Properties

Label 828.2.e.b.91.6
Level $828$
Weight $2$
Character 828.91
Analytic conductor $6.612$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [828,2,Mod(91,828)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(828, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("828.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{3} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 91.6
Root \(1.33454 - 0.467979i\) of defining polynomial
Character \(\chi\) \(=\) 828.91
Dual form 828.2.e.b.91.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.33454 + 0.467979i) q^{2} +(1.56199 + 1.24907i) q^{4} +(1.50000 + 2.39792i) q^{8} +4.88325 q^{13} +(0.879635 + 3.90208i) q^{16} +4.79583i q^{23} +5.00000 q^{25} +(6.51690 + 2.28526i) q^{26} -6.70287 q^{29} +0.309728i q^{31} +(-0.652183 + 5.61913i) q^{32} +3.97345 q^{41} +(-2.24435 + 6.40023i) q^{46} -6.55848i q^{47} -7.00000 q^{49} +(6.67270 + 2.33989i) q^{50} +(7.62760 + 6.09954i) q^{52} +(-8.94525 - 3.13680i) q^{58} -9.59166i q^{59} +(-0.144946 + 0.413344i) q^{62} +(-3.50000 + 7.19375i) q^{64} -14.0461i q^{71} -7.61268 q^{73} +(5.30272 + 1.85949i) q^{82} +(-5.99034 + 7.49105i) q^{92} +(3.06923 - 8.75255i) q^{94} +(-9.34178 - 3.27585i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{8} + 30 q^{25} + 27 q^{26} - 42 q^{49} + 3 q^{52} - 15 q^{58} - 45 q^{62} - 21 q^{64} + 33 q^{82} - 39 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.33454 + 0.467979i 0.943662 + 0.330911i
\(3\) 0 0
\(4\) 1.56199 + 1.24907i 0.780996 + 0.624536i
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.50000 + 2.39792i 0.530330 + 0.847791i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 4.88325 1.35437 0.677185 0.735812i \(-0.263199\pi\)
0.677185 + 0.735812i \(0.263199\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.879635 + 3.90208i 0.219909 + 0.975520i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583i 1.00000i
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 6.51690 + 2.28526i 1.27807 + 0.448176i
\(27\) 0 0
\(28\) 0 0
\(29\) −6.70287 −1.24469 −0.622346 0.782742i \(-0.713820\pi\)
−0.622346 + 0.782742i \(0.713820\pi\)
\(30\) 0 0
\(31\) 0.309728i 0.0556288i 0.999613 + 0.0278144i \(0.00885474\pi\)
−0.999613 + 0.0278144i \(0.991145\pi\)
\(32\) −0.652183 + 5.61913i −0.115291 + 0.993332i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.97345 0.620548 0.310274 0.950647i \(-0.399579\pi\)
0.310274 + 0.950647i \(0.399579\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −2.24435 + 6.40023i −0.330911 + 0.943662i
\(47\) 6.55848i 0.956652i −0.878182 0.478326i \(-0.841244\pi\)
0.878182 0.478326i \(-0.158756\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) 6.67270 + 2.33989i 0.943662 + 0.330911i
\(51\) 0 0
\(52\) 7.62760 + 6.09954i 1.05776 + 0.845854i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −8.94525 3.13680i −1.17457 0.411882i
\(59\) 9.59166i 1.24873i −0.781133 0.624364i \(-0.785358\pi\)
0.781133 0.624364i \(-0.214642\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −0.144946 + 0.413344i −0.0184082 + 0.0524948i
\(63\) 0 0
\(64\) −3.50000 + 7.19375i −0.437500 + 0.899218i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 14.0461i 1.66697i −0.552542 0.833485i \(-0.686342\pi\)
0.552542 0.833485i \(-0.313658\pi\)
\(72\) 0 0
\(73\) −7.61268 −0.890997 −0.445498 0.895283i \(-0.646973\pi\)
−0.445498 + 0.895283i \(0.646973\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 5.30272 + 1.85949i 0.585588 + 0.205346i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5.99034 + 7.49105i −0.624536 + 0.780996i
\(93\) 0 0
