Properties

Label 828.2.e.b.91.2
Level $828$
Weight $2$
Character 828.91
Analytic conductor $6.612$
Analytic rank $0$
Dimension $6$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [828,2,Mod(91,828)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(828, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("828.91");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.8869743.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{3} + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 92)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 91.2
Root \(-1.07255 - 0.921756i\) of defining polynomial
Character \(\chi\) \(=\) 828.91
Dual form 828.2.e.b.91.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.07255 + 0.921756i) q^{2} +(0.300733 - 1.97726i) q^{4} +(1.50000 + 2.39792i) q^{8} -7.03677 q^{13} +(-3.81912 - 1.18925i) q^{16} +4.79583i q^{23} +5.00000 q^{25} +(7.54730 - 6.48619i) q^{26} -3.94950 q^{29} +9.48506i q^{31} +(5.19240 - 2.24476i) q^{32} -12.5299 q^{41} +(-4.42059 - 5.14378i) q^{46} +13.7071i q^{47} -7.00000 q^{49} +(-5.36276 + 4.60878i) q^{50} +(-2.11619 + 13.9135i) q^{52} +(4.23604 - 3.64047i) q^{58} -9.59166i q^{59} +(-8.74290 - 10.1732i) q^{62} +(-3.50000 + 7.19375i) q^{64} -1.04102i q^{71} -9.44264 q^{73} +(13.4390 - 11.5495i) q^{82} +(9.48261 + 1.44226i) q^{92} +(-12.6346 - 14.7015i) q^{94} +(7.50786 - 6.45229i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 9 q^{8} + 30 q^{25} + 27 q^{26} - 42 q^{49} + 3 q^{52} - 15 q^{58} - 45 q^{62} - 21 q^{64} + 33 q^{82} - 39 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.07255 + 0.921756i −0.758408 + 0.651780i
\(3\) 0 0
\(4\) 0.300733 1.97726i 0.150366 0.988630i
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) 1.50000 + 2.39792i 0.530330 + 0.847791i
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) −7.03677 −1.95165 −0.975825 0.218554i \(-0.929866\pi\)
−0.975825 + 0.218554i \(0.929866\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.81912 1.18925i −0.954780 0.297314i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.79583i 1.00000i
\(24\) 0 0
\(25\) 5.00000 1.00000
\(26\) 7.54730 6.48619i 1.48015 1.27205i
\(27\) 0 0
\(28\) 0 0
\(29\) −3.94950 −0.733404 −0.366702 0.930339i \(-0.619513\pi\)
−0.366702 + 0.930339i \(0.619513\pi\)
\(30\) 0 0
\(31\) 9.48506i 1.70357i 0.523895 + 0.851783i \(0.324479\pi\)
−0.523895 + 0.851783i \(0.675521\pi\)
\(32\) 5.19240 2.24476i 0.917896 0.396821i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −12.5299 −1.95684 −0.978422 0.206618i \(-0.933754\pi\)
−0.978422 + 0.206618i \(0.933754\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) −4.42059 5.14378i −0.651780 0.758408i
\(47\) 13.7071i 1.99938i 0.0248485 + 0.999691i \(0.492090\pi\)
−0.0248485 + 0.999691i \(0.507910\pi\)
\(48\) 0 0
\(49\) −7.00000 −1.00000
\(50\) −5.36276 + 4.60878i −0.758408 + 0.651780i
\(51\) 0 0
\(52\) −2.11619 + 13.9135i −0.293463 + 1.92946i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 4.23604 3.64047i 0.556219 0.478018i
\(59\) 9.59166i 1.24873i −0.781133 0.624364i \(-0.785358\pi\)
0.781133 0.624364i \(-0.214642\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) −8.74290 10.1732i −1.11035 1.29200i
\(63\) 0 0
\(64\) −3.50000 + 7.19375i −0.437500 + 0.899218i
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.04102i 0.123546i −0.998090 0.0617729i \(-0.980325\pi\)
0.998090 0.0617729i \(-0.0196755\pi\)
\(72\) 0 0
\(73\) −9.44264 −1.10518 −0.552588 0.833454i \(-0.686360\pi\)
−0.552588 + 0.833454i \(0.686360\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 13.4390 11.5495i 1.48409 1.27543i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 9.48261 + 1.44226i 0.988630 + 0.150366i
\(93\) 0 0
\(94\) −12.6346 14.7015i −1.30316 1.51635i
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 7.50786 6.45229i 0.758408 0.651780i
