 0.496581i 0.0296911 + 0.0194775i
\(651\) 0 0
\(652\) 10.8774 16.2467i 0.425993 0.636270i
\(653\) 1.36207 1.57192i 0.0533021 0.0615139i −0.728472 0.685075i \(-0.759769\pi\)
0.781775 + 0.623561i \(0.214315\pi\)
\(654\) 0 0
\(655\) −3.86187 26.8599i −0.150896 1.04950i
\(656\) 0.876927 4.80961i 0.0342382 0.187784i
\(657\) 0 0
\(658\) −0.112213 + 11.9540i −0.00437453 + 0.466017i
\(659\) −7.38557 + 16.1722i −0.287701 + 0.629978i −0.997204 0.0747248i \(-0.976192\pi\)
0.709503 + 0.704702i \(0.248919\pi\)
\(660\) 0 0
\(661\) 10.9719 + 37.3667i 0.426756 + 1.45340i 0.839905 + 0.542734i \(0.182611\pi\)
−0.413149 + 0.910663i \(0.635571\pi\)
\(662\) −29.3738 4.50513i −1.14164 0.175097i
\(663\) 0 0
\(664\) 12.5821 + 8.59603i 0.488280 + 0.333591i
\(665\) −14.2616 2.05051i −0.553041 0.0795153i
\(666\) 0 0
\(667\) 33.7808 26.0716i 1.30800 1.00949i
\(668\) −7.27583 1.18592i −0.281510 0.0458845i
\(669\) 0 0
\(670\) 28.6584 + 13.4144i 1.10717 + 0.518242i
\(671\) 1.15479 3.93285i 0.0445801 0.151826i
\(672\) 0 0
\(673\) −33.1659 + 9.73838i −1.27845 + 0.375387i −0.849331 0.527860i \(-0.822994\pi\)
−0.429120 + 0.903248i \(0.641176\pi\)
\(674\) −32.3957 + 4.34783i −1.24784 + 0.167472i
\(675\) 0 0
\(676\) 3.26650 + 3.91593i 0.125635 + 0.150613i
\(677\) 5.84218 + 9.09061i 0.224533 + 0.349380i 0.935183 0.354166i \(-0.115235\pi\)
−0.710649 + 0.703546i \(0.751599\pi\)
\(678\) 0 0
\(679\) −29.5377 + 4.24688i −1.13355 + 0.162980i
\(680\) −10.0415 + 20.4440i −0.385074 + 0.783991i
\(681\) 0 0
\(682\) −4.40108 15.5264i −0.168526 0.594536i
\(683\) −15.2977 + 23.8036i −0.585349 + 0.910821i 0.414651 + 0.909981i \(0.363904\pi\)
−1.00000 0.000840079i \(0.999733\pi\)
\(684\) 0 0
\(685\) −13.6860 15.7945i −0.522915 0.603476i
\(686\) −0.131890 0.296123i −0.00503558 0.0113060i
\(687\) 0 0
\(688\) −4.97028 + 9.88369i −0.189490 + 0.376812i
\(689\) 2.40314i 0.0915523i
\(690\) 0 0
\(691\) 13.6014i 0.517422i 0.965955 + 0.258711i \(0.0832977\pi\)
−0.965955 + 0.258711i \(0.916702\pi\)
\(692\) −9.71319 3.05125i −0.369240 0.115991i
\(693\) 0 0
\(694\) 18.1194 8.07019i 0.687805 0.306340i
\(695\) 21.2690 + 24.5458i 0.806780 + 0.931074i
\(696\) 0 0
\(697\) −2.42829 + 3.77849i −0.0919780 + 0.143121i
\(698\) −7.58605 + 2.15033i −0.287136 + 0.0813911i
\(699\) 0 0
\(700\) 0.588894 + 1.35632i 0.0222581 + 0.0512640i
\(701\) −20.6692 + 2.97178i −0.780664 + 0.112243i −0.521114 0.853487i \(-0.674483\pi\)