\(94\) 3.06923 8.75255i 0.316567 0.902756i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −9.34178 3.27585i −0.943662 0.330911i
\(99\) 0 0
\(100\) 7.80996 + 6.24536i 0.780996 + 0.624536i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 7.32488 + 11.7096i 0.718264 + 1.14822i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −10.4698 8.37237i −0.972099 0.777355i
\(117\) 0 0
\(118\) 4.48870 12.8005i 0.413218 1.17838i
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) −0.386873 + 0.483792i −0.0347422 + 0.0434458i
\(125\) 0 0
\(126\) 0 0
\(127\) 20.9143i 1.85585i −0.372769 0.927924i \(-0.621592\pi\)
0.372769 0.927924i \(-0.378408\pi\)
\(128\) −8.03741 + 7.96241i −0.710413 + 0.703785i
\(129\) 0 0
\(130\) 0 0
\(131\) 2.81465i 0.245917i −0.992412 0.122958i \(-0.960762\pi\)
0.992412 0.122958i \(-0.0392382\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 10.9218i 0.926372i −0.886261 0.463186i \(-0.846706\pi\)
0.886261 0.463186i \(-0.153294\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 6.57330 18.7451i 0.551619 1.57306i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) −10.1594 3.56257i −0.840800 0.294841i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 20.2949i 1.65157i 0.563982 + 0.825787i \(0.309269\pi\)
−0.563982 + 0.825787i \(0.690731\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 9.68285i 0.758420i −0.925311 0.379210i \(-0.876196\pi\)
0.925311 0.379210i \(-0.123804\pi\)
\(164\) 6.20649 + 4.96312i 0.484645 + 0.387555i
\(165\) 0 0
\(166\) 0 0
\(167\) 9.59166i 0.742225i 0.928588 + 0.371113i \(0.121024\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 0 0
\(169\) 10.8462 0.834321
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.7900i 1.32968i −0.746984 0.664842i \(-0.768499\pi\)
0.746984 0.664842i \(-0.231501\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.5000 + 7.19375i −0.847791 + 0.530330i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 8.19201 10.2443i 0.597464 0.747141i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) −27.1457 −1.95399 −0.976995 0.213262i \(-0.931591\pi\)
−0.976995 + 0.213262i \(0.931591\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −10.9339 8.74351i −0.780996 0.624536i
\(197\) −28.0555 −1.99887 −0.999436 0.0335834i \(-0.989308\pi\)
−0.999436 + 0.0335834i \(0.989308\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 7.50000 + 11.9896i 0.530330 + 0.847791i
\(201\) 0 0
\(202\) −8.00724 2.80787i −0.563387 0.197561i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 4.29548 + 19.0549i 0.297838 + 1.32122i
\(209\) 0 0
\(210\) 0 0
\(211\) 28.7750i 1.98095i −0.137686 0.990476i \(-0.543966\pi\)
0.137686 0.990476i \(-0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 28.7750i 1.92692i 0.267860 + 0.963458i \(0.413684\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −10.0543 16.0729i −0.660098 1.05524i
\(233\) 9.43229 0.617930 0.308965 0.951073i \(-0.400017\pi\)
0.308965 + 0.951073i \(0.400017\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 11.9807 14.9821i 0.779876 0.975251i
\(237\) 0 0
\(238\) 0 0
\(239\) 27.1631i 1.75703i 0.477711 + 0.878517i \(0.341467\pi\)
−0.477711 + 0.878517i \(0.658533\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −14.6799 5.14777i −0.943662 0.330911i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −0.742702 + 0.464592i −0.0471616 + 0.0295016i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 9.78747 27.9110i 0.614121 1.75129i
\(255\) 0 0
\(256\) −14.4525 + 6.86482i −0.903280 + 0.429051i
\(257\) 25.3261 1.57980 0.789899 0.613237i \(-0.210133\pi\)
