Properties

Label 828.2.c.f.323.10
Level $828$
Weight $2$
Character 828.323
Analytic conductor $6.612$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(323,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.323"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,4,0,4,0,0,0,4,0,-8,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 7 x^{10} + 20 x^{9} + 49 x^{8} - 382 x^{7} - 235 x^{6} + 2192 x^{5} + 668 x^{4} + \cdots + 1516 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.10
Root \(2.64216 - 2.25841i\) of defining polynomial
Character \(\chi\) \(=\) 828.323
Dual form 828.2.c.f.323.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.38078 - 0.305697i) q^{2} +(1.81310 - 0.844199i) q^{4} +2.96538i q^{5} -4.88648i q^{7} +(2.24542 - 1.71991i) q^{8} +(0.906508 + 4.09454i) q^{10} -2.48358 q^{11} +6.91053 q^{13} +(-1.49378 - 6.74715i) q^{14} +(2.57466 - 3.06123i) q^{16} -2.39526i q^{17} +1.87079i q^{19} +(2.50337 + 5.37653i) q^{20} +(-3.42928 + 0.759224i) q^{22} +1.00000 q^{23} -3.79349 q^{25} +(9.54191 - 2.11253i) q^{26} +(-4.12516 - 8.85967i) q^{28} +7.93906i q^{29} -4.85376i q^{31} +(2.61922 - 5.01395i) q^{32} +(-0.732224 - 3.30733i) q^{34} +14.4903 q^{35} +1.15415 q^{37} +(0.571894 + 2.58314i) q^{38} +(5.10019 + 6.65853i) q^{40} +0.885578i q^{41} +9.91725i q^{43} +(-4.50298 + 2.09664i) q^{44} +(1.38078 - 0.305697i) q^{46} -0.864641 q^{47} -16.8777 q^{49} +(-5.23797 + 1.15966i) q^{50} +(12.5295 - 5.83386i) q^{52} -4.32369i q^{53} -7.36478i q^{55} +(-8.40431 - 10.9722i) q^{56} +(2.42694 + 10.9621i) q^{58} +2.86425 q^{59} -9.96042 q^{61} +(-1.48378 - 6.70197i) q^{62} +(2.08382 - 7.72384i) q^{64} +20.4924i q^{65} +1.94428i q^{67} +(-2.02208 - 4.34285i) q^{68} +(20.0079 - 4.42963i) q^{70} -6.20578 q^{71} +2.57941 q^{73} +(1.59363 - 0.352821i) q^{74} +(1.57932 + 3.39192i) q^{76} +12.1360i q^{77} +2.73247i q^{79} +(9.07772 + 7.63484i) q^{80} +(0.270718 + 1.22279i) q^{82} -14.4528 q^{83} +7.10287 q^{85} +(3.03167 + 13.6935i) q^{86} +(-5.57669 + 4.27154i) q^{88} +4.01898i q^{89} -33.7682i q^{91} +(1.81310 - 0.844199i) q^{92} +(-1.19388 + 0.264318i) q^{94} -5.54760 q^{95} -12.8218 q^{97} +(-23.3044 + 5.15946i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 4 q^{2} + 4 q^{4} + 4 q^{8} - 8 q^{10} + 12 q^{11} - 4 q^{13} - 12 q^{14} - 12 q^{16} + 20 q^{20} + 4 q^{22} + 12 q^{23} - 40 q^{25} + 8 q^{26} - 24 q^{28} + 44 q^{32} - 28 q^{34} + 40 q^{35} - 32 q^{37}+ \cdots - 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.38078 0.305697i 0.976358 0.216160i
\(3\) 0 0
\(4\) 1.81310 0.844199i 0.906550 0.422099i
\(5\) 2.96538i 1.32616i 0.748549 + 0.663080i \(0.230751\pi\)
−0.748549 + 0.663080i \(0.769249\pi\)
\(6\) 0 0
\(7\) 4.88648i 1.84692i −0.383699 0.923458i \(-0.625350\pi\)
0.383699 0.923458i \(-0.374650\pi\)
\(8\) 2.24542 1.71991i 0.793876 0.608080i
\(9\) 0 0
\(10\) 0.906508 + 4.09454i 0.286663 + 1.29481i
\(11\) −2.48358 −0.748829 −0.374414 0.927261i \(-0.622156\pi\)
−0.374414 + 0.927261i \(0.622156\pi\)
\(12\) 0 0
\(13\) 6.91053 1.91664 0.958318 0.285705i \(-0.0922276\pi\)
0.958318 + 0.285705i \(0.0922276\pi\)
\(14\) −1.49378 6.74715i −0.399230 1.80325i
\(15\) 0 0
\(16\) 2.57466 3.06123i 0.643664 0.765308i
\(17\) 2.39526i 0.580937i −0.956885 0.290468i \(-0.906189\pi\)
0.956885 0.290468i \(-0.0938111\pi\)
\(18\) 0 0
\(19\) 1.87079i 0.429188i 0.976703 + 0.214594i \(0.0688429\pi\)
−0.976703 + 0.214594i \(0.931157\pi\)
\(20\) 2.50337 + 5.37653i 0.559771 + 1.20223i
\(21\) 0 0
\(22\) −3.42928 + 0.759224i −0.731125 + 0.161867i
\(23\) 1.00000 0.208514
\(24\) 0 0
\(25\) −3.79349 −0.758698
\(26\) 9.54191 2.11253i 1.87132 0.414300i
\(27\) 0 0
\(28\) −4.12516 8.85967i −0.779582 1.67432i
\(29\) 7.93906i 1.47425i 0.675759 + 0.737123i \(0.263816\pi\)
−0.675759 + 0.737123i \(0.736184\pi\)
\(30\) 0 0
\(31\) 4.85376i 0.871761i −0.900005 0.435880i \(-0.856437\pi\)
0.900005 0.435880i \(-0.143563\pi\)
\(32\) 2.61922 5.01395i 0.463017 0.886349i
\(33\) 0 0
\(34\) −0.732224 3.30733i −0.125575 0.567202i
\(35\) 14.4903 2.44930
\(36\) 0 0
\(37\) 1.15415 0.189742 0.0948708 0.995490i \(-0.469756\pi\)
0.0948708 + 0.995490i \(0.469756\pi\)
\(38\) 0.571894 + 2.58314i 0.0927734 + 0.419041i
\(39\) 0 0
\(40\) 5.10019 + 6.65853i 0.806411 + 1.05281i
\(41\) 0.885578i 0.138304i 0.997606 + 0.0691520i \(0.0220293\pi\)
−0.997606 + 0.0691520i \(0.977971\pi\)
\(42\) 0 0
\(43\) 9.91725i 1.51237i 0.654360 + 0.756183i \(0.272938\pi\)
−0.654360 + 0.756183i \(0.727062\pi\)
\(44\) −4.50298 + 2.09664i −0.678850 + 0.316080i
\(45\) 0 0
\(46\) 1.38078 0.305697i 0.203585 0.0450725i
\(47\) −0.864641 −0.126121 −0.0630604 0.998010i \(-0.520086\pi\)
−0.0630604 + 0.998010i \(0.520086\pi\)
\(48\) 0 0
\(49\) −16.8777 −2.41110
\(50\) −5.23797 + 1.15966i −0.740761 + 0.164000i
\(51\) 0 0
\(52\) 12.5295 5.83386i 1.73753 0.809011i
\(53\) 4.32369i 0.593905i −0.954892 0.296952i \(-0.904030\pi\)
0.954892 0.296952i \(-0.0959703\pi\)
\(54\) 0 0
\(55\) 7.36478i 0.993066i
\(56\) −8.40431 10.9722i −1.12307 1.46622i
\(57\) 0 0
\(58\) 2.42694 + 10.9621i 0.318673 + 1.43939i
\(59\) 2.86425 0.372894 0.186447 0.982465i \(-0.440303\pi\)
0.186447 + 0.982465i \(0.440303\pi\)
\(60\) 0 0
\(61\) −9.96042 −1.27530 −0.637651 0.770326i \(-0.720094\pi\)
−0.637651 + 0.770326i \(0.720094\pi\)
\(62\) −1.48378 6.70197i −0.188440 0.851151i
\(63\) 0 0
\(64\) 2.08382 7.72384i 0.260477 0.965480i
\(65\) 20.4924i 2.54176i
\(66\) 0 0
\(67\) 1.94428i 0.237532i 0.992922 + 0.118766i \(0.0378938\pi\)