−0.259550 + 0.965730i \(0.583574\pi\)
\(702\) 0 0
\(703\) 5.88709 + 9.16050i 0.222036 + 0.345495i
\(704\) −3.32658 8.52410i −0.125375 0.321264i
\(705\) 0 0
\(706\) −0.210476 1.56826i −0.00792138 0.0590222i
\(707\) −57.1178 + 16.7713i −2.14814 + 0.630750i
\(708\) 0 0
\(709\) −14.6578 + 49.9199i −0.550486 + 1.87478i −0.0704858 + 0.997513i \(0.522455\pi\)
−0.480000 + 0.877269i \(0.659363\pi\)
\(710\) 12.0325 25.7062i 0.451572 0.964737i
\(711\) 0 0
\(712\) −8.98737 14.8904i −0.336816 0.558042i
\(713\) −47.7707 2.71148i −1.78903 0.101546i
\(714\) 0 0
\(715\) −8.01995 1.15310i −0.299929 0.0431233i
\(716\) −0.940993 3.44252i −0.0351665 0.128653i
\(717\) 0 0
\(718\) −3.32148 + 21.6563i −0.123956 + 0.808205i
\(719\) 4.77265 + 16.2541i 0.177990 + 0.606177i 0.999360 + 0.0357815i \(0.0113920\pi\)
−0.821370 + 0.570396i \(0.806790\pi\)
\(720\) 0 0
\(721\) −27.8800 + 61.0488i −1.03831 + 2.27357i
\(722\) −22.4828 0.211047i −0.836722 0.00785437i
\(723\) 0 0
\(724\) −0.793531 + 42.2635i −0.0294913 + 1.57071i
\(725\) 0.250755 + 1.74404i 0.00931281 + 0.0647721i
\(726\) 0 0
\(727\) −21.5901 + 24.9163i −0.800731 + 0.924093i −0.998421 0.0561715i \(-0.982111\pi\)
0.197690 + 0.980265i \(0.436656\pi\)
\(728\) −3.90481 33.9124i −0.144722 1.25688i
\(729\) 0 0
\(730\) −7.55106 + 11.5107i −0.279477 + 0.426029i
\(731\) 7.68126 6.65585i 0.284102 0.246176i
\(732\) 0 0
\(733\) 7.07169 3.22953i 0.261199 0.119286i −0.280512 0.959851i \(-0.590504\pi\)
0.541711 + 0.840565i \(0.317777\pi\)
\(734\) −0.978709 + 0.616074i −0.0361248 + 0.0227397i
\(735\) 0 0
\(736\) −27.1085 + 1.06228i −0.999233 + 0.0391562i
\(737\) 11.6785 0.430183
\(738\) 0 0
\(739\) 0.342533 0.156430i 0.0126003 0.00575436i −0.409105 0.912487i \(-0.634159\pi\)
0.421705 + 0.906733i \(0.361432\pi\)
\(740\) −11.7177 + 24.4337i −0.430753 + 0.898202i
\(741\) 0 0
\(742\) −2.15292 + 3.28186i −0.0790360 + 0.120481i
\(743\) 2.19442 + 1.41027i 0.0805055 + 0.0517377i 0.580274 0.814421i \(-0.302945\pi\)
−0.499769 + 0.866159i \(0.666582\pi\)
\(744\) 0 0
\(745\) −16.8829 + 19.4839i −0.618541 + 0.713834i
\(746\) 3.26957 10.7604i 0.119707 0.393967i
\(747\) 0 0
\(748\) −0.157810 + 8.40495i −0.00577009 + 0.307315i
\(749\) 26.9710 17.3332i 0.985498 0.633341i
\(750\) 0 0
\(751\) −16.6578 + 36.4756i −0.607853 + 1.33101i 0.316180 + 0.948699i \(0.397600\pi\)
−0.924033 + 0.382313i \(0.875128\pi\)
\(752\) 7.06239 5.66975i 0.257539 0.206754i