0.789899 + 0.613237i \(0.210133\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 1.31720 3.75626i 0.0813766 0.232062i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −1.24402 −0.0758493 −0.0379247 0.999281i \(-0.512075\pi\)
−0.0379247 + 0.999281i \(0.512075\pi\)
\(270\) 0 0
\(271\) 28.7750i 1.74796i 0.485965 + 0.873978i \(0.338468\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 29.8751 1.79502 0.897511 0.440992i \(-0.145373\pi\)
0.897511 + 0.440992i \(0.145373\pi\)
\(278\) 5.11115 14.5755i 0.306547 0.874182i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 17.5446 21.9400i 1.04108 1.30190i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −11.8909 9.50879i −0.695865 0.556460i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 23.4193i 1.35437i
\(300\) 0 0
\(301\) 0 0
\(302\) −9.49758 + 27.0843i −0.546524 + 1.55853i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.7750i 1.64228i −0.570730 0.821138i \(-0.693340\pi\)
0.570730 0.821138i \(-0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 34.6508i 1.96486i 0.186621 + 0.982432i \(0.440246\pi\)
−0.186621 + 0.982432i \(0.559754\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 24.4163 1.35437
\(326\) 4.53137 12.9221i 0.250969 0.715692i
\(327\) 0 0
\(328\) 5.96017 + 9.52799i 0.329095 + 0.526095i
\(329\) 0 0
\(330\) 0 0
\(331\) 31.5264i 1.73285i 0.499310 + 0.866423i \(0.333587\pi\)
−0.499310 + 0.866423i \(0.666413\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −4.48870 + 12.8005i −0.245610 + 0.700410i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 14.4746 + 5.07578i 0.787317 + 0.276086i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 24.0217 + 8.42362i 1.29142 + 0.452857i
\(347\) 9.59166i 0.514907i −0.966291 0.257454i \(-0.917117\pi\)
0.966291 0.257454i \(-0.0828835\pi\)
\(348\) 0 0
\(349\) 10.3421 0.553600 0.276800 0.960928i \(-0.410726\pi\)
0.276800 + 0.960928i \(0.410726\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 30.7849 1.63852 0.819258 0.573425i \(-0.194386\pi\)
0.819258 + 0.573425i \(0.194386\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 8.32533 23.7414i 0.440007 1.25477i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −18.7137 + 4.21858i −0.975520 + 0.219909i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 15.7267 9.83772i 0.811041 0.507341i
\(377\) −32.7318 −1.68577
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −36.2270 12.7036i −1.84391 0.646597i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −10.5000 16.7854i −0.530330 0.847791i
\(393\) 0 0
\(394\) −37.4412 13.1294i −1.88626 0.661449i
\(395\) 0 0
\(396\) 0 0
\(397\) −39.6416 −1.98956 −0.994778 0.102061i \(-0.967456\pi\)
−0.994778 + 0.102061i \(0.967456\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 4.39818 + 19.5104i 0.219909 + 0.975520i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 1.51248i 0.0753420i
\(404\) −9.37195 7.49444i −0.466272 0.372862i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 36.9122 1.82519 0.912595 0.408864i \(-0.134075\pi\)
0.912595 + 0.408864i \(0.134075\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −3.18478 + 27.4397i −0.156147 + 1.34534i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 13.4661 38.4014i 0.655519 1.86935i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 41.5190i 1.98159i 0.135364 + 0.990796i \(0.456780\pi\)
−0.135364 + 0.990796i \(0.543220\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 38.3946i 1.82418i 0.409988 + 0.912091i \(0.365533\pi\)
−0.409988 + 0.912091i \(0.634467\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −13.4661 + 38.4014i −0.637638 + 1.81836i