\(99\) 0 0
\(100\) 1.50366 9.88630i 0.150366 0.988630i
\(101\) −6.00000 −0.597022 −0.298511 0.954406i \(-0.596490\pi\)
−0.298511 + 0.954406i \(0.596490\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −10.5552 16.8736i −1.03502 1.65459i
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.18774 + 7.80919i −0.110279 + 0.725065i
\(117\) 0 0
\(118\) 8.84117 + 10.2876i 0.813896 + 0.947046i
\(119\) 0 0
\(120\) 0 0
\(121\) −11.0000 −1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 18.7544 + 2.85247i 1.68420 + 0.256159i
\(125\) 0 0
\(126\) 0 0
\(127\) 3.18100i 0.282268i 0.989990 + 0.141134i \(0.0450749\pi\)
−0.989990 + 0.141134i \(0.954925\pi\)
\(128\) −2.87695 10.9418i −0.254289 0.967128i
\(129\) 0 0
\(130\) 0 0
\(131\) 21.0811i 1.84187i 0.389721 + 0.920933i \(0.372572\pi\)
−0.389721 + 0.920933i \(0.627428\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) 12.6371i 1.07186i −0.844261 0.535932i \(-0.819960\pi\)
0.844261 0.535932i \(-0.180040\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.959562 + 1.11654i 0.0805247 + 0.0936982i
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 10.1277 8.70380i 0.838175 0.720332i
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(150\) 0 0
\(151\) 22.1511i 1.80263i −0.433162 0.901316i \(-0.642602\pi\)
0.433162 0.901316i \(-0.357398\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 25.3031i 1.98189i 0.134250 + 0.990947i \(0.457137\pi\)
−0.134250 + 0.990947i \(0.542863\pi\)
\(164\) −3.76815 + 24.7749i −0.294243 + 1.93459i
\(165\) 0 0
\(166\) 0 0
\(167\) 9.59166i 0.742225i 0.928588 + 0.371113i \(0.121024\pi\)
−0.928588 + 0.371113i \(0.878976\pi\)
\(168\) 0 0
\(169\) 36.5162 2.80894
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18.0000 1.36851 0.684257 0.729241i \(-0.260127\pi\)
0.684257 + 0.729241i \(0.260127\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 8.41506i 0.628971i −0.949262 0.314486i \(-0.898168\pi\)
0.949262 0.314486i \(-0.101832\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −11.5000 + 7.19375i −0.847791 + 0.530330i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 27.1025 + 4.12217i 1.97665 + 0.300640i
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 18.7045 1.34638 0.673188 0.739471i \(-0.264924\pi\)
0.673188 + 0.739471i \(0.264924\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −2.10513 + 13.8408i −0.150366 + 0.988630i
\(197\) 13.2113 0.941268 0.470634 0.882329i \(-0.344025\pi\)
0.470634 + 0.882329i \(0.344025\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 7.50000 + 11.9896i 0.530330 + 0.847791i
\(201\) 0 0
\(202\) 6.43531 5.53053i 0.452787 0.389127i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 26.8743 + 8.36851i 1.86340 + 0.580252i
\(209\) 0 0
\(210\) 0 0
\(211\) 28.7750i 1.98095i −0.137686 0.990476i \(-0.543966\pi\)
0.137686 0.990476i \(-0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 28.7750i 1.92692i 0.267860 + 0.963458i \(0.413684\pi\)
−0.267860 + 0.963458i \(0.586316\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5.92425 9.47057i −0.388946 0.621773i
\(233\) 20.4289 1.33834 0.669171 0.743108i \(-0.266649\pi\)
0.669171 + 0.743108i \(0.266649\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −18.9652 2.88453i −1.23453 0.187767i
\(237\) 0 0
\(238\) 0 0
\(239\) 26.3731i 1.70594i −0.521963 0.852968i \(-0.674800\pi\)
0.521963 0.852968i \(-0.325200\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) 11.7981 10.1393i 0.758408 0.651780i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) −22.7444 + 14.2276i −1.44427 + 0.903452i
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) −2.93211 3.41179i −0.183977 0.214075i
\(255\) 0 0
\(256\) 13.1713 + 9.08381i 0.823209 + 0.567738i
\(257\) −29.6907 −1.85206 −0.926028 0.377454i \(-0.876800\pi\)