−0.992922 + 0.118766i \(0.962106\pi\)
\(68\) −2.02208 4.34285i −0.245213 0.526648i
\(69\) 0 0
\(70\) 20.0079 4.42963i 2.39140 0.529442i
\(71\) −6.20578 −0.736490 −0.368245 0.929729i \(-0.620041\pi\)
−0.368245 + 0.929729i \(0.620041\pi\)
\(72\) 0 0
\(73\) 2.57941 0.301897 0.150949 0.988542i \(-0.451767\pi\)
0.150949 + 0.988542i \(0.451767\pi\)
\(74\) 1.59363 0.352821i 0.185256 0.0410146i
\(75\) 0 0
\(76\) 1.57932 + 3.39192i 0.181160 + 0.389080i
\(77\) 12.1360i 1.38302i
\(78\) 0 0
\(79\) 2.73247i 0.307427i 0.988115 + 0.153714i \(0.0491233\pi\)
−0.988115 + 0.153714i \(0.950877\pi\)
\(80\) 9.07772 + 7.63484i 1.01492 + 0.853601i
\(81\) 0 0
\(82\) 0.270718 + 1.22279i 0.0298958 + 0.135034i
\(83\) −14.4528 −1.58640 −0.793202 0.608959i \(-0.791587\pi\)
−0.793202 + 0.608959i \(0.791587\pi\)
\(84\) 0 0
\(85\) 7.10287 0.770414
\(86\) 3.03167 + 13.6935i 0.326913 + 1.47661i
\(87\) 0 0
\(88\) −5.57669 + 4.27154i −0.594477 + 0.455348i
\(89\) 4.01898i 0.426011i 0.977051 + 0.213005i \(0.0683252\pi\)
−0.977051 + 0.213005i \(0.931675\pi\)
\(90\) 0 0
\(91\) 33.7682i 3.53987i
\(92\) 1.81310 0.844199i 0.189029 0.0880138i
\(93\) 0 0
\(94\) −1.19388 + 0.264318i −0.123139 + 0.0272623i
\(95\) −5.54760 −0.569172
\(96\) 0 0
\(97\) −12.8218 −1.30186 −0.650928 0.759140i \(-0.725620\pi\)
−0.650928 + 0.759140i \(0.725620\pi\)
\(98\) −23.3044 + 5.15946i −2.35410 + 0.521184i
\(99\) 0 0
\(100\) −6.87797 + 3.20246i −0.687797 + 0.320246i
\(101\) 8.08405i 0.804393i −0.915553 0.402197i \(-0.868247\pi\)
0.915553 0.402197i \(-0.131753\pi\)
\(102\) 0 0
\(103\) 2.81544i 0.277413i −0.990334 0.138707i \(-0.955705\pi\)
0.990334 0.138707i \(-0.0442945\pi\)
\(104\) 15.5170 11.8855i 1.52157 1.16547i
\(105\) 0 0
\(106\) −1.32174 5.97006i −0.128379 0.579864i
\(107\) 15.3816 1.48700 0.743499 0.668737i \(-0.233165\pi\)
0.743499 + 0.668737i \(0.233165\pi\)
\(108\) 0 0
\(109\) −6.03157 −0.577720 −0.288860 0.957371i \(-0.593276\pi\)
−0.288860 + 0.957371i \(0.593276\pi\)
\(110\) −2.25139 10.1691i −0.214661 0.969588i
\(111\) 0 0
\(112\) −14.9587 12.5810i −1.41346 1.18879i
\(113\) 8.80950i 0.828728i −0.910111 0.414364i \(-0.864004\pi\)
0.910111 0.414364i \(-0.135996\pi\)
\(114\) 0 0
\(115\) 2.96538i 0.276523i
\(116\) 6.70214 + 14.3943i 0.622278 + 1.33648i
\(117\) 0 0
\(118\) 3.95490 0.875593i 0.364078 0.0806048i
\(119\) −11.7044 −1.07294
\(120\) 0 0
\(121\) −4.83181 −0.439255
\(122\) −13.7531 + 3.04487i −1.24515 + 0.275669i
\(123\) 0 0
\(124\) −4.09754 8.80035i −0.367970 0.790294i
\(125\) 3.57776i 0.320005i
\(126\) 0 0
\(127\) 3.27672i 0.290762i 0.989376 + 0.145381i \(0.0464408\pi\)
−0.989376 + 0.145381i \(0.953559\pi\)
\(128\) 0.516138 11.3019i 0.0456206 0.998959i
\(129\) 0 0
\(130\) 6.26445 + 28.2954i 0.549428 + 2.48167i
\(131\) −20.5175 −1.79262 −0.896311 0.443425i \(-0.853763\pi\)
−0.896311 + 0.443425i \(0.853763\pi\)
\(132\) 0 0
\(133\) 9.14157 0.792675
\(134\) 0.594360 + 2.68462i 0.0513449 + 0.231916i
\(135\) 0 0
\(136\) −4.11964 5.37837i −0.353256 0.461191i
\(137\) 12.0574i 1.03013i −0.857151 0.515066i \(-0.827767\pi\)
0.857151 0.515066i \(-0.172233\pi\)
\(138\) 0 0
\(139\) 8.24742i 0.699537i 0.936836 + 0.349769i \(0.113740\pi\)
−0.936836 + 0.349769i \(0.886260\pi\)
\(140\) 26.2723 12.2327i 2.22042 1.03385i
\(141\) 0 0
\(142\) −8.56881 + 1.89709i −0.719078 + 0.159200i
\(143\) −17.1629 −1.43523
\(144\) 0 0
\(145\) −23.5423 −1.95508
\(146\) 3.56160 0.788518i 0.294760 0.0652582i
\(147\) 0 0
\(148\) 2.09259 0.974335i 0.172010 0.0800898i
\(149\) 17.4086i 1.42616i 0.701080 + 0.713082i \(0.252701\pi\)
−0.701080 + 0.713082i \(0.747299\pi\)
\(150\) 0 0
\(151\) 18.3869i 1.49631i 0.663526 + 0.748153i \(0.269059\pi\)
−0.663526 + 0.748153i \(0.730941\pi\)
\(152\) 3.21759 + 4.20070i 0.260981 + 0.340722i
\(153\) 0 0
\(154\) 3.70993 + 16.7571i 0.298955 + 1.35033i
\(155\) 14.3933 1.15609
\(156\) 0 0
\(157\) 20.7353 1.65485 0.827427 0.561574i \(-0.189804\pi\)
0.827427 + 0.561574i \(0.189804\pi\)
\(158\) 0.835308 + 3.77294i 0.0664535 + 0.300159i
\(159\) 0 0
\(160\) 14.8683 + 7.76699i 1.17544 + 0.614035i
\(161\) 4.88648i 0.385109i
\(162\) 0 0
\(163\) 15.1100i 1.18350i 0.806120 + 0.591752i \(0.201563\pi\)
−0.806120 + 0.591752i \(0.798437\pi\)
\(164\) 0.747604 + 1.60564i 0.0583781 + 0.125379i
\(165\) 0 0
\(166\) −19.9562 + 4.41818i −1.54890 + 0.342917i
\(167\) 18.2976 1.41591 0.707954 0.706259i \(-0.249619\pi\)
0.707954 + 0.706259i \(0.249619\pi\)
\(168\) 0 0
\(169\) 34.7554 2.67349
\(170\) 9.80749 2.17132i 0.752200 0.166533i
\(171\) 0 0
\(172\) 8.37213 + 17.9810i 0.638369 + 1.37103i
\(173\) 15.0892i 1.14721i 0.819132 + 0.573605i \(0.194456\pi\)
−0.819132 + 0.573605i \(0.805544\pi\)
\(174\) 0 0
\(175\) 18.5368i 1.40125i
\(176\) −6.39438 + 7.60283i −0.481994 + 0.573085i
\(177\) 0 0
\(178\) 1.22859 + 5.54932i 0.0920866 + 0.415939i
\(179\) 0.402653 0.0300957 0.0150478 0.999887i \(-0.495210\pi\)
0.0150478 + 0.999887i \(0.495210\pi\)
\(180\) 0 0
\(181\) −22.2467 −1.65358 −0.826791 0.562510i \(-0.809836\pi\)
−0.826791 + 0.562510i \(0.809836\pi\)
\(182\) −10.3228 46.6264i −0.765178 3.45618i
\(183\) 0 0
\(184\) 2.24542 1.71991i 0.165535 0.126793i
\(185\) 3.42251i 0.251628i
\(186\) 0 0
\(187\) 5.94884i 0.435022i
\(188\) −1.56768 + 0.729929i −0.114335 + 0.0532355i
\(189\) 0 0
\(190\) −7.66001 + 1.69588i −0.555715 + 0.123032i
\(191\) −16.5231 −1.19557 −0.597784 0.801657i \(-0.703952\pi\)
−0.597784 + 0.801657i \(0.703952\pi\)
\(192\) 0 0
\(193\) 21.1301 1.52098 0.760489 0.649351i \(-0.224959\pi\)