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 36.0024 1.67680 0.838399 0.545056i \(-0.183492\pi\)
0.838399 + 0.545056i \(0.183492\pi\)
\(462\) 0 0
\(463\) 28.7750i 1.33729i 0.743583 + 0.668644i \(0.233125\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) −5.89608 26.1551i −0.273719 1.21422i
\(465\) 0 0
\(466\) 12.5878 + 4.41411i 0.583117 + 0.204480i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 23.0000 14.3875i 1.05866 0.662238i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) −12.7118 + 36.2502i −0.581422 + 1.65805i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −17.1819 13.7398i −0.780996 0.624536i
\(485\) 0 0
\(486\) 0 0
\(487\) 40.8995i 1.85333i −0.375884 0.926667i \(-0.622661\pi\)
0.375884 0.926667i \(-0.377339\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.67301i 0.210890i 0.994425 + 0.105445i \(0.0336267\pi\)
−0.994425 + 0.105445i \(0.966373\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −1.20858 + 0.272448i −0.0542670 + 0.0122333i
\(497\) 0 0
\(498\) 0 0
\(499\) 11.5412i 0.516656i 0.966057 + 0.258328i \(0.0831715\pi\)
−0.966057 + 0.258328i \(0.916828\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 26.1235 32.6680i 1.15904 1.44941i
\(509\) 41.4612 1.83774 0.918869 0.394564i \(-0.129104\pi\)
0.918869 + 0.394564i \(0.129104\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.5000 + 2.39792i −0.994369 + 0.105974i
\(513\) 0 0
\(514\) 33.7987 + 11.8521i 1.49079 + 0.522772i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 3.51570 4.39645i 0.153584 0.192060i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.4033 0.840452
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −1.66020 0.582176i −0.0715761 0.0250994i
\(539\) 0 0
\(540\) 0 0
\(541\) −0.575595 −0.0247468 −0.0123734 0.999923i \(-0.503939\pi\)
−0.0123734 + 0.999923i \(0.503939\pi\)
\(542\) −13.4661 + 38.4014i −0.578418 + 1.64948i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 9.06340i 0.387523i 0.981049 + 0.193761i \(0.0620688\pi\)
−0.981049 + 0.193761i \(0.937931\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 39.8695 + 13.9809i 1.69389 + 0.593993i
\(555\) 0 0
\(556\) 13.6421 17.0597i 0.578553 0.723493i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 33.6815 21.0692i 1.41324 0.884044i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 23.9792i 1.00000i
\(576\) 0 0
\(577\) −32.6045 −1.35734 −0.678672 0.734441i \(-0.737444\pi\)
−0.678672 + 0.734441i \(0.737444\pi\)
\(578\) 22.6872 + 7.95564i 0.943662 + 0.330911i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −11.4190 18.2546i −0.472522 0.755379i
\(585\) 0 0
\(586\) 0 0
\(587\) 25.2776i 1.04332i −0.853154 0.521660i \(-0.825313\pi\)
0.853154 0.521660i \(-0.174687\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −10.9597 + 31.2539i −0.448176 + 1.27807i
\(599\) 9.59166i 0.391905i 0.980613 + 0.195952i \(0.0627798\pi\)
−0.980613 + 0.195952i \(0.937220\pi\)
\(600\) 0 0
\(601\) 42.3711 1.72835 0.864176 0.503190i \(-0.167841\pi\)
0.864176 + 0.503190i \(0.167841\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −25.3498 + 31.7004i −1.03147 + 1.28987i
\(605\) 0 0
\(606\) 0 0
\(607\) 28.7750i 1.16794i 0.811775 + 0.583970i \(0.198502\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 32.0267i 1.29566i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 13.4661 38.4014i 0.543447 1.54975i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −16.2158 + 46.2428i −0.650195 + 1.85417i
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −40.0362 14.0394i −1.59004 0.557574i
\(635\) 0 0
\(636\) 0 0
\(637\) −34.1828 −1.35437