\(753\) 0 0
\(754\) 6.16670 40.2073i 0.224578 1.46427i
\(755\) 2.65362 + 0.779172i 0.0965750 + 0.0283570i
\(756\) 0 0
\(757\) −26.3015 3.78158i −0.955943 0.137444i −0.353349 0.935492i \(-0.614957\pi\)
−0.602594 + 0.798048i \(0.705866\pi\)
\(758\) −18.3573 21.5916i −0.666766 0.784243i
\(759\) 0 0
\(760\) 5.64051 + 9.34529i 0.204603 + 0.338989i
\(761\) −6.22185 + 43.2739i −0.225542 + 1.56868i 0.491017 + 0.871150i \(0.336625\pi\)
−0.716559 + 0.697527i \(0.754284\pi\)
\(762\) 0 0
\(763\) 10.8348 36.8999i 0.392245 1.33587i
\(764\) −35.8573 + 22.1041i −1.29727 + 0.799699i
\(765\) 0 0
\(766\) −0.425332 3.16915i −0.0153679 0.114506i
\(767\) −27.3201 12.4767i −0.986473 0.450507i
\(768\) 0 0
\(769\) −18.0559 28.0956i −0.651113 1.01315i −0.997188 0.0749451i \(-0.976122\pi\)
0.346074 0.938207i \(-0.387515\pi\)
\(770\) −9.91945 8.75962i −0.357472 0.315675i
\(771\) 0 0
\(772\) −0.737379 1.69830i −0.0265388 0.0611232i
\(773\) 29.6254 + 25.6706i 1.06555 + 0.923306i 0.997232 0.0743579i \(-0.0236907\pi\)
0.0683198 + 0.997663i \(0.478236\pi\)
\(774\) 0 0
\(775\) 1.06814 1.66206i 0.0383688 0.0597030i
\(776\) 16.6621 + 15.2801i 0.598134 + 0.548523i
\(777\) 0 0
\(778\) 10.8754 4.84375i 0.389900 0.173657i
\(779\) 0.894181 + 1.95798i 0.0320374 + 0.0701520i
\(780\) 0 0
\(781\) 10.4755i 0.374842i
\(782\) 23.3986 + 8.58586i 0.836731 + 0.307030i
\(783\) 0 0
\(784\) 12.4692 24.7957i 0.445328 0.885561i
\(785\) 4.66529 + 10.2156i 0.166511 + 0.364609i
\(786\) 0 0
\(787\) −24.5886 28.3768i −0.876490 1.01152i −0.999816 0.0191574i \(-0.993902\pi\)
0.123326 0.992366i \(-0.460644\pi\)
\(788\) −2.10912 16.9182i −0.0751343 0.602685i
\(789\) 0 0
\(790\) −13.7443 48.4878i −0.488999 1.72512i
\(791\) −29.0674 25.1871i −1.03352 0.895549i
\(792\) 0 0
\(793\) −11.4669 + 1.64869i −0.407200 + 0.0585466i
\(794\) −3.15380 + 3.57139i −0.111924 + 0.126744i
\(795\) 0 0
\(796\) −15.2237 18.2504i −0.539589 0.646867i
\(797\) −30.2453 13.8126i −1.07134 0.489266i −0.199927 0.979811i \(-0.564070\pi\)
−0.871416 + 0.490545i \(0.836798\pi\)
\(798\) 0 0
\(799\) −7.98345 + 2.34415i −0.282434 + 0.0829302i
\(800\) 0.512647 0.996024i 0.0181248 0.0352148i
\(801\) 0 0
\(802\) −20.0472 9.38365i −0.707890 0.331348i
\(803\) −0.723081 + 5.02914i −0.0255170 + 0.177474i
\(804\) 0 0
\(805\) −34.1564 + 19.3079i −1.20385 + 0.680515i
\(806\) −34.7497 + 29.5443i −1.22401 + 1.04065i
\(807\) 0 0
