Properties

Label 828.2.c.e.323.11
Level $828$
Weight $2$
Character 828.323
Analytic conductor $6.612$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(323,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.323"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-4,0,4,0,0,0,-4,0,-8,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 7 x^{10} + 20 x^{9} + 49 x^{8} - 382 x^{7} - 235 x^{6} + 2192 x^{5} + 668 x^{4} + \cdots + 1516 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.11
Root \(-1.66767 - 0.569132i\) of defining polynomial
Character \(\chi\) \(=\) 828.323
Dual form 828.2.c.e.323.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.06244 + 0.933389i) q^{2} +(0.257569 + 1.98335i) q^{4} +1.22862i q^{5} +3.40840i q^{7} +(-1.57758 + 2.34760i) q^{8} +(-1.14678 + 1.30533i) q^{10} +2.21869 q^{11} -4.82020 q^{13} +(-3.18136 + 3.62123i) q^{14} +(-3.86732 + 1.02170i) q^{16} +1.01086i q^{17} -8.63604i q^{19} +(-2.43677 + 0.316453i) q^{20} +(2.35723 + 2.07090i) q^{22} -1.00000 q^{23} +3.49050 q^{25} +(-5.12119 - 4.49913i) q^{26} +(-6.76003 + 0.877898i) q^{28} +9.68395i q^{29} -3.37624i q^{31} +(-5.06244 - 2.52422i) q^{32} +(-0.943523 + 1.07398i) q^{34} -4.18761 q^{35} +4.73094 q^{37} +(8.06079 - 9.17530i) q^{38} +(-2.88430 - 1.93824i) q^{40} +3.51413i q^{41} +3.87111i q^{43} +(0.571466 + 4.40043i) q^{44} +(-1.06244 - 0.933389i) q^{46} +2.64002 q^{47} -4.61718 q^{49} +(3.70846 + 3.25800i) q^{50} +(-1.24154 - 9.56013i) q^{52} +13.5760i q^{53} +2.72592i q^{55} +(-8.00157 - 5.37702i) q^{56} +(-9.03890 + 10.2886i) q^{58} -0.774720 q^{59} -9.56384 q^{61} +(3.15134 - 3.58706i) q^{62} +(-3.02248 - 7.40707i) q^{64} -5.92218i q^{65} -8.78558i q^{67} +(-2.00488 + 0.260365i) q^{68} +(-4.44910 - 3.90867i) q^{70} +15.6645 q^{71} +10.0471 q^{73} +(5.02635 + 4.41581i) q^{74} +(17.1282 - 2.22438i) q^{76} +7.56219i q^{77} +8.25854i q^{79} +(-1.25527 - 4.75145i) q^{80} +(-3.28005 + 3.73356i) q^{82} +2.16629 q^{83} -1.24195 q^{85} +(-3.61325 + 4.11283i) q^{86} +(-3.50017 + 5.20861i) q^{88} -4.80574i q^{89} -16.4292i q^{91} +(-0.257569 - 1.98335i) q^{92} +(2.80487 + 2.46417i) q^{94} +10.6104 q^{95} +12.8144 q^{97} +(-4.90549 - 4.30963i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 4 q^{4} - 4 q^{8} - 8 q^{10} - 12 q^{11} - 4 q^{13} + 12 q^{14} - 12 q^{16} - 20 q^{20} + 4 q^{22} - 12 q^{23} - 40 q^{25} - 8 q^{26} - 24 q^{28} - 44 q^{32} - 28 q^{34} - 40 q^{35} - 32 q^{37}+ \cdots + 20 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06244 + 0.933389i 0.751260 + 0.660006i
\(3\) 0 0
\(4\) 0.257569 + 1.98335i 0.128785 + 0.991673i
\(5\) 1.22862i 0.549454i 0.961522 + 0.274727i \(0.0885874\pi\)
−0.961522 + 0.274727i \(0.911413\pi\)
\(6\) 0 0
\(7\) 3.40840i 1.28825i 0.764919 + 0.644127i \(0.222779\pi\)
−0.764919 + 0.644127i \(0.777221\pi\)
\(8\) −1.57758 + 2.34760i −0.557759 + 0.830003i
\(9\) 0 0
\(10\) −1.14678 + 1.30533i −0.362643 + 0.412783i
\(11\) 2.21869 0.668961 0.334480 0.942403i \(-0.391439\pi\)
0.334480 + 0.942403i \(0.391439\pi\)
\(12\) 0 0
\(13\) −4.82020 −1.33688 −0.668442 0.743764i \(-0.733038\pi\)
−0.668442 + 0.743764i \(0.733038\pi\)
\(14\) −3.18136 + 3.62123i −0.850255 + 0.967814i
\(15\) 0 0
\(16\) −3.86732 + 1.02170i −0.966829 + 0.255424i
\(17\) 1.01086i 0.245169i 0.992458 + 0.122584i \(0.0391182\pi\)
−0.992458 + 0.122584i \(0.960882\pi\)
\(18\) 0 0
\(19\) 8.63604i 1.98124i −0.136633 0.990622i \(-0.543628\pi\)
0.136633 0.990622i \(-0.456372\pi\)
\(20\) −2.43677 + 0.316453i −0.544878 + 0.0707611i
\(21\) 0 0
\(22\) 2.35723 + 2.07090i 0.502564 + 0.441518i
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 3.49050 0.698101
\(26\) −5.12119 4.49913i −1.00435 0.882351i
\(27\) 0 0
\(28\) −6.76003 + 0.877898i −1.27753 + 0.165907i
\(29\) 9.68395i 1.79826i 0.437677 + 0.899132i \(0.355801\pi\)
−0.437677 + 0.899132i \(0.644199\pi\)
\(30\) 0 0
\(31\) 3.37624i 0.606390i −0.952929 0.303195i \(-0.901947\pi\)
0.952929 0.303195i \(-0.0980534\pi\)
\(32\) −5.06244 2.52422i −0.894922 0.446223i
\(33\) 0 0
\(34\) −0.943523 + 1.07398i −0.161813 + 0.184186i
\(35\) −4.18761 −0.707836
\(36\) 0 0
\(37\) 4.73094 0.777761 0.388881 0.921288i \(-0.372862\pi\)
0.388881 + 0.921288i \(0.372862\pi\)
\(38\) 8.06079 9.17530i 1.30763 1.48843i