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 47.7677i 1.87794i −0.343996 0.938971i \(-0.611781\pi\)
0.343996 0.938971i \(-0.388219\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 32.5845 + 11.4263i 1.27807 + 0.448176i
\(651\) 0 0
\(652\) 12.0946 15.1245i 0.473661 0.592322i
\(653\) −12.1617 −0.475925 −0.237962 0.971274i \(-0.576480\pi\)
−0.237962 + 0.971274i \(0.576480\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 3.49518 + 15.5047i 0.136464 + 0.605357i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) −14.7537 + 42.0732i −0.573418 + 1.63522i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 32.1458i 1.24469i
\(668\) −11.9807 + 14.9821i −0.463547 + 0.579675i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −21.6868 −0.835966 −0.417983 0.908455i \(-0.637263\pi\)
−0.417983 + 0.908455i \(0.637263\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 16.9416 + 13.5477i 0.651601 + 0.521064i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.0239i 1.68453i −0.539066 0.842263i \(-0.681223\pi\)
0.539066 0.842263i \(-0.318777\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.7750i 1.09465i −0.836919 0.547326i \(-0.815646\pi\)
0.836919 0.547326i \(-0.184354\pi\)
\(692\) 28.1158 + 22.4833i 1.06880 + 0.854687i
\(693\) 0 0
\(694\) 4.48870 12.8005i 0.170389 0.485899i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 13.8019 + 4.83989i 0.522411 + 0.183192i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 41.0837 + 14.4067i 1.54621 + 0.542203i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.48540 −0.0556288
\(714\) 0 0
\(715\) 0 0
\(716\) 22.2210 27.7878i 0.830436 1.03848i
\(717\) 0 0
\(718\) 0 0
\(719\) 47.9583i 1.78854i 0.447524 + 0.894272i \(0.352306\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −25.3563 8.89160i −0.943662 0.330911i
\(723\) 0 0
\(724\) 0 0
\(725\) −33.5144 −1.24469
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −26.9484 3.12776i −0.993332 0.115291i
\(737\) 0 0
\(738\) 0 0
\(739\) 52.1310i 1.91767i −0.283964 0.958835i \(-0.591650\pi\)
0.283964 0.958835i \(-0.408350\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 25.5917 5.76907i 0.933234 0.210376i
\(753\) 0 0
\(754\) −43.6819 15.3178i −1.59080 0.557841i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −33.2730 −1.20614 −0.603072 0.797687i \(-0.706057\pi\)
−0.603072 + 0.797687i \(0.706057\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 46.8385i 1.69124i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −42.4013 33.9069i −1.52606 1.22034i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 1.54864i 0.0556288i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −6.15745 27.3146i −0.219909 0.975520i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) −43.8225 35.0434i −1.56111 1.24837i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −52.9033 18.5514i −1.87747 0.658366i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −3.26092 + 28.0957i −0.115291 + 0.993332i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) −0.707809 + 2.01846i −0.0249315 + 0.0710974i
\(807\) 0 0
\(808\) −9.00000 14.3875i −0.316619 0.506150i
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 29.6680i 1.04178i −0.853622 0.520892i \(-0.825599\pi\)
0.853622 0.520892i \(-0.174401\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 49.2608 + 17.2741i 1.72236 + 0.603976i
\(819\) 0 0
\(820\) 0 0
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) 22.1533i 0.772214i −0.922454 0.386107i \(-0.873820\pi\)
0.922454 0.386107i \(-0.126180\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −17.0914 + 35.1289i −0.592537 + 1.21788i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 15.9285 0.549258