\(808\) 37.2380 + 25.4408i 1.31003 + 0.895006i
\(809\) 21.3600 + 6.27186i 0.750977 + 0.220507i 0.634752 0.772716i \(-0.281102\pi\)
0.116225 + 0.993223i \(0.462921\pi\)
\(810\) 0 0
\(811\) −10.2056 34.7572i −0.358368 1.22049i −0.919608 0.392837i \(-0.871494\pi\)
0.561240 0.827653i \(-0.310324\pi\)
\(812\) 44.4424 49.3847i 1.55962 1.73306i
\(813\) 0 0
\(814\) −0.0938789 + 10.0009i −0.00329046 + 0.350530i
\(815\) −18.0216 + 11.5818i −0.631270 + 0.405693i
\(816\) 0 0
\(817\) −0.693197 4.82129i −0.0242519 0.168676i
\(818\) 27.9147 + 8.48192i 0.976016 + 0.296563i
\(819\) 0 0
\(820\) −2.98010 + 4.45112i −0.104069 + 0.155440i
\(821\) −8.19631 5.26745i −0.286053 0.183835i 0.389743 0.920924i \(-0.372564\pi\)
−0.675796 + 0.737088i \(0.736200\pi\)
\(822\) 0 0
\(823\) −28.9373 + 25.0743i −1.00869 + 0.874036i −0.992052 0.125825i \(-0.959842\pi\)
−0.0166394 + 0.999862i \(0.505297\pi\)
\(824\) 49.1692 12.9453i 1.71289 0.450972i
\(825\) 0 0
\(826\) −26.1323 41.5143i −0.909258 1.44447i
\(827\) 14.2948 0.497077 0.248539 0.968622i \(-0.420050\pi\)
0.248539 + 0.968622i \(0.420050\pi\)
\(828\) 0 0
\(829\) 17.8480 0.619887 0.309944 0.950755i \(-0.399690\pi\)
0.309944 + 0.950755i \(0.399690\pi\)
\(830\) −8.89428 14.1297i −0.308725 0.490447i
\(831\) 0 0
\(832\) −18.0090 + 18.5605i −0.624351 + 0.643470i
\(833\) −19.2704 + 16.6979i −0.667679 + 0.578547i
\(834\) 0 0
\(835\) 6.79490 + 4.36682i 0.235147 + 0.151120i
\(836\) 3.34766 + 2.24131i 0.115781 + 0.0775173i
\(837\) 0 0
\(838\) −13.5440 4.11535i −0.467869 0.142162i
\(839\) 2.11741 + 14.7269i 0.0731011 + 0.508430i 0.993170 + 0.116674i \(0.0372232\pi\)
−0.920069 + 0.391756i \(0.871868\pi\)
\(840\) 0 0
\(841\) 42.2042 27.1230i 1.45532 0.935276i
\(842\) −0.248887 + 26.5138i −0.00857722 + 0.913727i
\(843\) 0 0
\(844\) −30.6897 27.6184i −1.05638 0.950663i
\(845\) −1.57413 5.36100i −0.0541518 0.184424i
\(846\) 0 0
\(847\) 34.7180 + 10.1941i 1.19292 + 0.350274i
\(848\) 2.95709 0.312396i 0.101547 0.0107277i
\(849\) 0 0
\(850\) −0.784073 + 0.666621i −0.0268935 + 0.0228649i
\(851\) 27.9324 + 9.95304i 0.957511 + 0.341186i
\(852\) 0 0
\(853\) 2.41211 16.7766i 0.0825892 0.574421i −0.905942 0.423402i \(-0.860836\pi\)
0.988531 0.151018i \(-0.0482552\pi\)
\(854\) −17.1368 8.02137i −0.586409 0.274485i
\(855\) 0 0
\(856\) −23.1030 7.49641i −0.789643 0.256222i
\(857\) −29.5877 + 8.68772i −1.01070 + 0.296767i −0.744838 0.667246i \(-0.767473\pi\)