−0.926028 + 0.377454i \(0.876800\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −19.4316 22.6106i −1.20049 1.39689i
\(263\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 29.0093 1.76873 0.884365 0.466797i \(-0.154592\pi\)
0.884365 + 0.466797i \(0.154592\pi\)
\(270\) 0 0
\(271\) 28.7750i 1.74796i 0.485965 + 0.873978i \(0.338468\pi\)
−0.485965 + 0.873978i \(0.661532\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −2.22505 −0.133690 −0.0668451 0.997763i \(-0.521293\pi\)
−0.0668451 + 0.997763i \(0.521293\pi\)
\(278\) 11.6483 + 13.5539i 0.698619 + 0.812910i
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) −2.05836 0.313068i −0.122141 0.0185771i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) −2.83971 + 18.6706i −0.166181 + 1.09261i
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 33.7472i 1.95165i
\(300\) 0 0
\(301\) 0 0
\(302\) 20.4179 + 23.7582i 1.17492 + 1.36713i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 28.7750i 1.64228i −0.570730 0.821138i \(-0.693340\pi\)
0.570730 0.821138i \(-0.306660\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 11.6250i 0.659196i −0.944121 0.329598i \(-0.893087\pi\)
0.944121 0.329598i \(-0.106913\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −35.1839 −1.95165
\(326\) −23.3233 27.1389i −1.29176 1.50309i
\(327\) 0 0
\(328\) −18.7949 30.0457i −1.03777 1.65899i
\(329\) 0 0
\(330\) 0 0
\(331\) 0.0289779i 0.00159277i −1.00000 0.000796384i \(-0.999747\pi\)
1.00000 0.000796384i \(-0.000253497\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) −8.84117 10.2876i −0.483767 0.562910i
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) −39.1655 + 33.6590i −2.13032 + 1.83081i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −19.3059 + 16.5916i −1.03789 + 0.891970i
\(347\) 9.59166i 0.514907i −0.966291 0.257454i \(-0.917117\pi\)
0.966291 0.257454i \(-0.0828835\pi\)
\(348\) 0 0
\(349\) 25.9220 1.38758 0.693788 0.720180i \(-0.255941\pi\)
0.693788 + 0.720180i \(0.255941\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.26809 0.173943 0.0869714 0.996211i \(-0.472281\pi\)
0.0869714 + 0.996211i \(0.472281\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 7.75663 + 9.02559i 0.409951 + 0.477017i
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −19.0000 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 5.70346 18.3159i 0.297314 0.954780i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −32.8684 + 20.5606i −1.69506 + 1.06033i
\(377\) 27.7917 1.43135
\(378\) 0 0
\(379\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −20.0615 + 17.2409i −1.02110 + 0.877541i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −10.5000 16.7854i −0.530330 0.847791i
\(393\) 0 0
\(394\) −14.1698 + 12.1776i −0.713865 + 0.613499i
\(395\) 0 0
\(396\) 0 0
\(397\) 16.2986 0.818003 0.409002 0.912534i \(-0.365877\pi\)
0.409002 + 0.912534i \(0.365877\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −19.0956 5.94627i −0.954780 0.297314i
\(401\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(402\) 0 0
\(403\) 66.7442i 3.32476i
\(404\) −1.80440 + 11.8636i −0.0897721 + 0.590234i
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −32.7780 −1.62077 −0.810384 0.585899i \(-0.800742\pi\)
−0.810384 + 0.585899i \(0.800742\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) −36.5378 + 15.7959i −1.79141 + 0.774456i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 26.5235 + 30.8627i 1.29114 + 1.50237i
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 15.8471i 0.756339i −0.925736 0.378170i \(-0.876554\pi\)
0.925736 0.378170i \(-0.123446\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.25100i 0.201971i −0.994888 0.100985i \(-0.967800\pi\)
0.994888 0.100985i \(-0.0321996\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −26.5235 30.8627i −1.25592 1.46139i
\(447\) 0 0
\(448\) 0 0