0.760489 + 0.649351i \(0.224959\pi\)
\(194\) −17.7040 + 3.91958i −1.27108 + 0.281409i
\(195\) 0 0
\(196\) −30.6009 + 14.2481i −2.18578 + 1.01772i
\(197\) 9.89871i 0.705254i 0.935764 + 0.352627i \(0.114712\pi\)
−0.935764 + 0.352627i \(0.885288\pi\)
\(198\) 0 0
\(199\) 1.14490i 0.0811601i 0.999176 + 0.0405801i \(0.0129206\pi\)
−0.999176 + 0.0405801i \(0.987079\pi\)
\(200\) −8.51798 + 6.52446i −0.602312 + 0.461349i
\(201\) 0 0
\(202\) −2.47127 11.1623i −0.173878 0.785376i
\(203\) 38.7940 2.72281
\(204\) 0 0
\(205\) −2.62608 −0.183413
\(206\) −0.860670 3.88750i −0.0599657 0.270855i
\(207\) 0 0
\(208\) 17.7922 21.1547i 1.23367 1.46682i
\(209\) 4.64626i 0.321389i
\(210\) 0 0
\(211\) 11.2048i 0.771368i −0.922631 0.385684i \(-0.873966\pi\)
0.922631 0.385684i \(-0.126034\pi\)
\(212\) −3.65006 7.83928i −0.250687 0.538404i
\(213\) 0 0
\(214\) 21.2386 4.70211i 1.45184 0.321430i
\(215\) −29.4084 −2.00564
\(216\) 0 0
\(217\) −23.7178 −1.61007
\(218\) −8.32827 + 1.84383i −0.564061 + 0.124880i
\(219\) 0 0
\(220\) −6.21734 13.3531i −0.419173 0.900264i
\(221\) 16.5525i 1.11344i
\(222\) 0 0
\(223\) 16.7818i 1.12379i 0.827207 + 0.561897i \(0.189928\pi\)
−0.827207 + 0.561897i \(0.810072\pi\)
\(224\) −24.5006 12.7988i −1.63701 0.855154i
\(225\) 0 0
\(226\) −2.69304 12.1640i −0.179138 0.809135i
\(227\) −9.88619 −0.656170 −0.328085 0.944648i \(-0.606403\pi\)
−0.328085 + 0.944648i \(0.606403\pi\)
\(228\) 0 0
\(229\) −8.92893 −0.590041 −0.295020 0.955491i \(-0.595326\pi\)
−0.295020 + 0.955491i \(0.595326\pi\)
\(230\) 0.906508 + 4.09454i 0.0597733 + 0.269986i
\(231\) 0 0
\(232\) 13.6545 + 17.8265i 0.896459 + 1.17037i
\(233\) 19.1788i 1.25644i −0.778035 0.628221i \(-0.783783\pi\)
0.778035 0.628221i \(-0.216217\pi\)
\(234\) 0 0
\(235\) 2.56399i 0.167256i
\(236\) 5.19317 2.41800i 0.338047 0.157398i
\(237\) 0 0
\(238\) −16.1612 + 3.57800i −1.04757 + 0.231927i
\(239\) −6.27307 −0.405771 −0.202885 0.979202i \(-0.565032\pi\)
−0.202885 + 0.979202i \(0.565032\pi\)
\(240\) 0 0
\(241\) 14.7427 0.949662 0.474831 0.880077i \(-0.342509\pi\)
0.474831 + 0.880077i \(0.342509\pi\)
\(242\) −6.67166 + 1.47707i −0.428870 + 0.0949495i
\(243\) 0 0
\(244\) −18.0592 + 8.40858i −1.15612 + 0.538304i
\(245\) 50.0488i 3.19750i
\(246\) 0 0
\(247\) 12.9281i 0.822597i
\(248\) −8.34803 10.8987i −0.530100 0.692070i
\(249\) 0 0
\(250\) 1.09371 + 4.94010i 0.0691723 + 0.312439i
\(251\) 28.9752 1.82890 0.914449 0.404700i \(-0.132624\pi\)
0.914449 + 0.404700i \(0.132624\pi\)
\(252\) 0 0
\(253\) −2.48358 −0.156142
\(254\) 1.00168 + 4.52443i 0.0628512 + 0.283888i
\(255\) 0 0
\(256\) −2.74229 15.7632i −0.171393 0.985203i
\(257\) 4.53342i 0.282787i −0.989953 0.141393i \(-0.954842\pi\)
0.989953 0.141393i \(-0.0451583\pi\)
\(258\) 0 0
\(259\) 5.63975i 0.350437i
\(260\) 17.2996 + 37.1547i 1.07288 + 2.30423i
\(261\) 0 0
\(262\) −28.3301 + 6.27213i −1.75024 + 0.387494i
\(263\) 14.2268 0.877261 0.438631 0.898667i \(-0.355464\pi\)
0.438631 + 0.898667i \(0.355464\pi\)
\(264\) 0 0
\(265\) 12.8214 0.787612
\(266\) 12.6225 2.79455i 0.773934 0.171345i
\(267\) 0 0
\(268\) 1.64136 + 3.52518i 0.100262 + 0.215334i
\(269\) 2.19869i 0.134056i 0.997751 + 0.0670281i \(0.0213517\pi\)
−0.997751 + 0.0670281i \(0.978648\pi\)
\(270\) 0 0
\(271\) 6.68925i 0.406343i −0.979143 0.203171i \(-0.934875\pi\)
0.979143 0.203171i \(-0.0651249\pi\)
\(272\) −7.33246 6.16698i −0.444596 0.373928i
\(273\) 0 0
\(274\) −3.68590 16.6486i −0.222674 1.00578i
\(275\) 9.42145 0.568135
\(276\) 0 0
\(277\) −19.9232 −1.19707 −0.598534 0.801097i \(-0.704250\pi\)
−0.598534 + 0.801097i \(0.704250\pi\)
\(278\) 2.52121 + 11.3879i 0.151212 + 0.682999i
\(279\) 0 0
\(280\) 32.5368 24.9220i 1.94444 1.48937i
\(281\) 12.0779i 0.720507i 0.932854 + 0.360254i \(0.117310\pi\)
−0.932854 + 0.360254i \(0.882690\pi\)
\(282\) 0 0
\(283\) 20.2091i 1.20131i −0.799509 0.600654i \(-0.794907\pi\)
0.799509 0.600654i \(-0.205093\pi\)
\(284\) −11.2517 + 5.23891i −0.667665 + 0.310872i
\(285\) 0 0
\(286\) −23.6981 + 5.24664i −1.40130 + 0.310240i
\(287\) 4.32736 0.255436
\(288\) 0 0
\(289\) 11.2627 0.662513
\(290\) −32.5068 + 7.19681i −1.90886 + 0.422611i
\(291\) 0 0
\(292\) 4.67673 2.17754i 0.273685 0.127431i
\(293\) 19.3965i 1.13316i −0.824008 0.566578i \(-0.808267\pi\)
0.824008 0.566578i \(-0.191733\pi\)
\(294\) 0 0
\(295\) 8.49360i 0.494517i
\(296\) 2.59156 1.98504i 0.150631 0.115378i
\(297\) 0 0
\(298\) 5.32174 + 24.0374i 0.308280 + 1.39245i
\(299\) 6.91053 0.399646
\(300\) 0 0
\(301\) 48.4604 2.79321
\(302\) 5.62082 + 25.3883i 0.323442 + 1.46093i
\(303\) 0 0
\(304\) 5.72692 + 4.81664i 0.328461 + 0.276253i
\(305\) 29.5365i 1.69125i
\(306\) 0 0
\(307\) 3.90709i 0.222989i 0.993765 + 0.111495i \(0.0355638\pi\)
−0.993765 + 0.111495i \(0.964436\pi\)
\(308\) 10.2452 + 22.0037i 0.583774 + 1.25378i
\(309\) 0 0
\(310\) 19.8739 4.39997i 1.12876 0.249901i
\(311\) −14.2299 −0.806905 −0.403453 0.915001i \(-0.632190\pi\)
−0.403453 + 0.915001i \(0.632190\pi\)
\(312\) 0 0
\(313\) −7.34114 −0.414946 −0.207473 0.978241i \(-0.566524\pi\)
−0.207473 + 0.978241i \(0.566524\pi\)
\(314\) 28.6308 6.33870i 1.61573 0.357713i
\(315\) 0 0
\(316\) 2.30675 + 4.95424i 0.129765 + 0.278698i
\(317\) 1.94571i 0.109282i −0.998506 0.0546411i \(-0.982599\pi\)
0.998506 0.0546411i \(-0.0174015\pi\)
\(318\) 0 0
\(319\) 19.7173i 1.10396i
\(320\) 22.9041 + 6.17931i 1.28038 + 0.345434i
\(321\) 0 0
\(322\) −1.49378 6.74715i −0.0832452 0.376004i
\(323\) 4.48103 0.249331
\(324\) 0 0
\(325\) −26.2150 −1.45415