\(39\) 0 0
\(40\) −2.88430 1.93824i −0.456048 0.306463i
\(41\) 3.51413i 0.548814i 0.961614 + 0.274407i \(0.0884816\pi\)
−0.961614 + 0.274407i \(0.911518\pi\)
\(42\) 0 0
\(43\) 3.87111i 0.590339i 0.955445 + 0.295169i \(0.0953761\pi\)
−0.955445 + 0.295169i \(0.904624\pi\)
\(44\) 0.571466 + 4.40043i 0.0861518 + 0.663390i
\(45\) 0 0
\(46\) −1.06244 0.933389i −0.156649 0.137621i
\(47\) 2.64002 0.385087 0.192544 0.981288i \(-0.438326\pi\)
0.192544 + 0.981288i \(0.438326\pi\)
\(48\) 0 0
\(49\) −4.61718 −0.659597
\(50\) 3.70846 + 3.25800i 0.524455 + 0.460750i
\(51\) 0 0
\(52\) −1.24154 9.56013i −0.172170 1.32575i
\(53\) 13.5760i 1.86481i 0.361414 + 0.932405i \(0.382294\pi\)
−0.361414 + 0.932405i \(0.617706\pi\)
\(54\) 0 0
\(55\) 2.72592i 0.367563i
\(56\) −8.00157 5.37702i −1.06925 0.718535i
\(57\) 0 0
\(58\) −9.03890 + 10.2886i −1.18687 + 1.35096i
\(59\) −0.774720 −0.100860 −0.0504300 0.998728i \(-0.516059\pi\)
−0.0504300 + 0.998728i \(0.516059\pi\)
\(60\) 0 0
\(61\) −9.56384 −1.22452 −0.612262 0.790655i \(-0.709740\pi\)
−0.612262 + 0.790655i \(0.709740\pi\)
\(62\) 3.15134 3.58706i 0.400221 0.455557i
\(63\) 0 0
\(64\) −3.02248 7.40707i −0.377810 0.925883i
\(65\) 5.92218i 0.734556i
\(66\) 0 0
\(67\) 8.78558i 1.07333i −0.843796 0.536664i \(-0.819684\pi\)
0.843796 0.536664i \(-0.180316\pi\)
\(68\) −2.00488 + 0.260365i −0.243127 + 0.0315739i
\(69\) 0 0
\(70\) −4.44910 3.90867i −0.531769 0.467176i
\(71\) 15.6645 1.85904 0.929518 0.368777i \(-0.120223\pi\)
0.929518 + 0.368777i \(0.120223\pi\)
\(72\) 0 0
\(73\) 10.0471 1.17593 0.587964 0.808887i \(-0.299930\pi\)
0.587964 + 0.808887i \(0.299930\pi\)
\(74\) 5.02635 + 4.41581i 0.584301 + 0.513327i
\(75\) 0 0
\(76\) 17.1282 2.22438i 1.96474 0.255153i
\(77\) 7.56219i 0.861791i
\(78\) 0 0
\(79\) 8.25854i 0.929158i 0.885532 + 0.464579i \(0.153794\pi\)
−0.885532 + 0.464579i \(0.846206\pi\)
\(80\) −1.25527 4.75145i −0.140344 0.531228i
\(81\) 0 0
\(82\) −3.28005 + 3.73356i −0.362221 + 0.412302i
\(83\) 2.16629 0.237781 0.118891 0.992907i \(-0.462066\pi\)
0.118891 + 0.992907i \(0.462066\pi\)
\(84\) 0 0
\(85\) −1.24195 −0.134709
\(86\) −3.61325 + 4.11283i −0.389627 + 0.443498i
\(87\) 0 0
\(88\) −3.50017 + 5.20861i −0.373119 + 0.555239i
\(89\) 4.80574i 0.509407i −0.967019 0.254704i \(-0.918022\pi\)
0.967019 0.254704i \(-0.0819779\pi\)
\(90\) 0 0
\(91\) 16.4292i 1.72225i
\(92\) −0.257569 1.98335i −0.0268534 0.206778i
\(93\) 0 0
\(94\) 2.80487 + 2.46417i 0.289301 + 0.254160i
\(95\) 10.6104 1.08860
\(96\) 0 0
\(97\) 12.8144 1.30111 0.650554 0.759460i \(-0.274537\pi\)
0.650554 + 0.759460i \(0.274537\pi\)
\(98\) −4.90549 4.30963i −0.495529 0.435338i
\(99\) 0 0
\(100\) 0.899045 + 6.92287i 0.0899045 + 0.692287i
\(101\) 12.7990i 1.27354i −0.771052 0.636772i \(-0.780269\pi\)
0.771052 0.636772i \(-0.219731\pi\)
\(102\) 0 0
\(103\) 6.07708i 0.598793i 0.954129 + 0.299396i \(0.0967853\pi\)
−0.954129 + 0.299396i \(0.903215\pi\)
\(104\) 7.60426 11.3159i 0.745659 1.10962i
\(105\) 0 0
\(106\) −12.6717 + 14.4237i −1.23079 + 1.40096i
\(107\) 15.8689 1.53410 0.767050 0.641587i \(-0.221724\pi\)
0.767050 + 0.641587i \(0.221724\pi\)
\(108\) 0 0
\(109\) −14.6944 −1.40747 −0.703733 0.710465i \(-0.748485\pi\)
−0.703733 + 0.710465i \(0.748485\pi\)
\(110\) −2.54434 + 2.89613i −0.242594 + 0.276136i
\(111\) 0 0
\(112\) −3.48235 13.1814i −0.329051 1.24552i
\(113\) 6.82745i 0.642273i 0.947033 + 0.321136i \(0.104065\pi\)
−0.947033 + 0.321136i \(0.895935\pi\)
\(114\) 0 0
\(115\) 1.22862i 0.114569i
\(116\) −19.2066 + 2.49429i −1.78329 + 0.231589i
\(117\) 0 0
\(118\) −0.823096 0.723116i −0.0757721 0.0665682i
\(119\) −3.44540 −0.315840
\(120\) 0 0
\(121\) −6.07741 −0.552492
\(122\) −10.1610 8.92679i −0.919937 0.808194i
\(123\) 0 0
\(124\) 6.69624 0.869614i 0.601340 0.0780936i
\(125\) 10.4316i 0.933028i
\(126\) 0 0
\(127\) 15.3795i 1.36471i −0.731020 0.682356i \(-0.760955\pi\)
0.731020 0.682356i \(-0.239045\pi\)
\(128\) 3.70247 10.6907i 0.327255 0.944936i
\(129\) 0 0
\(130\) 5.52770 6.29198i 0.484811 0.551843i
\(131\) 0.0770237 0.00672959 0.00336480 0.999994i \(-0.498929\pi\)
0.00336480 + 0.999994i \(0.498929\pi\)
\(132\) 0 0
\(133\) 29.4351 2.55234
\(134\) 8.20036 9.33417i 0.708403 0.806350i
\(135\) 0 0