\(449\) −18.0000 −0.849473 −0.424736 0.905317i \(-0.639633\pi\)
−0.424736 + 0.905317i \(0.639633\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −38.2711 −1.78246 −0.891232 0.453547i \(-0.850158\pi\)
−0.891232 + 0.453547i \(0.850158\pi\)
\(462\) 0 0
\(463\) 28.7750i 1.33729i 0.743583 + 0.668644i \(0.233125\pi\)
−0.743583 + 0.668644i \(0.766875\pi\)
\(464\) 15.0836 + 4.69696i 0.700239 + 0.218051i
\(465\) 0 0
\(466\) −21.9111 + 18.8305i −1.01501 + 0.872304i
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 23.0000 14.3875i 1.05866 0.662238i
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 24.3096 + 28.2865i 1.11189 + 1.29380i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) −3.30806 + 21.7499i −0.150366 + 0.988630i
\(485\) 0 0
\(486\) 0 0
\(487\) 34.8172i 1.57772i 0.614575 + 0.788858i \(0.289328\pi\)
−0.614575 + 0.788858i \(0.710672\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.8292i 1.61695i 0.588531 + 0.808475i \(0.299707\pi\)
−0.588531 + 0.808475i \(0.700293\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 11.2801 36.2246i 0.506493 1.62653i
\(497\) 0 0
\(498\) 0 0
\(499\) 31.6072i 1.41493i 0.706747 + 0.707466i \(0.250162\pi\)
−0.706747 + 0.707466i \(0.749838\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 6.28967 + 0.956632i 0.279059 + 0.0424437i
\(509\) −5.31232 −0.235465 −0.117732 0.993045i \(-0.537562\pi\)
−0.117732 + 0.993045i \(0.537562\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −22.5000 + 2.39792i −0.994369 + 0.105974i
\(513\) 0 0
\(514\) 31.8448 27.3676i 1.40462 1.20713i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 41.6829 + 6.33978i 1.82092 + 0.276955i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 88.1701 3.81907
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −31.1140 + 26.7395i −1.34142 + 1.15282i
\(539\) 0 0
\(540\) 0 0
\(541\) −39.9956 −1.71954 −0.859772 0.510677i \(-0.829395\pi\)
−0.859772 + 0.510677i \(0.829395\pi\)
\(542\) −26.5235 30.8627i −1.13928 1.32566i
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 44.2733i 1.89299i −0.322722 0.946494i \(-0.604598\pi\)
0.322722 0.946494i \(-0.395402\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 2.38648 2.05095i 0.101392 0.0871366i
\(555\) 0 0
\(556\) −24.9868 3.80038i −1.05968 0.161172i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 2.49627 1.56152i 0.104741 0.0655201i
\(569\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 23.9792i 1.00000i
\(576\) 0 0
\(577\) −14.2544 −0.593417 −0.296708 0.954968i \(-0.595889\pi\)
−0.296708 + 0.954968i \(0.595889\pi\)
\(578\) −18.2334 + 15.6698i −0.758408 + 0.651780i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) −14.1640 22.6426i −0.586109 0.936959i
\(585\) 0 0
\(586\) 0 0
\(587\) 23.1632i 0.956046i −0.878347 0.478023i \(-0.841354\pi\)
0.878347 0.478023i \(-0.158646\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 31.1067 + 36.1956i 1.27205 + 1.48015i
\(599\) 9.59166i 0.391905i 0.980613 + 0.195952i \(0.0627798\pi\)
−0.980613 + 0.195952i \(0.937220\pi\)
\(600\) 0 0
\(601\) 0.180813 0.00737552 0.00368776 0.999993i \(-0.498826\pi\)
0.00368776 + 0.999993i \(0.498826\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −43.7985 6.66157i −1.78214 0.271055i
\(605\) 0 0
\(606\) 0 0
\(607\) 28.7750i 1.16794i 0.811775 + 0.583970i \(0.198502\pi\)
−0.811775 + 0.583970i \(0.801498\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 96.4536i 3.90209i
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 26.5235 + 30.8627i 1.07040 + 1.24552i
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 10.7155 + 12.4685i 0.429650 + 0.499940i
\(623\) 0 0
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 32.1765 27.6527i 1.27789 1.09823i
\(635\) 0 0
\(636\) 0 0
\(637\) 49.2574 1.95165
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 39.0392i 1.53479i 0.641175 + 0.767395i \(0.278447\pi\)