\(326\) 4.61906 + 20.8635i 0.255826 + 1.15552i
\(327\) 0 0
\(328\) 1.52311 + 1.98849i 0.0840999 + 0.109796i
\(329\) 4.22505i 0.232935i
\(330\) 0 0
\(331\) 33.5035i 1.84152i −0.390134 0.920758i \(-0.627571\pi\)
0.390134 0.920758i \(-0.372429\pi\)
\(332\) −26.2044 + 12.2011i −1.43815 + 0.669620i
\(333\) 0 0
\(334\) 25.2649 5.59350i 1.38243 0.306063i
\(335\) −5.76554 −0.315005
\(336\) 0 0
\(337\) 17.3632 0.945835 0.472917 0.881107i \(-0.343201\pi\)
0.472917 + 0.881107i \(0.343201\pi\)
\(338\) 47.9895 10.6246i 2.61028 0.577903i
\(339\) 0 0
\(340\) 12.8782 5.99624i 0.698419 0.325192i
\(341\) 12.0547i 0.652800i
\(342\) 0 0
\(343\) 48.2672i 2.60618i
\(344\) 17.0568 + 22.2684i 0.919640 + 1.20063i
\(345\) 0 0
\(346\) 4.61272 + 20.8348i 0.247981 + 1.12009i
\(347\) −18.0766 −0.970402 −0.485201 0.874403i \(-0.661254\pi\)
−0.485201 + 0.874403i \(0.661254\pi\)
\(348\) 0 0
\(349\) 14.1005 0.754780 0.377390 0.926054i \(-0.376822\pi\)
0.377390 + 0.926054i \(0.376822\pi\)
\(350\) 5.66664 + 25.5952i 0.302895 + 1.36812i
\(351\) 0 0
\(352\) −6.50506 + 12.4526i −0.346721 + 0.663724i
\(353\) 16.7185i 0.889838i −0.895571 0.444919i \(-0.853233\pi\)
0.895571 0.444919i \(-0.146767\pi\)
\(354\) 0 0
\(355\) 18.4025i 0.976704i
\(356\) 3.39282 + 7.28680i 0.179819 + 0.386200i
\(357\) 0 0
\(358\) 0.555975 0.123090i 0.0293842 0.00650549i
\(359\) 16.6532 0.878923 0.439461 0.898262i \(-0.355169\pi\)
0.439461 + 0.898262i \(0.355169\pi\)
\(360\) 0 0
\(361\) 15.5002 0.815797
\(362\) −30.7177 + 6.80073i −1.61449 + 0.357438i
\(363\) 0 0
\(364\) −28.5070 61.2250i −1.49418 3.20906i
\(365\) 7.64895i 0.400364i
\(366\) 0 0
\(367\) 8.14902i 0.425376i 0.977120 + 0.212688i \(0.0682217\pi\)
−0.977120 + 0.212688i \(0.931778\pi\)
\(368\) 2.57466 3.06123i 0.134213 0.159578i
\(369\) 0 0
\(370\) 1.04625 + 4.72572i 0.0543919 + 0.245679i
\(371\) −21.1276 −1.09689
\(372\) 0 0
\(373\) −8.25533 −0.427445 −0.213722 0.976894i \(-0.568559\pi\)
−0.213722 + 0.976894i \(0.568559\pi\)
\(374\) 1.81854 + 8.21403i 0.0940345 + 0.424737i
\(375\) 0 0
\(376\) −1.94148 + 1.48710i −0.100124 + 0.0766916i
\(377\) 54.8631i 2.82559i
\(378\) 0 0
\(379\) 16.3808i 0.841428i −0.907193 0.420714i \(-0.861780\pi\)
0.907193 0.420714i \(-0.138220\pi\)
\(380\) −10.0584 + 4.68328i −0.515983 + 0.240247i
\(381\) 0 0
\(382\) −22.8147 + 5.05105i −1.16730 + 0.258434i
\(383\) −15.7596 −0.805277 −0.402639 0.915359i \(-0.631907\pi\)
−0.402639 + 0.915359i \(0.631907\pi\)
\(384\) 0 0
\(385\) −35.9878 −1.83411
\(386\) 29.1760 6.45940i 1.48502 0.328775i
\(387\) 0 0
\(388\) −23.2472 + 10.8241i −1.18020 + 0.549512i
\(389\) 22.6408i 1.14793i −0.818879 0.573966i \(-0.805404\pi\)
0.818879 0.573966i \(-0.194596\pi\)
\(390\) 0 0
\(391\) 2.39526i 0.121134i
\(392\) −37.8975 + 29.0281i −1.91411 + 1.46614i
\(393\) 0 0
\(394\) 3.02600 + 13.6679i 0.152448 + 0.688580i
\(395\) −8.10282 −0.407697
\(396\) 0 0
\(397\) −9.97581 −0.500671 −0.250336 0.968159i \(-0.580541\pi\)
−0.250336 + 0.968159i \(0.580541\pi\)
\(398\) 0.349994 + 1.58086i 0.0175436 + 0.0792414i
\(399\) 0 0
\(400\) −9.76693 + 11.6128i −0.488347 + 0.580638i
\(401\) 27.7611i 1.38632i 0.720782 + 0.693162i \(0.243783\pi\)
−0.720782 + 0.693162i \(0.756217\pi\)
\(402\) 0 0
\(403\) 33.5420i 1.67085i
\(404\) −6.82455 14.6572i −0.339534 0.729222i
\(405\) 0 0
\(406\) 53.5660 11.8592i 2.65844 0.588563i
\(407\) −2.86644 −0.142084
\(408\) 0 0
\(409\) 34.8604 1.72374 0.861868 0.507133i \(-0.169295\pi\)
0.861868 + 0.507133i \(0.169295\pi\)
\(410\) −3.62603 + 0.802783i −0.179077 + 0.0396466i
\(411\) 0 0
\(412\) −2.37679 5.10467i −0.117096 0.251489i
\(413\) 13.9961i 0.688704i
\(414\) 0 0
\(415\) 42.8581i 2.10382i
\(416\) 18.1002 34.6490i 0.887435 1.69881i
\(417\) 0 0
\(418\) −1.42035 6.41546i −0.0694714 0.313790i
\(419\) −1.75706 −0.0858379 −0.0429190 0.999079i \(-0.513666\pi\)
−0.0429190 + 0.999079i \(0.513666\pi\)
\(420\) 0 0
\(421\) −7.54441 −0.367692 −0.183846 0.982955i \(-0.558855\pi\)
−0.183846 + 0.982955i \(0.558855\pi\)
\(422\) −3.42526 15.4713i −0.166739 0.753131i
\(423\) 0 0
\(424\) −7.43636 9.70850i −0.361142 0.471486i
\(425\) 9.08641i 0.440755i
\(426\) 0 0
\(427\) 48.6714i 2.35538i
\(428\) 27.8884 12.9852i 1.34804 0.627661i
\(429\) 0 0
\(430\) −40.6065 + 8.99006i −1.95822 + 0.433539i
\(431\) 13.7285 0.661279 0.330639 0.943757i \(-0.392736\pi\)
0.330639 + 0.943757i \(0.392736\pi\)
\(432\) 0 0
\(433\) 7.44507 0.357787 0.178894 0.983868i \(-0.442748\pi\)
0.178894 + 0.983868i \(0.442748\pi\)
\(434\) −32.7490 + 7.25045i −1.57200 + 0.348033i
\(435\) 0 0
\(436\) −10.9358 + 5.09185i −0.523732 + 0.243855i
\(437\) 1.87079i 0.0894919i
\(438\) 0 0
\(439\) 36.2933i 1.73218i −0.499885 0.866092i \(-0.666624\pi\)
0.499885 0.866092i \(-0.333376\pi\)
\(440\) −12.6668 16.5370i −0.603864 0.788371i
\(441\) 0 0
\(442\) −5.06005 22.8554i −0.240682 1.08712i
\(443\) 11.6126 0.551733 0.275866 0.961196i \(-0.411035\pi\)
0.275866 + 0.961196i \(0.411035\pi\)
\(444\) 0 0
\(445\) −11.9178 −0.564958
\(446\) 5.13015 + 23.1720i 0.242920 + 1.09723i
\(447\) 0 0
\(448\) −37.7424 10.1825i −1.78316 0.481079i
\(449\) 32.1871i 1.51900i −0.650506 0.759502i \(-0.725443\pi\)
0.650506 0.759502i \(-0.274557\pi\)
\(450\) 0 0
\(451\) 2.19941i 0.103566i
\(452\) −7.43697 15.9725i −0.349806 0.751283i
\(453\) 0 0
\(454\) −13.6506 + 3.02218i −0.640656 + 0.141838i
\(455\) 100.135 4.69442
\(456\) 0 0
\(457\) 19.6460 0.919000 0.459500 0.888178i \(-0.348029\pi\)
0.459500 + 0.888178i \(0.348029\pi\)
\(458\) −12.3289 + 2.72955i −0.576091 + 0.127543i