\(136\) −2.37309 1.59471i −0.203491 0.136745i
\(137\) 3.89315i 0.332615i 0.986074 + 0.166307i \(0.0531844\pi\)
−0.986074 + 0.166307i \(0.946816\pi\)
\(138\) 0 0
\(139\) 10.0090i 0.848949i 0.905440 + 0.424475i \(0.139541\pi\)
−0.905440 + 0.424475i \(0.860459\pi\)
\(140\) −1.07860 8.30548i −0.0911583 0.701941i
\(141\) 0 0
\(142\) 16.6426 + 14.6211i 1.39662 + 1.22697i
\(143\) −10.6945 −0.894323
\(144\) 0 0
\(145\) −11.8979 −0.988063
\(146\) 10.6745 + 9.37788i 0.883428 + 0.776119i
\(147\) 0 0
\(148\) 1.21854 + 9.38308i 0.100164 + 0.771285i
\(149\) 17.8615i 1.46327i −0.681697 0.731635i \(-0.738758\pi\)
0.681697 0.731635i \(-0.261242\pi\)
\(150\) 0 0
\(151\) 10.5463i 0.858243i −0.903247 0.429121i \(-0.858823\pi\)
0.903247 0.429121i \(-0.141177\pi\)
\(152\) 20.2740 + 13.6240i 1.64444 + 1.10506i
\(153\) 0 0
\(154\) −7.05846 + 8.03439i −0.568787 + 0.647430i
\(155\) 4.14810 0.333183
\(156\) 0 0
\(157\) 16.4230 1.31070 0.655348 0.755327i \(-0.272522\pi\)
0.655348 + 0.755327i \(0.272522\pi\)
\(158\) −7.70843 + 8.77422i −0.613250 + 0.698040i
\(159\) 0 0
\(160\) 3.10129 6.21980i 0.245179 0.491718i
\(161\) 3.40840i 0.268619i
\(162\) 0 0
\(163\) 2.38240i 0.186604i −0.995638 0.0933019i \(-0.970258\pi\)
0.995638 0.0933019i \(-0.0297422\pi\)
\(164\) −6.96972 + 0.905130i −0.544244 + 0.0706788i
\(165\) 0 0
\(166\) 2.30156 + 2.02199i 0.178636 + 0.156937i
\(167\) −0.744061 −0.0575772 −0.0287886 0.999586i \(-0.509165\pi\)
−0.0287886 + 0.999586i \(0.509165\pi\)
\(168\) 0 0
\(169\) 10.2344 0.787258
\(170\) −1.31951 1.15923i −0.101201 0.0889087i
\(171\) 0 0
\(172\) −7.67775 + 0.997078i −0.585423 + 0.0760265i
\(173\) 16.3823i 1.24552i −0.782413 0.622760i \(-0.786011\pi\)
0.782413 0.622760i \(-0.213989\pi\)
\(174\) 0 0
\(175\) 11.8970i 0.899331i
\(176\) −8.58038 + 2.26683i −0.646771 + 0.170869i
\(177\) 0 0
\(178\) 4.48562 5.10582i 0.336212 0.382698i
\(179\) 5.87150 0.438857 0.219428 0.975629i \(-0.429581\pi\)
0.219428 + 0.975629i \(0.429581\pi\)
\(180\) 0 0
\(181\) 3.36353 0.250009 0.125005 0.992156i \(-0.460105\pi\)
0.125005 + 0.992156i \(0.460105\pi\)
\(182\) 15.3348 17.4551i 1.13669 1.29385i
\(183\) 0 0
\(184\) 1.57758 2.34760i 0.116301 0.173068i
\(185\) 5.81250i 0.427344i
\(186\) 0 0
\(187\) 2.24278i 0.164008i
\(188\) 0.679988 + 5.23608i 0.0495932 + 0.381880i
\(189\) 0 0
\(190\) 11.2729 + 9.90361i 0.817823 + 0.718483i
\(191\) −3.15439 −0.228244 −0.114122 0.993467i \(-0.536405\pi\)
−0.114122 + 0.993467i \(0.536405\pi\)
\(192\) 0 0
\(193\) 2.64746 0.190568 0.0952840 0.995450i \(-0.469624\pi\)
0.0952840 + 0.995450i \(0.469624\pi\)
\(194\) 13.6146 + 11.9608i 0.977470 + 0.858738i
\(195\) 0 0
\(196\) −1.18924 9.15746i −0.0849459 0.654104i
\(197\) 2.78253i 0.198247i 0.995075 + 0.0991237i \(0.0316039\pi\)
−0.995075 + 0.0991237i \(0.968396\pi\)
\(198\) 0 0
\(199\) 13.8637i 0.982770i 0.870942 + 0.491385i \(0.163509\pi\)
−0.870942 + 0.491385i \(0.836491\pi\)
\(200\) −5.50655 + 8.19431i −0.389372 + 0.579426i
\(201\) 0 0
\(202\) 11.9464 13.5982i 0.840546 0.956763i
\(203\) −33.0068 −2.31662
\(204\) 0 0
\(205\) −4.31751 −0.301548
\(206\) −5.67229 + 6.45655i −0.395207 + 0.449849i
\(207\) 0 0
\(208\) 18.6413 4.92479i 1.29254 0.341472i
\(209\) 19.1607i 1.32537i
\(210\) 0 0
\(211\) 7.83831i 0.539611i −0.962915 0.269806i \(-0.913041\pi\)
0.962915 0.269806i \(-0.0869595\pi\)
\(212\) −26.9259 + 3.49676i −1.84928 + 0.240159i
\(213\) 0 0
\(214\) 16.8597 + 14.8118i 1.15251 + 1.01252i
\(215\) −4.75611 −0.324364
\(216\) 0 0
\(217\) 11.5076 0.781184
\(218\) −15.6119 13.7156i −1.05737 0.928935i
\(219\) 0 0
\(220\) −5.40644 + 0.702113i −0.364502 + 0.0473364i
\(221\) 4.87254i 0.327762i
\(222\) 0 0
\(223\) 4.17477i 0.279563i −0.990182 0.139782i \(-0.955360\pi\)
0.990182 0.139782i \(-0.0446401\pi\)
\(224\) 8.60354 17.2548i 0.574848 1.15289i
\(225\) 0 0
\(226\) −6.37267 + 7.25378i −0.423904 + 0.482514i
\(227\) −6.55743 −0.435232 −0.217616 0.976034i \(-0.569828\pi\)
−0.217616 + 0.976034i \(0.569828\pi\)
\(228\) 0 0
\(229\) 1.31455 0.0868676 0.0434338 0.999056i \(-0.486170\pi\)
0.0434338 + 0.999056i \(0.486170\pi\)
\(230\) 1.14678 1.30533i 0.0756162 0.0860712i
\(231\) 0 0
\(232\) −22.7341 15.2772i −1.49256 1.00300i
\(233\) 17.4205i 1.14125i 0.821210 + 0.570627i \(0.193300\pi\)