−0.641175 + 0.767395i \(0.721553\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 37.7365 32.4309i 1.48015 1.27205i
\(651\) 0 0
\(652\) 50.0309 + 7.60948i 1.95936 + 0.298010i
\(653\) −36.9083 −1.44433 −0.722167 0.691719i \(-0.756854\pi\)
−0.722167 + 0.691719i \(0.756854\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 47.8532 + 14.9012i 1.86835 + 0.581796i
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0.0267105 + 0.0310802i 0.00103813 + 0.00120797i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 18.9411i 0.733404i
\(668\) 18.9652 + 2.88453i 0.733786 + 0.111606i
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 51.6633 1.99147 0.995737 0.0922433i \(-0.0294037\pi\)
0.995737 + 0.0922433i \(0.0294037\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 10.9816 72.2020i 0.422370 2.77700i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 46.4132i 1.77595i 0.459889 + 0.887977i \(0.347889\pi\)
−0.459889 + 0.887977i \(0.652111\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 28.7750i 1.09465i −0.836919 0.547326i \(-0.815646\pi\)
0.836919 0.547326i \(-0.184354\pi\)
\(692\) 5.41319 35.5907i 0.205779 1.35296i
\(693\) 0 0
\(694\) 8.84117 + 10.2876i 0.335606 + 0.390510i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) −27.8027 + 23.8938i −1.05235 + 0.904393i
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −3.50519 + 3.01238i −0.131920 + 0.113372i
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −45.4887 −1.70357
\(714\) 0 0
\(715\) 0 0
\(716\) −16.6388 2.53068i −0.621820 0.0945761i
\(717\) 0 0
\(718\) 0 0
\(719\) 47.9583i 1.78854i 0.447524 + 0.894272i \(0.352306\pi\)
−0.447524 + 0.894272i \(0.647694\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 20.3785 17.5134i 0.758408 0.651780i
\(723\) 0 0
\(724\) 0 0
\(725\) −19.7475 −0.733404
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 10.7655 + 24.9019i 0.396821 + 0.917896i
\(737\) 0 0
\(738\) 0 0
\(739\) 12.6950i 0.466994i 0.972357 + 0.233497i \(0.0750170\pi\)
−0.972357 + 0.233497i \(0.924983\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 16.3012 52.3490i 0.594443 1.90897i
\(753\) 0 0
\(754\) −29.8081 + 25.6172i −1.08555 + 0.932923i
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 54.7506 1.98471 0.992353 0.123432i \(-0.0393902\pi\)
0.992353 + 0.123432i \(0.0393902\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 67.4944i 2.43708i
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.62504 36.9836i 0.202450 1.33107i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 0 0
\(775\) 47.4253i 1.70357i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 26.7338 + 8.32478i 0.954780 + 0.297314i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 3.97308 26.1222i 0.141535 0.930566i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) −17.4811 + 15.0233i −0.620380 + 0.533158i
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 25.9620 11.2238i 0.917896 0.396821i
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 61.5218 + 71.5866i 2.16701 + 2.52153i
\(807\) 0 0
\(808\) −9.00000 14.3875i −0.316619 0.506150i
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) 56.9393i 1.99941i 0.0242949 + 0.999705i \(0.492266\pi\)
−0.0242949 + 0.999705i \(0.507734\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 35.1561 30.2133i 1.22920 1.05638i
\(819\) 0 0
\(820\) 0 0
\(821\) −54.0000 −1.88461 −0.942306 0.334751i \(-0.891348\pi\)
−0.942306 + 0.334751i \(0.891348\pi\)
\(822\) 0 0
\(823\) 34.7592i 1.21163i −0.795605 0.605815i \(-0.792847\pi\)
0.795605 0.605815i \(-0.207153\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 24.6287 50.6208i 0.853847 1.75496i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −13.4015 −0.462119
\(842\) 0 0
\(843\) 0 0