\(459\) 0 0
\(460\) 2.50337 + 5.37653i 0.116720 + 0.250682i
\(461\) 8.04745i 0.374807i −0.982283 0.187404i \(-0.939993\pi\)
0.982283 0.187404i \(-0.0600072\pi\)
\(462\) 0 0
\(463\) 14.2725i 0.663298i 0.943403 + 0.331649i \(0.107605\pi\)
−0.943403 + 0.331649i \(0.892395\pi\)
\(464\) 24.3033 + 20.4403i 1.12825 + 0.948919i
\(465\) 0 0
\(466\) −5.86288 26.4816i −0.271593 1.22674i
\(467\) −7.86132 −0.363778 −0.181889 0.983319i \(-0.558221\pi\)
−0.181889 + 0.983319i \(0.558221\pi\)
\(468\) 0 0
\(469\) 9.50069 0.438701
\(470\) −0.783803 3.54030i −0.0361542 0.163302i
\(471\) 0 0
\(472\) 6.43145 4.92626i 0.296031 0.226749i
\(473\) 24.6303i 1.13250i
\(474\) 0 0
\(475\) 7.09682i 0.325624i
\(476\) −21.2212 + 9.88085i −0.972674 + 0.452888i
\(477\) 0 0
\(478\) −8.66171 + 1.91766i −0.396178 + 0.0877115i
\(479\) −30.2975 −1.38433 −0.692164 0.721740i \(-0.743343\pi\)
−0.692164 + 0.721740i \(0.743343\pi\)
\(480\) 0 0
\(481\) 7.97581 0.363666
\(482\) 20.3564 4.50680i 0.927210 0.205279i
\(483\) 0 0
\(484\) −8.76055 + 4.07901i −0.398207 + 0.185409i
\(485\) 38.0215i 1.72647i
\(486\) 0 0
\(487\) 21.4050i 0.969955i 0.874527 + 0.484978i \(0.161172\pi\)
−0.874527 + 0.484978i \(0.838828\pi\)
\(488\) −22.3653 + 17.1310i −1.01243 + 0.775486i
\(489\) 0 0
\(490\) −15.2998 69.1063i −0.691173 3.12191i
\(491\) 1.03586 0.0467478 0.0233739 0.999727i \(-0.492559\pi\)
0.0233739 + 0.999727i \(0.492559\pi\)
\(492\) 0 0
\(493\) 19.0161 0.856443
\(494\) 3.95209 + 17.8509i 0.177813 + 0.803149i
\(495\) 0 0
\(496\) −14.8585 12.4968i −0.667166 0.561121i
\(497\) 30.3244i 1.36024i
\(498\) 0 0
\(499\) 25.7844i 1.15427i 0.816649 + 0.577135i \(0.195829\pi\)
−0.816649 + 0.577135i \(0.804171\pi\)
\(500\) 3.02034 + 6.48684i 0.135074 + 0.290100i
\(501\) 0 0
\(502\) 40.0083 8.85763i 1.78566 0.395335i
\(503\) −15.0341 −0.670336 −0.335168 0.942158i \(-0.608793\pi\)
−0.335168 + 0.942158i \(0.608793\pi\)
\(504\) 0 0
\(505\) 23.9723 1.06675
\(506\) −3.42928 + 0.759224i −0.152450 + 0.0337516i
\(507\) 0 0
\(508\) 2.76621 + 5.94102i 0.122731 + 0.263590i
\(509\) 6.52381i 0.289163i −0.989493 0.144581i \(-0.953816\pi\)
0.989493 0.144581i \(-0.0461836\pi\)
\(510\) 0 0
\(511\) 12.6043i 0.557579i
\(512\) −8.60527 20.9272i −0.380303 0.924862i
\(513\) 0 0
\(514\) −1.38585 6.25965i −0.0611273 0.276101i
\(515\) 8.34885 0.367894
\(516\) 0 0
\(517\) 2.14741 0.0944429
\(518\) −1.72405 7.78724i −0.0757505 0.342152i
\(519\) 0 0
\(520\) 35.2450 + 46.0139i 1.54560 + 2.01784i
\(521\) 8.26390i 0.362048i 0.983479 + 0.181024i \(0.0579412\pi\)
−0.983479 + 0.181024i \(0.942059\pi\)
\(522\) 0 0
\(523\) 16.0139i 0.700239i −0.936705 0.350119i \(-0.886141\pi\)
0.936705 0.350119i \(-0.113859\pi\)
\(524\) −37.2003 + 17.3209i −1.62510 + 0.756665i
\(525\) 0 0
\(526\) 19.6440 4.34908i 0.856521 0.189629i
\(527\) −11.6260 −0.506438
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) 17.7035 3.91946i 0.768991 0.170250i
\(531\) 0 0
\(532\) 16.5746 7.71730i 0.718599 0.334588i
\(533\) 6.11981i 0.265078i
\(534\) 0 0
\(535\) 45.6124i 1.97200i
\(536\) 3.34399 + 4.36573i 0.144438 + 0.188571i
\(537\) 0 0
\(538\) 0.672131 + 3.03590i 0.0289776 + 0.130887i
\(539\) 41.9172 1.80550
\(540\) 0 0
\(541\) 5.54076 0.238216 0.119108 0.992881i \(-0.461997\pi\)
0.119108 + 0.992881i \(0.461997\pi\)
\(542\) −2.04488 9.23637i −0.0878352 0.396736i
\(543\) 0 0
\(544\) −12.0097 6.27372i −0.514913 0.268984i
\(545\) 17.8859i 0.766149i
\(546\) 0 0
\(547\) 40.0369i 1.71185i −0.517098 0.855926i \(-0.672988\pi\)
0.517098 0.855926i \(-0.327012\pi\)
\(548\) −10.1788 21.8612i −0.434818 0.933866i
\(549\) 0 0
\(550\) 13.0089 2.88011i 0.554703 0.122808i
\(551\) −14.8523 −0.632729
\(552\) 0 0
\(553\) 13.3522 0.567792
\(554\) −27.5095 + 6.09046i −1.16877 + 0.258759i
\(555\) 0 0
\(556\) 6.96247 + 14.9534i 0.295274 + 0.634165i
\(557\) 19.0259i 0.806155i 0.915166 + 0.403077i \(0.132059\pi\)
−0.915166 + 0.403077i \(0.867941\pi\)
\(558\) 0 0
\(559\) 68.5334i 2.89865i
\(560\) 37.3075 44.3581i 1.57653 1.87447i
\(561\) 0 0
\(562\) 3.69218 + 16.6769i 0.155745 + 0.703473i
\(563\) 19.2965 0.813249 0.406624 0.913595i \(-0.366706\pi\)
0.406624 + 0.913595i \(0.366706\pi\)
\(564\) 0 0
\(565\) 26.1235 1.09903
\(566\) −6.17787 27.9043i −0.259675 1.17291i
\(567\) 0 0
\(568\) −13.9346 + 10.6734i −0.584682 + 0.447845i
\(569\) 1.11045i 0.0465524i −0.999729 0.0232762i \(-0.992590\pi\)
0.999729 0.0232762i \(-0.00740971\pi\)
\(570\) 0 0
\(571\) 15.2307i 0.637383i −0.947858 0.318692i \(-0.896757\pi\)
0.947858 0.318692i \(-0.103243\pi\)
\(572\) −31.1180 + 14.4889i −1.30111 + 0.605811i
\(573\) 0 0
\(574\) 5.97512 1.32286i 0.249397 0.0552151i
\(575\) −3.79349 −0.158199
\(576\) 0 0
\(577\) −16.3165 −0.679265 −0.339633 0.940558i \(-0.610303\pi\)
−0.339633 + 0.940558i \(0.610303\pi\)
\(578\) 15.5513 3.44298i 0.646849 0.143209i
\(579\) 0 0
\(580\) −42.6846 + 19.8744i −1.77238 + 0.825240i
\(581\) 70.6235i 2.92995i
\(582\) 0 0
\(583\) 10.7383i 0.444733i
\(584\) 5.79186 4.43636i 0.239669 0.183578i
\(585\) 0 0
\(586\) −5.92945 26.7823i −0.244943 1.10637i
\(587\) −47.3344 −1.95370 −0.976849 0.213930i \(-0.931374\pi\)
−0.976849 + 0.213930i \(0.931374\pi\)
\(588\) 0 0
\(589\) 9.08036 0.374150
\(590\) 2.59647 + 11.7278i 0.106895 + 0.482825i
\(591\) 0 0
\(592\) 2.97155 3.53313i 0.122130 0.145211i
\(593\) 2.02295i 0.0830727i 0.999137 + 0.0415363i \(0.0132252\pi\)
−0.999137 + 0.0415363i \(0.986775\pi\)
\(594\) 0 0
\(595\) 34.7080i 1.42289i
\(596\) 14.6963 + 31.5634i 0.601983 + 1.29289i
\(597\) 0 0