−0.821210 + 0.570627i \(0.806700\pi\)
\(234\) 0 0
\(235\) 3.24357i 0.211587i
\(236\) −0.199544 1.53654i −0.0129892 0.100020i
\(237\) 0 0
\(238\) −3.66054 3.21590i −0.237278 0.208456i
\(239\) −26.1161 −1.68931 −0.844655 0.535312i \(-0.820194\pi\)
−0.844655 + 0.535312i \(0.820194\pi\)
\(240\) 0 0
\(241\) 8.12251 0.523217 0.261608 0.965174i \(-0.415747\pi\)
0.261608 + 0.965174i \(0.415747\pi\)
\(242\) −6.45690 5.67259i −0.415065 0.364648i
\(243\) 0 0
\(244\) −2.46335 18.9684i −0.157700 1.21433i
\(245\) 5.67274i 0.362418i
\(246\) 0 0
\(247\) 41.6275i 2.64869i
\(248\) 7.92606 + 5.32629i 0.503306 + 0.338220i
\(249\) 0 0
\(250\) −9.73671 + 11.0829i −0.615804 + 0.700947i
\(251\) −9.09053 −0.573789 −0.286895 0.957962i \(-0.592623\pi\)
−0.286895 + 0.957962i \(0.592623\pi\)
\(252\) 0 0
\(253\) −2.21869 −0.139488
\(254\) 14.3551 16.3399i 0.900718 1.02525i
\(255\) 0 0
\(256\) 13.9123 7.90245i 0.869517 0.493903i
\(257\) 10.6947i 0.667115i 0.942730 + 0.333557i \(0.108249\pi\)
−0.942730 + 0.333557i \(0.891751\pi\)
\(258\) 0 0
\(259\) 16.1249i 1.00195i
\(260\) 11.7457 1.52537i 0.728439 0.0945994i
\(261\) 0 0
\(262\) 0.0818333 + 0.0718931i 0.00505568 + 0.00444157i
\(263\) 8.52116 0.525437 0.262719 0.964872i \(-0.415381\pi\)
0.262719 + 0.964872i \(0.415381\pi\)
\(264\) 0 0
\(265\) −16.6797 −1.02463
\(266\) 31.2731 + 27.4744i 1.91747 + 1.68456i
\(267\) 0 0
\(268\) 17.4248 2.26289i 1.06439 0.138228i
\(269\) 6.47155i 0.394577i 0.980345 + 0.197289i \(0.0632136\pi\)
−0.980345 + 0.197289i \(0.936786\pi\)
\(270\) 0 0
\(271\) 8.63524i 0.524553i −0.964993 0.262277i \(-0.915527\pi\)
0.964993 0.262277i \(-0.0844733\pi\)
\(272\) −1.03279 3.90930i −0.0626220 0.237036i
\(273\) 0 0
\(274\) −3.63383 + 4.13625i −0.219528 + 0.249880i
\(275\) 7.74435 0.467002
\(276\) 0 0
\(277\) 9.70835 0.583318 0.291659 0.956522i \(-0.405793\pi\)
0.291659 + 0.956522i \(0.405793\pi\)
\(278\) −9.34226 + 10.6340i −0.560312 + 0.637782i
\(279\) 0 0
\(280\) 6.60630 9.83085i 0.394802 0.587506i
\(281\) 0.885037i 0.0527969i −0.999652 0.0263984i \(-0.991596\pi\)
0.999652 0.0263984i \(-0.00840386\pi\)
\(282\) 0 0
\(283\) 8.95308i 0.532205i −0.963945 0.266103i \(-0.914264\pi\)
0.963945 0.266103i \(-0.0857360\pi\)
\(284\) 4.03469 + 31.0681i 0.239415 + 1.84355i
\(285\) 0 0
\(286\) −11.3623 9.98217i −0.671869 0.590258i
\(287\) −11.9775 −0.707012
\(288\) 0 0
\(289\) 15.9782 0.939892
\(290\) −12.6408 11.1053i −0.742293 0.652127i
\(291\) 0 0
\(292\) 2.58783 + 19.9269i 0.151441 + 1.16614i
\(293\) 6.85130i 0.400257i 0.979770 + 0.200129i \(0.0641360\pi\)
−0.979770 + 0.200129i \(0.935864\pi\)
\(294\) 0 0
\(295\) 0.951834i 0.0554179i
\(296\) −7.46344 + 11.1064i −0.433803 + 0.645544i
\(297\) 0 0
\(298\) 16.6717 18.9768i 0.965767 1.09930i
\(299\) 4.82020 0.278760
\(300\) 0 0
\(301\) −13.1943 −0.760506
\(302\) 9.84377 11.2048i 0.566445 0.644764i
\(303\) 0 0
\(304\) 8.82341 + 33.3983i 0.506057 + 1.91552i
\(305\) 11.7503i 0.672820i
\(306\) 0 0
\(307\) 23.3952i 1.33523i −0.744505 0.667617i \(-0.767314\pi\)
0.744505 0.667617i \(-0.232686\pi\)
\(308\) −14.9984 + 1.94778i −0.854615 + 0.110985i
\(309\) 0 0
\(310\) 4.40712 + 3.87179i 0.250307 + 0.219903i
\(311\) 28.3202 1.60589 0.802945 0.596053i \(-0.203265\pi\)
0.802945 + 0.596053i \(0.203265\pi\)
\(312\) 0 0
\(313\) −15.0245 −0.849234 −0.424617 0.905373i \(-0.639591\pi\)
−0.424617 + 0.905373i \(0.639591\pi\)
\(314\) 17.4485 + 15.3290i 0.984674 + 0.865067i
\(315\) 0 0
\(316\) −16.3795 + 2.12714i −0.921421 + 0.119661i
\(317\) 23.9137i 1.34313i −0.740947 0.671564i \(-0.765623\pi\)
0.740947 0.671564i \(-0.234377\pi\)
\(318\) 0 0
\(319\) 21.4857i 1.20297i
\(320\) 9.10044 3.71346i 0.508730 0.207589i
\(321\) 0 0
\(322\) 3.18136 3.62123i 0.177290 0.201803i
\(323\) 8.72980 0.485739
\(324\) 0 0
\(325\) −16.8249 −0.933279
\(326\) 2.22370 2.53116i 0.123160 0.140188i
\(327\) 0 0
\(328\) −8.24977 5.54382i −0.455517 0.306106i
\(329\) 8.99825i 0.496090i
\(330\) 0 0
\(331\) 33.2140i 1.82561i −0.408398 0.912804i \(-0.633913\pi\)
0.408398 0.912804i \(-0.366087\pi\)
\(332\) 0.557969 + 4.29650i 0.0306225 + 0.235801i
\(333\) 0 0
\(334\) −0.790522 0.694498i −0.0432554 0.0380013i
\(335\) 10.7941 0.589745
\(336\) 0 0
\(337\) −15.3745 −0.837503 −0.418752 0.908101i \(-0.637532\pi\)