−0.265857 + 0.964012i \(0.585655\pi\)
\(858\) 0 0
\(859\) 25.1115 + 11.4680i 0.856792 + 0.391284i 0.794857 0.606797i \(-0.207546\pi\)
0.0619346 + 0.998080i \(0.480273\pi\)
\(860\) 9.30818 7.76449i 0.317406 0.264767i
\(861\) 0 0
\(862\) −2.65315 + 3.00445i −0.0903668 + 0.102332i
\(863\) −43.5095 + 6.25573i −1.48108 + 0.212947i −0.834970 0.550296i \(-0.814515\pi\)
−0.646112 + 0.763243i \(0.723606\pi\)
\(864\) 0 0
\(865\) 8.43054 + 7.30511i 0.286647 + 0.248381i
\(866\) −7.13685 25.1778i −0.242520 0.855576i
\(867\) 0 0
\(868\) −73.9242 + 9.21583i −2.50915 + 0.312806i
\(869\) −12.1809 14.0575i −0.413209 0.476869i
\(870\) 0 0
\(871\) −13.7117 30.0245i −0.464603 1.01734i
\(872\) −26.8326 + 11.3522i −0.908667 + 0.384434i
\(873\) 0 0
\(874\) 9.52395 7.20882i 0.322152 0.243842i
\(875\) 42.5263i 1.43765i
\(876\) 0 0
\(877\) −20.7018 45.3307i −0.699051 1.53071i −0.841118 0.540852i \(-0.818102\pi\)
0.142066 0.989857i \(-0.454625\pi\)
\(878\) 3.94316 1.75624i 0.133075 0.0592701i
\(879\) 0 0
\(880\) −0.376346 + 10.0186i −0.0126866 + 0.337725i
\(881\) −7.62978 + 11.8722i −0.257054 + 0.399984i −0.945663 0.325149i \(-0.894585\pi\)
0.688609 + 0.725133i \(0.258222\pi\)
\(882\) 0 0
\(883\) −17.3903 15.0687i −0.585229 0.507104i 0.311169 0.950355i \(-0.399280\pi\)
−0.896397 + 0.443251i \(0.853825\pi\)
\(884\) 21.7937 9.46252i 0.733002 0.318259i
\(885\) 0 0
\(886\) 18.3757 + 16.2271i 0.617342 + 0.545159i
\(887\) −10.8614 16.9006i −0.364689 0.567468i 0.609616 0.792697i \(-0.291323\pi\)
−0.974306 + 0.225229i \(0.927687\pi\)
\(888\) 0 0
\(889\) −7.85336 3.58651i −0.263393 0.120288i
\(890\) 2.53483 + 18.8871i 0.0849678 + 0.633095i
\(891\) 0 0
\(892\) 14.6700 + 23.7977i 0.491188 + 0.796805i
\(893\) −1.12341 + 3.82598i −0.0375934 + 0.128031i
\(894\) 0 0
\(895\) −0.556486 + 3.87044i −0.0186013 + 0.129375i
\(896\) −41.2220 + 9.21336i −1.37713 + 0.307797i
\(897\) 0 0
\(898\) −0.244224 0.287255i −0.00814988 0.00958581i
\(899\) −87.8675 12.6334i −2.93054 0.421349i
\(900\) 0 0
\(901\) −2.62118 0.769648i −0.0873242 0.0256407i
\(902\) −0.299713 + 1.95416i −0.00997937 + 0.0650663i
\(903\) 0 0
\(904\) −0.820437 + 29.1267i −0.0272873 + 0.968740i
\(905\) 19.2399 42.1296i 0.639557 1.40043i
\(906\) 0 0
\(907\) −3.20468 + 2.05952i −0.106410 + 0.0683853i −0.592763 0.805377i \(-0.701963\pi\)
0.486354 + 0.873762i \(0.338327\pi\)
\(908\) −56.5125 1.06107i −1.87543 0.0352128i