\(598\) 9.54191 2.11253i 0.390198 0.0863876i
\(599\) 34.7329 1.41915 0.709574 0.704630i \(-0.248887\pi\)
0.709574 + 0.704630i \(0.248887\pi\)
\(600\) 0 0
\(601\) 33.6597 1.37301 0.686503 0.727127i \(-0.259145\pi\)
0.686503 + 0.727127i \(0.259145\pi\)
\(602\) 66.9131 14.8142i 2.72718 0.603782i
\(603\) 0 0
\(604\) 15.5222 + 33.3373i 0.631590 + 1.35648i
\(605\) 14.3282i 0.582523i
\(606\) 0 0
\(607\) 9.48505i 0.384986i −0.981298 0.192493i \(-0.938343\pi\)
0.981298 0.192493i \(-0.0616573\pi\)
\(608\) 9.38004 + 4.90001i 0.380411 + 0.198722i
\(609\) 0 0
\(610\) −9.02920 40.7833i −0.365582 1.65127i
\(611\) −5.97512 −0.241728
\(612\) 0 0
\(613\) 7.05129 0.284799 0.142400 0.989809i \(-0.454518\pi\)
0.142400 + 0.989809i \(0.454518\pi\)
\(614\) 1.19439 + 5.39483i 0.0482015 + 0.217718i
\(615\) 0 0
\(616\) 20.8728 + 27.2504i 0.840989 + 1.09795i
\(617\) 9.66949i 0.389279i 0.980875 + 0.194640i \(0.0623537\pi\)
−0.980875 + 0.194640i \(0.937646\pi\)
\(618\) 0 0
\(619\) 40.2173i 1.61647i 0.588861 + 0.808234i \(0.299576\pi\)
−0.588861 + 0.808234i \(0.700424\pi\)
\(620\) 26.0964 12.1508i 1.04806 0.487987i
\(621\) 0 0
\(622\) −19.6484 + 4.35004i −0.787828 + 0.174421i
\(623\) 19.6387 0.786806
\(624\) 0 0
\(625\) −29.5769 −1.18308
\(626\) −10.1365 + 2.24416i −0.405135 + 0.0896947i
\(627\) 0 0
\(628\) 37.5951 17.5047i 1.50021 0.698513i
\(629\) 2.76450i 0.110228i
\(630\) 0 0
\(631\) 23.4323i 0.932826i 0.884567 + 0.466413i \(0.154454\pi\)
−0.884567 + 0.466413i \(0.845546\pi\)
\(632\) 4.69961 + 6.13555i 0.186940 + 0.244059i
\(633\) 0 0
\(634\) −0.594798 2.68660i −0.0236225 0.106699i
\(635\) −9.71674 −0.385597
\(636\) 0 0
\(637\) −116.634 −4.62120
\(638\) −6.02752 27.2252i −0.238632 1.07786i
\(639\) 0 0
\(640\) 33.5145 + 1.53055i 1.32478 + 0.0605001i
\(641\) 11.7644i 0.464666i −0.972636 0.232333i \(-0.925364\pi\)
0.972636 0.232333i \(-0.0746359\pi\)
\(642\) 0 0
\(643\) 20.6478i 0.814271i −0.913368 0.407135i \(-0.866528\pi\)
0.913368 0.407135i \(-0.133472\pi\)
\(644\) −4.12516 8.85967i −0.162554 0.349120i
\(645\) 0 0
\(646\) 6.18731 1.36984i 0.243436 0.0538955i
\(647\) −23.6900 −0.931348 −0.465674 0.884956i \(-0.654188\pi\)
−0.465674 + 0.884956i \(0.654188\pi\)
\(648\) 0 0
\(649\) −7.11361 −0.279234
\(650\) −36.1971 + 8.01385i −1.41977 + 0.314329i
\(651\) 0 0
\(652\) 12.7558 + 27.3959i 0.499556 + 1.07290i
\(653\) 25.4126i 0.994471i 0.867615 + 0.497236i \(0.165652\pi\)
−0.867615 + 0.497236i \(0.834348\pi\)
\(654\) 0 0
\(655\) 60.8422i 2.37730i
\(656\) 2.71096 + 2.28006i 0.105845 + 0.0890213i
\(657\) 0 0
\(658\) 1.29158 + 5.83386i 0.0503512 + 0.227428i
\(659\) 15.2701 0.594840 0.297420 0.954747i \(-0.403874\pi\)
0.297420 + 0.954747i \(0.403874\pi\)
\(660\) 0 0
\(661\) 0.457019 0.0177760 0.00888799 0.999961i \(-0.497171\pi\)
0.00888799 + 0.999961i \(0.497171\pi\)
\(662\) −10.2419 46.2609i −0.398063 1.79798i
\(663\) 0 0
\(664\) −32.4527 + 24.8576i −1.25941 + 0.964660i
\(665\) 27.1082i 1.05121i
\(666\) 0 0
\(667\) 7.93906i 0.307401i
\(668\) 33.1753 15.4468i 1.28359 0.597654i
\(669\) 0 0
\(670\) −7.96093 + 1.76251i −0.307558 + 0.0680915i
\(671\) 24.7376 0.954983
\(672\) 0 0
\(673\) −21.5969 −0.832500 −0.416250 0.909250i \(-0.636656\pi\)
−0.416250 + 0.909250i \(0.636656\pi\)
\(674\) 23.9748 5.30788i 0.923473 0.204452i
\(675\) 0 0
\(676\) 63.0150 29.3405i 2.42365 1.12848i
\(677\) 25.0650i 0.963326i −0.876357 0.481663i \(-0.840033\pi\)
0.876357 0.481663i \(-0.159967\pi\)
\(678\) 0 0
\(679\) 62.6534i 2.40442i
\(680\) 15.9489 12.2163i 0.611613 0.468474i
\(681\) 0 0
\(682\) 3.68509 + 16.6449i 0.141109 + 0.637366i
\(683\) −2.85457 −0.109227 −0.0546136 0.998508i \(-0.517393\pi\)
−0.0546136 + 0.998508i \(0.517393\pi\)
\(684\) 0 0
\(685\) 35.7547 1.36612
\(686\) 14.7551 + 66.6463i 0.563353 + 2.54457i
\(687\) 0 0
\(688\) 30.3590 + 25.5335i 1.15743 + 0.973456i
\(689\) 29.8790i 1.13830i
\(690\) 0 0
\(691\) 7.38984i 0.281123i 0.990072 + 0.140561i \(0.0448907\pi\)
−0.990072 + 0.140561i \(0.955109\pi\)
\(692\) 12.7383 + 27.3582i 0.484237 + 1.04000i
\(693\) 0 0
\(694\) −24.9598 + 5.52595i −0.947459 + 0.209762i
\(695\) −24.4568 −0.927698
\(696\) 0 0
\(697\) 2.12119 0.0803459
\(698\) 19.4696 4.31046i 0.736936 0.163153i
\(699\) 0 0
\(700\) 15.6488 + 33.6091i 0.591468 + 1.27030i
\(701\) 12.0811i 0.456298i 0.973626 + 0.228149i \(0.0732673\pi\)
−0.973626 + 0.228149i \(0.926733\pi\)
\(702\) 0 0
\(703\) 2.15918i 0.0814349i
\(704\) −5.17534 + 19.1828i −0.195053 + 0.722979i
\(705\) 0 0
\(706\) −5.11080 23.0846i −0.192347 0.868800i
\(707\) −39.5026 −1.48565
\(708\) 0 0
\(709\) −23.5826 −0.885663 −0.442831 0.896605i \(-0.646026\pi\)
−0.442831 + 0.896605i \(0.646026\pi\)
\(710\) −5.62559 25.4098i −0.211124 0.953612i
\(711\) 0 0
\(712\) 6.91228 + 9.02429i 0.259049 + 0.338199i
\(713\) 4.85376i 0.181775i
\(714\) 0 0
\(715\) 50.8945i 1.90335i
\(716\) 0.730050 0.339919i 0.0272832 0.0127034i
\(717\) 0 0
\(718\) 22.9944 5.09083i 0.858143 0.189988i
\(719\) −0.889904 −0.0331878 −0.0165939 0.999862i \(-0.505282\pi\)
−0.0165939 + 0.999862i \(0.505282\pi\)
\(720\) 0 0
\(721\) −13.7576 −0.512359
\(722\) 21.4023 4.73835i 0.796510 0.176343i
\(723\) 0 0
\(724\) −40.3354 + 18.7806i −1.49905 + 0.697976i
\(725\) 30.1167i 1.11851i
\(726\) 0 0
\(727\) 22.0816i 0.818961i −0.912319 0.409480i \(-0.865710\pi\)
0.912319 0.409480i \(-0.134290\pi\)
\(728\) −58.0782 75.8237i −2.15252 2.81021i
\(729\) 0 0
\(730\) 2.33826 + 10.5615i 0.0865428 + 0.390899i
\(731\) 23.7544 0.878589
\(732\) 0 0