−0.418752 + 0.908101i \(0.637532\pi\)
\(338\) 10.8734 + 9.55264i 0.591436 + 0.519595i
\(339\) 0 0
\(340\) −0.319889 2.46323i −0.0173484 0.133587i
\(341\) 7.49083i 0.405651i
\(342\) 0 0
\(343\) 8.12160i 0.438525i
\(344\) −9.08783 6.10699i −0.489983 0.329267i
\(345\) 0 0
\(346\) 15.2910 17.4052i 0.822051 0.935710i
\(347\) 5.28524 0.283726 0.141863 0.989886i \(-0.454691\pi\)
0.141863 + 0.989886i \(0.454691\pi\)
\(348\) 0 0
\(349\) −33.2573 −1.78022 −0.890111 0.455743i \(-0.849373\pi\)
−0.890111 + 0.455743i \(0.849373\pi\)
\(350\) −11.1046 + 12.6399i −0.593563 + 0.675631i
\(351\) 0 0
\(352\) −11.2320 5.60046i −0.598668 0.298506i
\(353\) 19.5365i 1.03982i −0.854220 0.519912i \(-0.825965\pi\)
0.854220 0.519912i \(-0.174035\pi\)
\(354\) 0 0
\(355\) 19.2457i 1.02145i
\(356\) 9.53144 1.23781i 0.505165 0.0656038i
\(357\) 0 0
\(358\) 6.23814 + 5.48040i 0.329696 + 0.289648i
\(359\) 11.6023 0.612347 0.306173 0.951976i \(-0.400951\pi\)
0.306173 + 0.951976i \(0.400951\pi\)
\(360\) 0 0
\(361\) −55.5812 −2.92533
\(362\) 3.57356 + 3.13948i 0.187822 + 0.165007i
\(363\) 0 0
\(364\) 32.5847 4.23165i 1.70790 0.221799i
\(365\) 12.3441i 0.646118i
\(366\) 0 0
\(367\) 23.1472i 1.20827i 0.796880 + 0.604137i \(0.206482\pi\)
−0.796880 + 0.604137i \(0.793518\pi\)
\(368\) 3.86732 1.02170i 0.201598 0.0532596i
\(369\) 0 0
\(370\) −5.42533 + 6.17545i −0.282049 + 0.321047i
\(371\) −46.2725 −2.40235
\(372\) 0 0
\(373\) −35.0879 −1.81678 −0.908391 0.418122i \(-0.862688\pi\)
−0.908391 + 0.418122i \(0.862688\pi\)
\(374\) −2.09339 + 2.38283i −0.108246 + 0.123213i
\(375\) 0 0
\(376\) −4.16485 + 6.19773i −0.214786 + 0.319623i
\(377\) 46.6786i 2.40407i
\(378\) 0 0
\(379\) 5.76564i 0.296161i 0.988975 + 0.148081i \(0.0473095\pi\)
−0.988975 + 0.148081i \(0.952690\pi\)
\(380\) 2.73290 + 21.0440i 0.140195 + 1.07954i
\(381\) 0 0
\(382\) −3.35136 2.94427i −0.171470 0.150642i
\(383\) 16.1602 0.825748 0.412874 0.910788i \(-0.364525\pi\)
0.412874 + 0.910788i \(0.364525\pi\)
\(384\) 0 0
\(385\) −9.29102 −0.473514
\(386\) 2.81277 + 2.47111i 0.143166 + 0.125776i
\(387\) 0 0
\(388\) 3.30060 + 25.4154i 0.167562 + 1.29027i
\(389\) 14.3949i 0.729852i −0.931037 0.364926i \(-0.881094\pi\)
0.931037 0.364926i \(-0.118906\pi\)
\(390\) 0 0
\(391\) 1.01086i 0.0511212i
\(392\) 7.28397 10.8393i 0.367896 0.547468i
\(393\) 0 0
\(394\) −2.59719 + 2.95628i −0.130844 + 0.148935i
\(395\) −10.1466 −0.510529
\(396\) 0 0
\(397\) 20.8041 1.04413 0.522063 0.852907i \(-0.325162\pi\)
0.522063 + 0.852907i \(0.325162\pi\)
\(398\) −12.9402 + 14.7294i −0.648634 + 0.738316i
\(399\) 0 0
\(400\) −13.4989 + 3.56623i −0.674944 + 0.178312i
\(401\) 5.38087i 0.268708i 0.990933 + 0.134354i \(0.0428959\pi\)
−0.990933 + 0.134354i \(0.957104\pi\)
\(402\) 0 0
\(403\) 16.2741i 0.810673i
\(404\) 25.3847 3.29661i 1.26294 0.164013i
\(405\) 0 0
\(406\) −35.0678 30.8082i −1.74039 1.52898i
\(407\) 10.4965 0.520292
\(408\) 0 0
\(409\) 18.0534 0.892681 0.446341 0.894863i \(-0.352727\pi\)
0.446341 + 0.894863i \(0.352727\pi\)
\(410\) −4.58711 4.02992i −0.226541 0.199023i
\(411\) 0 0
\(412\) −12.0530 + 1.56527i −0.593807 + 0.0771153i
\(413\) 2.64056i 0.129933i
\(414\) 0 0
\(415\) 2.66154i 0.130650i
\(416\) 24.4020 + 12.1672i 1.19641 + 0.596548i
\(417\) 0 0
\(418\) 17.8844 20.3572i 0.874755 0.995701i
\(419\) −25.6298 −1.25210 −0.626048 0.779784i \(-0.715329\pi\)
−0.626048 + 0.779784i \(0.715329\pi\)
\(420\) 0 0
\(421\) −5.40133 −0.263245 −0.131622 0.991300i \(-0.542019\pi\)
−0.131622 + 0.991300i \(0.542019\pi\)
\(422\) 7.31619 8.32775i 0.356147 0.405389i
\(423\) 0 0
\(424\) −31.8711 21.4173i −1.54780 1.04011i
\(425\) 3.52840i 0.171152i
\(426\) 0 0
\(427\) 32.5974i 1.57750i
\(428\) 4.08733 + 31.4734i 0.197568 + 1.52133i
\(429\) 0 0
\(430\) −5.05309 4.43930i −0.243682 0.214082i
\(431\) −9.54944 −0.459980 −0.229990 0.973193i \(-0.573869\pi\)
−0.229990 + 0.973193i \(0.573869\pi\)
\(432\) 0 0
\(433\) 14.8130 0.711868 0.355934 0.934511i \(-0.384163\pi\)
0.355934 + 0.934511i \(0.384163\pi\)
\(434\) 12.2261 + 10.7410i 0.586873 + 0.515586i
\(435\) 0 0
\(436\) −3.78481 29.1440i −0.181260 1.39574i
\(437\) 8.63604i 0.413118i
\(438\) 0 0
\(439\) 34.3506i 1.63946i −0.572748 0.819731i \(-0.694123\pi\)