\(909\) 0 0
\(910\) −10.8738 + 35.7867i −0.360464 + 1.18632i
\(911\) 13.7808 15.9039i 0.456580 0.526921i −0.480050 0.877241i \(-0.659382\pi\)
0.936630 + 0.350320i \(0.113927\pi\)
\(912\) 0 0
\(913\) −5.18388 3.33148i −0.171561 0.110256i
\(914\) 22.5990 34.4495i 0.747510 1.13949i
\(915\) 0 0
\(916\) 19.0417 + 9.13187i 0.629155 + 0.301725i
\(917\) −42.0546 + 19.2057i −1.38877 + 0.634228i
\(918\) 0 0
\(919\) 5.41672 0.178681 0.0893406 0.996001i \(-0.471524\pi\)
0.0893406 + 0.996001i \(0.471524\pi\)
\(920\) 27.7083 + 10.7617i 0.913515 + 0.354802i
\(921\) 0 0
\(922\) 10.6624 6.71175i 0.351148 0.221040i
\(923\) −26.9316 + 12.2992i −0.886464 + 0.404834i
\(924\) 0 0
\(925\) −0.925343 + 0.801814i −0.0304251 + 0.0263635i
\(926\) 8.60323 13.1146i 0.282720 0.430971i
\(927\) 0 0
\(928\) −50.2773 2.36145i −1.65043 0.0775184i
\(929\) 7.06195 8.14992i 0.231695 0.267390i −0.627983 0.778227i \(-0.716119\pi\)
0.859677 + 0.510837i \(0.170665\pi\)
\(930\) 0 0
\(931\) 1.73906 + 12.0954i 0.0569953 + 0.396411i
\(932\) −18.1829 0.341398i −0.595600 0.0111829i
\(933\) 0 0
\(934\) 48.8658 + 0.458707i 1.59894 + 0.0150094i
\(935\) 3.82625 8.37832i 0.125132 0.274000i
\(936\) 0 0
\(937\) 10.1361 + 34.5205i 0.331133 + 1.12773i 0.941891 + 0.335917i \(0.109046\pi\)
−0.610759 + 0.791817i \(0.709136\pi\)
\(938\) 8.17276 53.2870i 0.266850 1.73988i
\(939\) 0 0
\(940\) −9.57198 + 2.61644i −0.312203 + 0.0853388i
\(941\) 38.2159 + 5.49462i 1.24580 + 0.179120i 0.733503 0.679687i \(-0.237884\pi\)
0.512301 + 0.858806i \(0.328793\pi\)
\(942\) 0 0
\(943\) 5.18533 + 2.73323i 0.168858 + 0.0890063i
\(944\) −11.8012 + 35.2397i −0.384098 + 1.14695i
\(945\) 0 0
\(946\) 1.89658 4.05184i 0.0616630 0.131737i
\(947\) 14.4334 49.1557i 0.469023 1.59735i −0.297229 0.954806i \(-0.596062\pi\)
0.766252 0.642540i \(-0.222119\pi\)
\(948\) 0 0
\(949\) 13.7785 4.04572i 0.447268 0.131330i
\(950\) 0.0656054 + 0.488826i 0.00212852 + 0.0158596i
\(951\) 0 0
\(952\) 38.2399 + 6.60194i 1.23936 + 0.213970i
\(953\) 11.8788 + 18.4837i 0.384790 + 0.598746i 0.978578 0.205876i \(-0.0660044\pi\)
−0.593788 + 0.804622i \(0.702368\pi\)
\(954\) 0 0
\(955\) 45.6830 6.56823i 1.47827 0.212543i
\(956\) 9.55341 4.14795i 0.308979 0.134154i
\(957\) 0 0
\(958\) 39.6532 11.2400i 1.28114 0.363148i
\(959\) −19.2502 + 29.9540i −0.621623 + 0.967264i
\(960\) 0 0
\(961\) 44.8832 + 51.7980i 1.44785 + 1.67090i