\(733\) −9.86197 −0.364260 −0.182130 0.983274i \(-0.558299\pi\)
−0.182130 + 0.983274i \(0.558299\pi\)
\(734\) 2.49113 + 11.2520i 0.0919493 + 0.415319i
\(735\) 0 0
\(736\) 2.61922 5.01395i 0.0965458 0.184817i
\(737\) 4.82879i 0.177871i
\(738\) 0 0
\(739\) 24.1781i 0.889407i −0.895678 0.444704i \(-0.853309\pi\)
0.895678 0.444704i \(-0.146691\pi\)
\(740\) 2.88928 + 6.20534i 0.106212 + 0.228113i
\(741\) 0 0
\(742\) −29.1726 + 6.45865i −1.07096 + 0.237104i
\(743\) −34.3825 −1.26137 −0.630686 0.776038i \(-0.717226\pi\)
−0.630686 + 0.776038i \(0.717226\pi\)
\(744\) 0 0
\(745\) −51.6230 −1.89132
\(746\) −11.3988 + 2.52363i −0.417339 + 0.0923966i
\(747\) 0 0
\(748\) 5.02200 + 10.7858i 0.183623 + 0.394369i
\(749\) 75.1620i 2.74636i
\(750\) 0 0
\(751\) 21.7090i 0.792171i −0.918214 0.396086i \(-0.870368\pi\)
0.918214 0.396086i \(-0.129632\pi\)
\(752\) −2.22615 + 2.64687i −0.0811794 + 0.0965213i
\(753\) 0 0
\(754\) 16.7715 + 75.7537i 0.610781 + 2.75879i
\(755\) −54.5242 −1.98434
\(756\) 0 0
\(757\) 10.3678 0.376825 0.188412 0.982090i \(-0.439666\pi\)
0.188412 + 0.982090i \(0.439666\pi\)
\(758\) −5.00757 22.6183i −0.181883 0.821534i
\(759\) 0 0
\(760\) −12.4567 + 9.54138i −0.451852 + 0.346102i
\(761\) 19.1235i 0.693228i −0.938008 0.346614i \(-0.887331\pi\)
0.938008 0.346614i \(-0.112669\pi\)
\(762\) 0 0
\(763\) 29.4732i 1.06700i
\(764\) −29.9580 + 13.9488i −1.08384 + 0.504648i
\(765\) 0 0
\(766\) −21.7605 + 4.81765i −0.786239 + 0.174069i
\(767\) 19.7935 0.714702
\(768\) 0 0
\(769\) 6.81042 0.245590 0.122795 0.992432i \(-0.460814\pi\)
0.122795 + 0.992432i \(0.460814\pi\)
\(770\) −49.6912 + 11.0014i −1.79075 + 0.396462i
\(771\) 0 0
\(772\) 38.3109 17.8380i 1.37884 0.642004i
\(773\) 19.7958i 0.712005i −0.934485 0.356002i \(-0.884139\pi\)
0.934485 0.356002i \(-0.115861\pi\)
\(774\) 0 0
\(775\) 18.4127i 0.661403i
\(776\) −28.7903 + 22.0523i −1.03351 + 0.791632i
\(777\) 0 0
\(778\) −6.92121 31.2619i −0.248137 1.12079i
\(779\) −1.65673 −0.0593585
\(780\) 0 0
\(781\) 15.4126 0.551505
\(782\) −0.732224 3.30733i −0.0261843 0.118270i
\(783\) 0 0
\(784\) −43.4543 + 51.6666i −1.55194 + 1.84523i
\(785\) 61.4879i 2.19460i
\(786\) 0 0
\(787\) 26.7177i 0.952382i 0.879342 + 0.476191i \(0.157983\pi\)
−0.879342 + 0.476191i \(0.842017\pi\)
\(788\) 8.35648 + 17.9473i 0.297687 + 0.639347i
\(789\) 0 0
\(790\) −11.1882 + 2.47701i −0.398058 + 0.0881279i
\(791\) −43.0475 −1.53059
\(792\) 0 0
\(793\) −68.8318 −2.44429
\(794\) −13.7744 + 3.04957i −0.488835 + 0.108225i
\(795\) 0 0
\(796\) 0.966527 + 2.07583i 0.0342577 + 0.0735757i
\(797\) 7.91237i 0.280270i −0.990132 0.140135i \(-0.955246\pi\)
0.990132 0.140135i \(-0.0447537\pi\)
\(798\) 0 0
\(799\) 2.07104i 0.0732682i
\(800\) −9.93599 + 19.0204i −0.351290 + 0.672472i
\(801\) 0 0
\(802\) 8.48648 + 38.3319i 0.299668 + 1.35355i
\(803\) −6.40619 −0.226070
\(804\) 0 0
\(805\) 14.4903 0.510715
\(806\) −10.2537 46.3141i −0.361171 1.63135i
\(807\) 0 0
\(808\) −13.9038 18.1521i −0.489136 0.638588i
\(809\) 39.2974i 1.38162i 0.723035 + 0.690811i \(0.242746\pi\)
−0.723035 + 0.690811i \(0.757254\pi\)
\(810\) 0 0
\(811\) 34.2535i 1.20280i −0.798946 0.601402i \(-0.794609\pi\)
0.798946 0.601402i \(-0.205391\pi\)
\(812\) 70.3374 32.7499i 2.46836 1.14930i
\(813\) 0 0
\(814\) −3.95791 + 0.876260i −0.138725 + 0.0307129i
\(815\) −44.8068 −1.56951
\(816\) 0 0
\(817\) −18.5531 −0.649090
\(818\) 48.1345 10.6567i 1.68298 0.372603i
\(819\) 0 0
\(820\) −4.76134 + 2.21693i −0.166273 + 0.0774186i
\(821\) 10.5883i 0.369533i 0.982782 + 0.184767i \(0.0591529\pi\)
−0.982782 + 0.184767i \(0.940847\pi\)
\(822\) 0 0
\(823\) 26.7188i 0.931358i 0.884954 + 0.465679i \(0.154190\pi\)
−0.884954 + 0.465679i \(0.845810\pi\)
\(824\) −4.84230 6.32184i −0.168690 0.220232i
\(825\) 0 0
\(826\) −4.27857 19.3255i −0.148870 0.672421i
\(827\) 28.7417 0.999448 0.499724 0.866185i \(-0.333435\pi\)
0.499724 + 0.866185i \(0.333435\pi\)
\(828\) 0 0
\(829\) 4.62081 0.160487 0.0802436 0.996775i \(-0.474430\pi\)
0.0802436 + 0.996775i \(0.474430\pi\)
\(830\) −13.1016 59.1776i −0.454763 2.05408i
\(831\) 0 0
\(832\) 14.4003 53.3758i 0.499240 1.85047i
\(833\) 40.4265i 1.40070i
\(834\) 0 0
\(835\) 54.2592i 1.87772i
\(836\) −3.92237 8.42413i −0.135658 0.291355i
\(837\) 0 0
\(838\) −2.42611 + 0.537127i −0.0838085 + 0.0185547i
\(839\) −27.2451 −0.940605 −0.470302 0.882505i \(-0.655855\pi\)
−0.470302 + 0.882505i \(0.655855\pi\)
\(840\) 0 0
\(841\) −34.0286 −1.17340
\(842\) −10.4172 + 2.30630i −0.358999 + 0.0794804i
\(843\) 0 0
\(844\) −9.45905 20.3153i −0.325594 0.699283i
\(845\) 103.063i 3.54548i
\(846\) 0 0
\(847\) 23.6105i 0.811268i
\(848\) −13.2358 11.1320i −0.454520 0.382275i
\(849\) 0 0
\(850\) 2.77768 + 12.5463i 0.0952738 + 0.430335i
\(851\) 1.15415 0.0395639
\(852\) 0 0
\(853\) 2.66223 0.0911530 0.0455765 0.998961i \(-0.485488\pi\)
0.0455765 + 0.998961i \(0.485488\pi\)
\(854\) 14.8787 + 67.2045i 0.509138 + 2.29969i
\(855\) 0 0
\(856\) 34.5382 26.4550i 1.18049 0.904214i
\(857\) 30.9690i 1.05788i −0.848659 0.528940i \(-0.822590\pi\)
0.848659 0.528940i \(-0.177410\pi\)
\(858\) 0 0
\(859\) 14.8750i 0.507527i 0.967266 + 0.253764i \(0.0816685\pi\)
−0.967266 + 0.253764i \(0.918331\pi\)
\(860\) −53.3204 + 24.8266i −1.81821 + 0.846579i
\(861\) 0 0
\(862\) 18.9560 4.19676i 0.645645 0.142942i
\(863\) 45.1386 1.53653 0.768267 0.640129i \(-0.221119\pi\)
0.768267 + 0.640129i \(0.221119\pi\)
\(864\) 0 0
\(865\) −44.7452 −1.52138
\(866\) 10.2800 2.27593i 0.349329 0.0773394i
\(867\) 0 0