0.572748 0.819731i \(-0.305877\pi\)
\(440\) −6.39938 4.30036i −0.305078 0.205012i
\(441\) 0 0
\(442\) 4.54797 5.17679i 0.216325 0.246235i
\(443\) −23.4751 −1.11533 −0.557667 0.830065i \(-0.688303\pi\)
−0.557667 + 0.830065i \(0.688303\pi\)
\(444\) 0 0
\(445\) 5.90441 0.279896
\(446\) 3.89668 4.43545i 0.184513 0.210025i
\(447\) 0 0
\(448\) 25.2462 10.3018i 1.19277 0.486715i
\(449\) 2.98969i 0.141092i 0.997509 + 0.0705460i \(0.0224742\pi\)
−0.997509 + 0.0705460i \(0.977526\pi\)
\(450\) 0 0
\(451\) 7.79676i 0.367135i
\(452\) −13.5412 + 1.75854i −0.636924 + 0.0827148i
\(453\) 0 0
\(454\) −6.96689 6.12064i −0.326973 0.287256i
\(455\) 20.1851 0.946294
\(456\) 0 0
\(457\) −12.5595 −0.587507 −0.293753 0.955881i \(-0.594904\pi\)
−0.293753 + 0.955881i \(0.594904\pi\)
\(458\) 1.39663 + 1.22698i 0.0652602 + 0.0573331i
\(459\) 0 0
\(460\) 2.43677 0.316453i 0.113615 0.0147547i
\(461\) 11.6749i 0.543755i −0.962332 0.271878i \(-0.912355\pi\)
0.962332 0.271878i \(-0.0876446\pi\)
\(462\) 0 0
\(463\) 18.4628i 0.858038i −0.903296 0.429019i \(-0.858859\pi\)
0.903296 0.429019i \(-0.141141\pi\)
\(464\) −9.89406 37.4509i −0.459320 1.73861i
\(465\) 0 0
\(466\) −16.2601 + 18.5083i −0.753234 + 0.857379i
\(467\) −27.2829 −1.26250 −0.631251 0.775579i \(-0.717458\pi\)
−0.631251 + 0.775579i \(0.717458\pi\)
\(468\) 0 0
\(469\) 29.9447 1.38272
\(470\) −3.02752 + 3.44611i −0.139649 + 0.158957i
\(471\) 0 0
\(472\) 1.22218 1.81874i 0.0562556 0.0837141i
\(473\) 8.58880i 0.394914i
\(474\) 0 0
\(475\) 30.1441i 1.38311i
\(476\) −0.887429 6.83342i −0.0406752 0.313209i
\(477\) 0 0
\(478\) −27.7468 24.3765i −1.26911 1.11495i
\(479\) −13.4044 −0.612461 −0.306230 0.951957i \(-0.599068\pi\)
−0.306230 + 0.951957i \(0.599068\pi\)
\(480\) 0 0
\(481\) −22.8041 −1.03978
\(482\) 8.62970 + 7.58146i 0.393072 + 0.345326i
\(483\) 0 0
\(484\) −1.56535 12.0536i −0.0711524 0.547891i
\(485\) 15.7440i 0.714898i
\(486\) 0 0
\(487\) 3.65427i 0.165591i −0.996567 0.0827953i \(-0.973615\pi\)
0.996567 0.0827953i \(-0.0263848\pi\)
\(488\) 15.0877 22.4521i 0.682990 1.01636i
\(489\) 0 0
\(490\) 5.29488 6.02696i 0.239198 0.272270i
\(491\) 39.3521 1.77593 0.887967 0.459908i \(-0.152118\pi\)
0.887967 + 0.459908i \(0.152118\pi\)
\(492\) 0 0
\(493\) −9.78909 −0.440878
\(494\) −38.8546 + 44.2268i −1.74815 + 1.98986i
\(495\) 0 0
\(496\) 3.44949 + 13.0570i 0.154887 + 0.586276i
\(497\) 53.3909i 2.39491i
\(498\) 0 0
\(499\) 20.9177i 0.936406i 0.883621 + 0.468203i \(0.155098\pi\)
−0.883621 + 0.468203i \(0.844902\pi\)
\(500\) −20.6894 + 2.68685i −0.925258 + 0.120160i
\(501\) 0 0
\(502\) −9.65817 8.48500i −0.431065 0.378704i
\(503\) −31.2085 −1.39152 −0.695760 0.718275i \(-0.744932\pi\)
−0.695760 + 0.718275i \(0.744932\pi\)
\(504\) 0 0
\(505\) 15.7250 0.699753
\(506\) −2.35723 2.07090i −0.104792 0.0920629i
\(507\) 0 0
\(508\) 30.5029 3.96129i 1.35335 0.175754i
\(509\) 8.02365i 0.355642i −0.984063 0.177821i \(-0.943095\pi\)
0.984063 0.177821i \(-0.0569048\pi\)
\(510\) 0 0
\(511\) 34.2446i 1.51489i
\(512\) 22.1571 + 4.58967i 0.979213 + 0.202837i
\(513\) 0 0
\(514\) −9.98228 + 11.3625i −0.440300 + 0.501177i
\(515\) −7.46640 −0.329009
\(516\) 0 0
\(517\) 5.85740 0.257608
\(518\) −15.0508 + 17.1318i −0.661295 + 0.752728i
\(519\) 0 0
\(520\) 13.9029 + 9.34271i 0.609684 + 0.409705i
\(521\) 28.6574i 1.25550i 0.778413 + 0.627752i \(0.216025\pi\)
−0.778413 + 0.627752i \(0.783975\pi\)
\(522\) 0 0
\(523\) 11.5757i 0.506169i 0.967444 + 0.253084i \(0.0814450\pi\)
−0.967444 + 0.253084i \(0.918555\pi\)
\(524\) 0.0198389 + 0.152765i 0.000866668 + 0.00667355i
\(525\) 0 0
\(526\) 9.05325 + 7.95356i 0.394740 + 0.346792i
\(527\) 3.41289 0.148668
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −17.7212 15.5687i −0.769762 0.676260i
\(531\) 0 0
\(532\) 7.58156 + 58.3799i 0.328702 + 2.53109i
\(533\) 16.9388i 0.733701i
\(534\) 0 0
\(535\) 19.4967i 0.842917i
\(536\) 20.6250 + 13.8600i 0.890866 + 0.598659i
\(537\) 0 0
\(538\) −6.04047 + 6.87565i −0.260423 + 0.296430i
\(539\) −10.2441 −0.441245
\(540\) 0 0
\(541\) 30.4645 1.30977 0.654886 0.755728i \(-0.272717\pi\)
0.654886 + 0.755728i \(0.272717\pi\)
\(542\) 8.06004 9.17445i 0.346208 0.394076i
\(543\) 0 0
\(544\) 2.55162 5.11740i 0.109400 0.219407i