\(842\) 0 0
\(843\) 0 0
\(844\) 35.9420 44.9463i 1.23718 1.54712i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −44.1907 −1.50952 −0.754762 0.655998i \(-0.772248\pi\)
−0.754762 + 0.655998i \(0.772248\pi\)
\(858\) 0 0
\(859\) 50.8921i 1.73642i −0.496201 0.868208i \(-0.665272\pi\)
0.496201 0.868208i \(-0.334728\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 12.1878i 0.414877i 0.978248 + 0.207438i \(0.0665126\pi\)
−0.978248 + 0.207438i \(0.933487\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) −19.4300 + 55.4087i −0.655731 + 1.86995i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 28.7750i 0.968355i −0.874970 0.484178i \(-0.839119\pi\)
0.874970 0.484178i \(-0.160881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −17.9679 + 51.2391i −0.603642 + 1.72141i
\(887\) 29.0215i 0.974445i −0.873278 0.487223i \(-0.838010\pi\)
0.873278 0.487223i \(-0.161990\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) −35.9420 + 44.9463i −1.20343 + 1.50491i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −24.0217 8.42362i −0.801615 0.281100i
\(899\) 2.07607i 0.0692407i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 48.0466 + 16.8484i 1.58233 + 0.554871i
\(923\) 68.5909i 2.25770i
\(924\) 0 0
\(925\) 0 0
\(926\) −13.4661 + 38.4014i −0.442523 + 1.26195i
\(927\) 0 0
\(928\) 4.37150 37.6643i 0.143502 1.23639i
\(929\) −60.0845 −1.97131 −0.985653 0.168782i \(-0.946017\pi\)
−0.985653 + 0.168782i \(0.946017\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 14.7332 + 11.7816i 0.482601 + 0.385920i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 19.0560i 0.620548i
\(944\) 37.4275 8.43717i 1.21816 0.274606i
\(945\) 0 0
\(946\) 0 0
\(947\) 36.5362i 1.18727i −0.804735 0.593634i \(-0.797693\pi\)
0.804735 0.593634i \(-0.202307\pi\)
\(948\) 0 0
\(949\) −37.1746 −1.20674
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −33.9287 + 42.4285i −1.09733 + 1.37224i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 30.9041 0.996905
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 62.1236i 1.99776i −0.0473194 0.998880i \(-0.515068\pi\)
0.0473194 0.998880i \(-0.484932\pi\)
\(968\) −16.5000 26.3771i −0.530330 0.847791i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 19.1401 54.5820i 0.613288 1.74892i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −2.18687 + 6.23632i −0.0697859 + 0.199009i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 28.7750i 0.914068i 0.889449 + 0.457034i \(0.151088\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) −1.74040 0.201999i −0.0552578 0.00641349i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) −5.40105 + 15.4022i −0.170967 + 0.487549i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.e.b.91.6 6
3.2 odd 2 92.2.b.b.91.1 6
4.3 odd 2 inner 828.2.e.b.91.5 6
12.11 even 2 92.2.b.b.91.2 yes 6
23.22 odd 2 CM 828.2.e.b.91.6 6
24.5 odd 2 1472.2.c.c.1471.6 6
24.11 even 2 1472.2.c.c.1471.1 6
69.68 even 2 92.2.b.b.91.1 6
92.91 even 2 inner 828.2.e.b.91.5 6
276.275 odd 2 92.2.b.b.91.2 yes 6
552.275 odd 2 1472.2.c.c.1471.1 6
552.413 even 2 1472.2.c.c.1471.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.2.b.b.91.1 6 3.2 odd 2
92.2.b.b.91.1 6 69.68 even 2
92.2.b.b.91.2 yes 6 12.11 even 2
92.2.b.b.91.2 yes 6 276.275 odd 2
828.2.e.b.91.5 6 4.3 odd 2 inner
828.2.e.b.91.5 6 92.91 even 2 inner
828.2.e.b.91.6 6 1.1 even 1 trivial
828.2.e.b.91.6 6 23.22 odd 2 CM
1472.2.c.c.1471.1 6 24.11 even 2
1472.2.c.c.1471.1 6 552.275 odd 2
1472.2.c.c.1471.6 6 24.5 odd 2
1472.2.c.c.1471.6 6 552.413 even 2