\(868\) −43.0027 + 20.0225i −1.45961 + 0.679609i
\(869\) 6.78632i 0.230210i
\(870\) 0 0
\(871\) 13.4360i 0.455262i
\(872\) −13.5434 + 10.3738i −0.458638 + 0.351300i
\(873\) 0 0
\(874\) 0.571894 + 2.58314i 0.0193446 + 0.0873762i
\(875\) 17.4827 0.591022
\(876\) 0 0
\(877\) 6.41194 0.216516 0.108258 0.994123i \(-0.465473\pi\)
0.108258 + 0.994123i \(0.465473\pi\)
\(878\) −11.0947 50.1130i −0.374429 1.69123i
\(879\) 0 0
\(880\) −22.5453 18.9618i −0.760002 0.639201i
\(881\) 19.8859i 0.669973i 0.942223 + 0.334987i \(0.108732\pi\)
−0.942223 + 0.334987i \(0.891268\pi\)
\(882\) 0 0
\(883\) 26.0266i 0.875864i −0.899008 0.437932i \(-0.855711\pi\)
0.899008 0.437932i \(-0.144289\pi\)
\(884\) −13.9736 30.0114i −0.469984 1.00939i
\(885\) 0 0
\(886\) 16.0345 3.54994i 0.538689 0.119263i
\(887\) −32.0532 −1.07624 −0.538120 0.842868i \(-0.680865\pi\)
−0.538120 + 0.842868i \(0.680865\pi\)
\(888\) 0 0
\(889\) 16.0116 0.537013
\(890\) −16.4558 + 3.64323i −0.551601 + 0.122121i
\(891\) 0 0
\(892\) 14.1672 + 30.4271i 0.474353 + 1.01878i
\(893\) 1.61756i 0.0541296i
\(894\) 0 0
\(895\) 1.19402i 0.0399117i
\(896\) −55.2267 2.52210i −1.84499 0.0842573i
\(897\) 0 0
\(898\) −9.83949 44.4433i −0.328348 1.48309i
\(899\) 38.5343 1.28519
\(900\) 0 0
\(901\) −10.3564 −0.345021
\(902\) −0.672352 3.03689i −0.0223869 0.101118i
\(903\) 0 0
\(904\) −15.1516 19.7810i −0.503933 0.657907i
\(905\) 65.9698i 2.19291i
\(906\) 0 0
\(907\) 1.79275i 0.0595273i −0.999557 0.0297637i \(-0.990525\pi\)
0.999557 0.0297637i \(-0.00947547\pi\)
\(908\) −17.9246 + 8.34591i −0.594850 + 0.276969i
\(909\) 0 0
\(910\) 138.265 30.6111i 4.58344 1.01475i
\(911\) 37.0080 1.22613 0.613065 0.790032i \(-0.289936\pi\)
0.613065 + 0.790032i \(0.289936\pi\)
\(912\) 0 0
\(913\) 35.8948 1.18794
\(914\) 27.1267 6.00571i 0.897273 0.198651i
\(915\) 0 0
\(916\) −16.1890 + 7.53780i −0.534901 + 0.249056i
\(917\) 100.258i 3.31082i
\(918\) 0 0
\(919\) 15.4173i 0.508569i 0.967129 + 0.254285i \(0.0818400\pi\)
−0.967129 + 0.254285i \(0.918160\pi\)
\(920\) 5.10019 + 6.65853i 0.168148 + 0.219525i
\(921\) 0 0
\(922\) −2.46008 11.1117i −0.0810184 0.365946i
\(923\) −42.8852 −1.41158
\(924\) 0 0
\(925\) −4.37827 −0.143957
\(926\) 4.36305 + 19.7071i 0.143379 + 0.647616i
\(927\) 0 0
\(928\) 39.8060 + 20.7941i 1.30670 + 0.682601i
\(929\) 3.59579i 0.117974i −0.998259 0.0589870i \(-0.981213\pi\)
0.998259 0.0589870i \(-0.0187870\pi\)
\(930\) 0 0
\(931\) 31.5746i 1.03482i
\(932\) −16.1907 34.7730i −0.530344 1.13903i
\(933\) 0 0
\(934\) −10.8547 + 2.40318i −0.355178 + 0.0786344i
\(935\) −17.6406 −0.576908
\(936\) 0 0
\(937\) 6.74552 0.220366 0.110183 0.993911i \(-0.464856\pi\)
0.110183 + 0.993911i \(0.464856\pi\)
\(938\) 13.1184 2.90433i 0.428330 0.0948298i
\(939\) 0 0
\(940\) −2.16452 4.64877i −0.0705988 0.151626i
\(941\) 39.3458i 1.28264i 0.767275 + 0.641318i \(0.221612\pi\)
−0.767275 + 0.641318i \(0.778388\pi\)
\(942\) 0 0
\(943\) 0.885578i 0.0288384i
\(944\) 7.37447 8.76814i 0.240018 0.285379i
\(945\) 0 0
\(946\) −7.52941 34.0090i −0.244802 1.10573i
\(947\) −30.6870 −0.997194 −0.498597 0.866834i \(-0.666151\pi\)
−0.498597 + 0.866834i \(0.666151\pi\)
\(948\) 0 0
\(949\) 17.8251 0.578627
\(950\) −2.16947 9.79913i −0.0703870 0.317926i
\(951\) 0 0
\(952\) −26.2813 + 20.1305i −0.851782 + 0.652434i
\(953\) 12.1012i 0.391997i −0.980604 0.195998i \(-0.937205\pi\)
0.980604 0.195998i \(-0.0627947\pi\)
\(954\) 0 0
\(955\) 48.9972i 1.58551i
\(956\) −11.3737 + 5.29572i −0.367851 + 0.171276i
\(957\) 0 0
\(958\) −41.8342 + 9.26185i −1.35160 + 0.299237i
\(959\) −58.9182 −1.90257
\(960\) 0 0
\(961\) 7.44102 0.240033
\(962\) 11.0128 2.43818i 0.355068 0.0786100i
\(963\) 0 0
\(964\) 26.7300 12.4458i 0.860916 0.400852i
\(965\) 62.6588i 2.01706i
\(966\) 0 0
\(967\) 25.6908i 0.826162i −0.910694 0.413081i \(-0.864453\pi\)
0.910694 0.413081i \(-0.135547\pi\)
\(968\) −10.8494 + 8.31028i −0.348714 + 0.267102i
\(969\) 0 0
\(970\) −11.6230 52.4993i −0.373193 1.68565i
\(971\) 32.9020 1.05588 0.527938 0.849283i \(-0.322965\pi\)
0.527938 + 0.849283i \(0.322965\pi\)
\(972\) 0 0
\(973\) 40.3009 1.29199
\(974\) 6.54345 + 29.5556i 0.209666 + 0.947024i
\(975\) 0 0
\(976\) −25.6447 + 30.4912i −0.820866 + 0.975999i
\(977\) 33.5011i 1.07179i 0.844283 + 0.535897i \(0.180026\pi\)
−0.844283 + 0.535897i \(0.819974\pi\)
\(978\) 0 0
\(979\) 9.98147i 0.319009i
\(980\) −42.2512 90.7435i −1.34966 2.89869i
\(981\) 0 0
\(982\) 1.43030 0.316660i 0.0456426 0.0101050i
\(983\) 8.91513 0.284348 0.142174 0.989842i \(-0.454591\pi\)
0.142174 + 0.989842i \(0.454591\pi\)
\(984\) 0 0
\(985\) −29.3535 −0.935279
\(986\) 26.2571 5.81317i 0.836195 0.185129i
\(987\) 0 0
\(988\) 10.9139 + 23.4400i 0.347218 + 0.745725i
\(989\) 9.91725i 0.315350i
\(990\) 0 0
\(991\) 42.7175i 1.35697i 0.734616 + 0.678483i \(0.237362\pi\)
−0.734616 + 0.678483i \(0.762638\pi\)
\(992\) −24.3365 12.7131i −0.772685 0.403640i
\(993\) 0 0
\(994\) 9.27008 + 41.8713i 0.294029 + 1.32808i
\(995\) −3.39508 −0.107631
\(996\) 0 0
\(997\) −26.5222 −0.839967 −0.419984 0.907532i \(-0.637964\pi\)
−0.419984 + 0.907532i \(0.637964\pi\)
\(998\) 7.88222 + 35.6026i 0.249507 + 1.12698i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.c.f.323.10 yes 12
3.2 odd 2 828.2.c.e.323.3 yes 12
4.3 odd 2 828.2.c.e.323.2 12
12.11 even 2 inner 828.2.c.f.323.11 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
828.2.c.e.323.2 12 4.3 odd 2
828.2.c.e.323.3 yes 12 3.2 odd 2
828.2.c.f.323.10 yes 12 1.1 even 1 trivial
828.2.c.f.323.11 yes 12 12.11 even 2 inner