\(545\) 18.0537i 0.773337i
\(546\) 0 0
\(547\) 19.8944i 0.850623i −0.905047 0.425312i \(-0.860164\pi\)
0.905047 0.425312i \(-0.139836\pi\)
\(548\) −7.72147 + 1.00276i −0.329845 + 0.0428356i
\(549\) 0 0
\(550\) 8.22793 + 7.22849i 0.350840 + 0.308224i
\(551\) 83.6310 3.56280
\(552\) 0 0
\(553\) −28.1484 −1.19699
\(554\) 10.3146 + 9.06167i 0.438224 + 0.384993i
\(555\) 0 0
\(556\) −19.8512 + 2.57800i −0.841880 + 0.109332i
\(557\) 17.2707i 0.731781i 0.930658 + 0.365891i \(0.119236\pi\)
−0.930658 + 0.365891i \(0.880764\pi\)
\(558\) 0 0
\(559\) 18.6595i 0.789215i
\(560\) 16.1948 4.27847i 0.684356 0.180798i
\(561\) 0 0
\(562\) 0.826084 0.940301i 0.0348462 0.0396642i
\(563\) −40.9920 −1.72761 −0.863803 0.503829i \(-0.831924\pi\)
−0.863803 + 0.503829i \(0.831924\pi\)
\(564\) 0 0
\(565\) −8.38832 −0.352899
\(566\) 8.35671 9.51213i 0.351259 0.399825i
\(567\) 0 0
\(568\) −24.7120 + 36.7741i −1.03689 + 1.54301i
\(569\) 13.9433i 0.584534i −0.956337 0.292267i \(-0.905590\pi\)
0.956337 0.292267i \(-0.0944097\pi\)
\(570\) 0 0
\(571\) 1.53194i 0.0641097i 0.999486 + 0.0320548i \(0.0102051\pi\)
−0.999486 + 0.0320548i \(0.989795\pi\)
\(572\) −2.75458 21.2110i −0.115175 0.886875i
\(573\) 0 0
\(574\) −12.7254 11.1797i −0.531150 0.466632i
\(575\) −3.49050 −0.145564
\(576\) 0 0
\(577\) 20.5495 0.855487 0.427744 0.903900i \(-0.359309\pi\)
0.427744 + 0.903900i \(0.359309\pi\)
\(578\) 16.9759 + 14.9139i 0.706104 + 0.620334i
\(579\) 0 0
\(580\) −3.06452 23.5976i −0.127247 0.979835i
\(581\) 7.38358i 0.306322i
\(582\) 0 0
\(583\) 30.1210i 1.24749i
\(584\) −15.8502 + 23.5867i −0.655884 + 0.976023i
\(585\) 0 0
\(586\) −6.39493 + 7.27912i −0.264172 + 0.300698i
\(587\) −41.4352 −1.71021 −0.855107 0.518452i \(-0.826509\pi\)
−0.855107 + 0.518452i \(0.826509\pi\)
\(588\) 0 0
\(589\) −29.1573 −1.20141
\(590\) 0.888431 1.01127i 0.0365761 0.0416333i
\(591\) 0 0
\(592\) −18.2960 + 4.83358i −0.751962 + 0.198659i
\(593\) 22.2632i 0.914239i −0.889405 0.457120i \(-0.848881\pi\)
0.889405 0.457120i \(-0.151119\pi\)
\(594\) 0 0
\(595\) 4.23308i 0.173539i
\(596\) 35.4255 4.60056i 1.45108 0.188446i
\(597\) 0 0
\(598\) 5.12119 + 4.49913i 0.209421 + 0.183983i
\(599\) −30.5243 −1.24719 −0.623594 0.781749i \(-0.714328\pi\)
−0.623594 + 0.781749i \(0.714328\pi\)
\(600\) 0 0
\(601\) −34.5655 −1.40996 −0.704979 0.709228i \(-0.749044\pi\)
−0.704979 + 0.709228i \(0.749044\pi\)
\(602\) −14.0182 12.3154i −0.571338 0.501939i
\(603\) 0 0
\(604\) 20.9169 2.71639i 0.851096 0.110528i
\(605\) 7.46680i 0.303569i
\(606\) 0 0
\(607\) 43.5251i 1.76663i 0.468782 + 0.883314i \(0.344693\pi\)
−0.468782 + 0.883314i \(0.655307\pi\)
\(608\) −21.7992 + 43.7195i −0.884076 + 1.77306i
\(609\) 0 0
\(610\) 10.9676 12.4840i 0.444065 0.505463i
\(611\) −12.7254 −0.514817
\(612\) 0 0
\(613\) 38.9189 1.57192 0.785959 0.618279i \(-0.212170\pi\)
0.785959 + 0.618279i \(0.212170\pi\)
\(614\) 21.8368 24.8561i 0.881263 1.00311i
\(615\) 0 0
\(616\) −17.7530 11.9300i −0.715289 0.480672i
\(617\) 28.4644i 1.14593i 0.819578 + 0.572967i \(0.194208\pi\)
−0.819578 + 0.572967i \(0.805792\pi\)
\(618\) 0 0
\(619\) 41.9668i 1.68679i −0.537297 0.843393i \(-0.680554\pi\)
0.537297 0.843393i \(-0.319446\pi\)
\(620\) 1.06842 + 8.22711i 0.0429088 + 0.330409i
\(621\) 0 0
\(622\) 30.0886 + 26.4337i 1.20644 + 1.05990i
\(623\) 16.3799 0.656246
\(624\) 0 0
\(625\) 4.63613 0.185445
\(626\) −15.9627 14.0237i −0.637996 0.560500i
\(627\) 0 0
\(628\) 4.23005 + 32.5724i 0.168797 + 1.29978i
\(629\) 4.78230i 0.190683i
\(630\) 0 0
\(631\) 36.7177i 1.46171i 0.682534 + 0.730854i \(0.260878\pi\)
−0.682534 + 0.730854i \(0.739122\pi\)
\(632\) −19.3878 13.0285i −0.771204 0.518246i
\(633\) 0 0
\(634\) 22.3208 25.4069i 0.886472 1.00904i
\(635\) 18.8955 0.749846
\(636\) 0 0
\(637\) 22.2557 0.881805
\(638\) −20.0545 + 22.8273i −0.793966 + 0.903742i
\(639\) 0 0
\(640\) 13.1348 + 4.54891i 0.519199 + 0.179811i
\(641\) 12.3649i 0.488385i 0.969727 + 0.244193i \(0.0785229\pi\)
−0.969727 + 0.244193i \(0.921477\pi\)
\(642\) 0 0
\(643\) 23.0833i 0.910316i 0.890411 + 0.455158i \(0.150417\pi\)
−0.890411 + 0.455158i \(0.849583\pi\)
\(644\) 6.76003 0.877898i 0.266383 0.0345940i
\(645\) 0 0
\(646\) 9.27491 + 8.14830i 0.364917 + 0.320591i