\(844\) −56.8957 8.65358i −1.95843 0.297869i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −10.0000 −0.342393 −0.171197 0.985237i \(-0.554763\pi\)
−0.171197 + 0.985237i \(0.554763\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −11.1671 −0.381460 −0.190730 0.981642i \(-0.561086\pi\)
−0.190730 + 0.981642i \(0.561086\pi\)
\(858\) 0 0
\(859\) 50.6353i 1.72765i 0.503790 + 0.863826i \(0.331939\pi\)
−0.503790 + 0.863826i \(0.668061\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 55.8693i 1.90181i −0.309477 0.950907i \(-0.600154\pi\)
0.309477 0.950907i \(-0.399846\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 14.0000 0.472746 0.236373 0.971662i \(-0.424041\pi\)
0.236373 + 0.971662i \(0.424041\pi\)
\(878\) 14.6071 + 16.9968i 0.492966 + 0.573614i
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 0 0
\(883\) 28.7750i 0.968355i −0.874970 0.484178i \(-0.839119\pi\)
0.874970 0.484178i \(-0.160881\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.91838 + 4.55941i 0.131641 + 0.153176i
\(887\) 30.5372i 1.02534i −0.858586 0.512669i \(-0.828657\pi\)
0.858586 0.512669i \(-0.171343\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 56.8957 + 8.65358i 1.90501 + 0.289743i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 19.3059 16.5916i 0.644247 0.553669i
\(899\) 37.4612i 1.24940i
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 41.0478 35.2766i 1.35184 1.16177i
\(923\) 7.32539i 0.241118i
\(924\) 0 0
\(925\) 0 0
\(926\) −26.5235 30.8627i −0.871617 1.01421i
\(927\) 0 0
\(928\) −20.5074 + 8.86567i −0.673188 + 0.291030i
\(929\) 38.9526 1.27799 0.638996 0.769210i \(-0.279350\pi\)
0.638996 + 0.769210i \(0.279350\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 6.14364 40.3933i 0.201242 1.32313i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 60.0913i 1.95684i
\(944\) −11.4069 + 36.6317i −0.371264 + 1.19226i
\(945\) 0 0
\(946\) 0 0
\(947\) 61.1613i 1.98748i 0.111734 + 0.993738i \(0.464359\pi\)
−0.111734 + 0.993738i \(0.535641\pi\)
\(948\) 0 0
\(949\) 66.4457 2.15692
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −52.1466 7.93127i −1.68654 0.256515i
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −58.9663 −1.90214
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 28.5131i 0.916920i 0.888715 + 0.458460i \(0.151599\pi\)
−0.888715 + 0.458460i \(0.848401\pi\)
\(968\) −16.5000 26.3771i −0.530330 0.847791i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −32.0929 37.3432i −1.02832 1.19655i
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) −33.0258 38.4287i −1.05390 1.22631i
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 28.7750i 0.914068i 0.889449 + 0.457034i \(0.151088\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 21.2917 + 49.2502i 0.676011 + 1.56370i
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −26.0000 −0.823428 −0.411714 0.911313i \(-0.635070\pi\)
−0.411714 + 0.911313i \(0.635070\pi\)
\(998\) −29.1341 33.9003i −0.922224 1.07310i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.e.b.91.2 6
3.2 odd 2 92.2.b.b.91.5 6
4.3 odd 2 inner 828.2.e.b.91.1 6
12.11 even 2 92.2.b.b.91.6 yes 6
23.22 odd 2 CM 828.2.e.b.91.2 6
24.5 odd 2 1472.2.c.c.1471.2 6
24.11 even 2 1472.2.c.c.1471.5 6
69.68 even 2 92.2.b.b.91.5 6
92.91 even 2 inner 828.2.e.b.91.1 6
276.275 odd 2 92.2.b.b.91.6 yes 6
552.275 odd 2 1472.2.c.c.1471.5 6
552.413 even 2 1472.2.c.c.1471.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
92.2.b.b.91.5 6 3.2 odd 2
92.2.b.b.91.5 6 69.68 even 2
92.2.b.b.91.6 yes 6 12.11 even 2
92.2.b.b.91.6 yes 6 276.275 odd 2
828.2.e.b.91.1 6 4.3 odd 2 inner
828.2.e.b.91.1 6 92.91 even 2 inner
828.2.e.b.91.2 6 1.1 even 1 trivial
828.2.e.b.91.2 6 23.22 odd 2 CM
1472.2.c.c.1471.2 6 24.5 odd 2
1472.2.c.c.1471.2 6 552.413 even 2
1472.2.c.c.1471.5 6 24.11 even 2
1472.2.c.c.1471.5 6 552.275 odd 2