\(962\) 25.8216 11.5007i 0.832523 0.370796i
\(963\) 0 0
\(964\) 9.06320 28.8514i 0.291906 0.929240i
\(965\) 2.02860i 0.0653031i
\(966\) 0 0
\(967\) 57.4779i 1.84836i 0.381952 + 0.924182i \(0.375252\pi\)
−0.381952 + 0.924182i \(0.624748\pi\)
\(968\) −10.6809 25.2460i −0.343299 0.811438i
\(969\) 0 0
\(970\) −10.0781 22.6277i −0.323588 0.726531i
\(971\) 14.7913 + 17.0701i 0.474675 + 0.547804i 0.941706 0.336437i \(-0.109222\pi\)
−0.467031 + 0.884241i \(0.654676\pi\)
\(972\) 0 0
\(973\) 29.9163 46.5506i 0.959072 1.49234i
\(974\) 7.44693 + 26.2717i 0.238615 + 0.841800i
\(975\) 0 0
\(976\) 3.51937 + 13.8958i 0.112652 + 0.444794i
\(977\) −11.7808 + 1.69383i −0.376903 + 0.0541904i −0.328163 0.944621i \(-0.606430\pi\)
−0.0487397 + 0.998812i \(0.515520\pi\)
\(978\) 0 0
\(979\) 3.80247 + 5.91676i 0.121528 + 0.189101i
\(980\) −23.3519 + 19.4792i −0.745949 + 0.622239i
\(981\) 0 0
\(982\) −15.0169 + 2.01543i −0.479210 + 0.0643148i
\(983\) −36.5695 + 10.7378i −1.16639 + 0.342482i −0.806911 0.590673i \(-0.798862\pi\)
−0.359475 + 0.933155i \(0.617044\pi\)
\(984\) 0 0
\(985\) −5.26283 + 17.9236i −0.167688 + 0.571092i
\(986\) 41.8805 + 19.6033i 1.33375 + 0.624297i
\(987\) 0 0
\(988\) 1.83174 11.2381i 0.0582754 0.357531i
\(989\) −9.51601 9.24027i −0.302592 0.293823i
\(990\) 0 0
\(991\) −11.4588 1.64753i −0.364002 0.0523356i −0.0421126 0.999113i \(-0.513409\pi\)
−0.321889 + 0.946777i \(0.604318\pi\)
\(992\) 40.8719 + 38.9194i 1.29769 + 1.23569i
\(993\) 0 0
\(994\) −47.7978 7.33087i −1.51606 0.232521i
\(995\) 7.33632 + 24.9852i 0.232577 + 0.792085i
\(996\) 0 0
\(997\) 16.0331 35.1076i 0.507773 1.11187i −0.466091 0.884737i \(-0.654338\pi\)
0.973864 0.227132i \(-0.0729348\pi\)
\(998\) −0.121516 + 12.9450i −0.00384651 + 0.409767i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.u.a.199.8 100
3.2 odd 2 92.2.h.a.15.3 100
4.3 odd 2 inner 828.2.u.a.199.4 100
12.11 even 2 92.2.h.a.15.7 yes 100
23.20 odd 22 inner 828.2.u.a.595.4 100
69.20 even 22 92.2.h.a.43.7 yes 100
92.43 even 22 inner 828.2.u.a.595.8 100
276.227 odd 22 92.2.h.a.43.3 yes 100
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.2.h.a.15.3 100 3.2 odd 2
92.2.h.a.15.7 yes 100 12.11 even 2
92.2.h.a.43.3 yes 100 276.227 odd 22
92.2.h.a.43.7 yes 100 69.20 even 22
828.2.u.a.199.4 100 4.3 odd 2 inner
828.2.u.a.199.8 100 1.1 even 1 trivial
828.2.u.a.595.4 100 23.20 odd 22 inner
828.2.u.a.595.8 100 92.43 even 22 inner