\(647\) 40.5322 1.59349 0.796743 0.604318i \(-0.206554\pi\)
0.796743 + 0.604318i \(0.206554\pi\)
\(648\) 0 0
\(649\) −1.71887 −0.0674714
\(650\) −17.8755 15.7042i −0.701136 0.615970i
\(651\) 0 0
\(652\) 4.72512 0.613632i 0.185050 0.0240317i
\(653\) 7.34537i 0.287447i 0.989618 + 0.143723i \(0.0459075\pi\)
−0.989618 + 0.143723i \(0.954092\pi\)
\(654\) 0 0
\(655\) 0.0946326i 0.00369760i
\(656\) −3.59037 13.5902i −0.140180 0.530610i
\(657\) 0 0
\(658\) −8.39887 + 9.56013i −0.327422 + 0.372693i
\(659\) 50.1737 1.95449 0.977245 0.212115i \(-0.0680352\pi\)
0.977245 + 0.212115i \(0.0680352\pi\)
\(660\) 0 0
\(661\) 13.0921 0.509225 0.254613 0.967043i \(-0.418052\pi\)
0.254613 + 0.967043i \(0.418052\pi\)
\(662\) 31.0016 35.2880i 1.20491 1.37151i
\(663\) 0 0
\(664\) −3.41750 + 5.08559i −0.132625 + 0.197359i
\(665\) 36.1644i 1.40239i
\(666\) 0 0
\(667\) 9.68395i 0.374964i
\(668\) −0.191647 1.47573i −0.00741505 0.0570977i
\(669\) 0 0
\(670\) 11.4681 + 10.0751i 0.443052 + 0.389235i
\(671\) −21.2192 −0.819159
\(672\) 0 0
\(673\) 23.8992 0.921247 0.460624 0.887596i \(-0.347626\pi\)
0.460624 + 0.887596i \(0.347626\pi\)
\(674\) −16.3345 14.3504i −0.629183 0.552757i
\(675\) 0 0
\(676\) 2.63605 + 20.2983i 0.101387 + 0.780703i
\(677\) 37.7093i 1.44929i −0.689125 0.724643i \(-0.742005\pi\)
0.689125 0.724643i \(-0.257995\pi\)
\(678\) 0 0
\(679\) 43.6766i 1.67616i
\(680\) 1.95928 2.91562i 0.0751351 0.111809i
\(681\) 0 0
\(682\) 6.99186 7.95858i 0.267732 0.304750i
\(683\) −32.1564 −1.23043 −0.615216 0.788359i \(-0.710931\pi\)
−0.615216 + 0.788359i \(0.710931\pi\)
\(684\) 0 0
\(685\) −4.78319 −0.182756
\(686\) −7.58061 + 8.62873i −0.289429 + 0.329447i
\(687\) 0 0
\(688\) −3.95510 14.9708i −0.150787 0.570757i
\(689\) 65.4392i 2.49304i
\(690\) 0 0
\(691\) 25.6114i 0.974304i −0.873317 0.487152i \(-0.838036\pi\)
0.873317 0.487152i \(-0.161964\pi\)
\(692\) 32.4917 4.21956i 1.23515 0.160404i
\(693\) 0 0
\(694\) 5.61526 + 4.93318i 0.213152 + 0.187261i
\(695\) −12.2972 −0.466458
\(696\) 0 0
\(697\) −3.55228 −0.134552
\(698\) −35.3340 31.0420i −1.33741 1.17496i
\(699\) 0 0
\(700\) −23.5959 + 3.06431i −0.891841 + 0.115820i
\(701\) 15.2314i 0.575283i −0.957738 0.287641i \(-0.907129\pi\)
0.957738 0.287641i \(-0.0928711\pi\)
\(702\) 0 0
\(703\) 40.8566i 1.54093i
\(704\) −6.70595 16.4340i −0.252740 0.619380i
\(705\) 0 0
\(706\) 18.2352 20.7565i 0.686291 0.781179i
\(707\) 43.6239 1.64065
\(708\) 0 0
\(709\) −0.255381 −0.00959105 −0.00479552 0.999989i \(-0.501526\pi\)
−0.00479552 + 0.999989i \(0.501526\pi\)
\(710\) −17.9637 + 20.4474i −0.674166 + 0.767378i
\(711\) 0 0
\(712\) 11.2820 + 7.58144i 0.422810 + 0.284127i
\(713\) 3.37624i 0.126441i
\(714\) 0 0
\(715\) 13.1395i 0.491389i
\(716\) 1.51232 + 11.6452i 0.0565180 + 0.435202i
\(717\) 0 0
\(718\) 12.3268 + 10.8295i 0.460032 + 0.404152i
\(719\) 25.2308 0.940949 0.470475 0.882414i \(-0.344083\pi\)
0.470475 + 0.882414i \(0.344083\pi\)
\(720\) 0 0
\(721\) −20.7131 −0.771397
\(722\) −59.0518 51.8789i −2.19768 1.93073i
\(723\) 0 0
\(724\) 0.866341 + 6.67104i 0.0321973 + 0.247927i
\(725\) 33.8019i 1.25537i
\(726\) 0 0
\(727\) 20.9014i 0.775191i −0.921830 0.387596i \(-0.873306\pi\)
0.921830 0.387596i \(-0.126694\pi\)
\(728\) 38.5692 + 25.9183i 1.42947 + 0.960598i
\(729\) 0 0
\(730\) −11.5218 + 13.1149i −0.426442 + 0.485403i
\(731\) −3.91314 −0.144733
\(732\) 0 0
\(733\) 22.5200 0.831796 0.415898 0.909411i \(-0.363467\pi\)
0.415898 + 0.909411i \(0.363467\pi\)
\(734\) −21.6054 + 24.5926i −0.797468 + 0.907729i
\(735\) 0 0
\(736\) 5.06244 + 2.52422i 0.186604 + 0.0930439i
\(737\) 19.4925i 0.718015i
\(738\) 0 0
\(739\) 0.366071i 0.0134661i −0.999977 0.00673307i \(-0.997857\pi\)
0.999977 0.00673307i \(-0.00214322\pi\)
\(740\) −11.5282 + 1.49712i −0.423785 + 0.0550353i
\(741\) 0 0
\(742\) −49.1619 43.1903i −1.80479 1.58556i
\(743\) 9.67773 0.355042 0.177521 0.984117i \(-0.443192\pi\)
0.177521 + 0.984117i \(0.443192\pi\)
\(744\) 0 0
\(745\) 21.9449 0.803999
\(746\) −37.2789 32.7506i −1.36488 1.19909i
\(747\) 0 0
\(748\) −4.44821 + 0.577671i −0.162643 + 0.0211217i
\(749\) 54.0874i 1.97631i
\(750\) 0 0
\(751\) 2.92851i 0.106863i −0.998572 0.0534314i \(-0.982984\pi\)
0.998572 0.0534314i \(-0.0170158\pi\)
\(752\) −10.2098 + 2.69730i −0.372313 + 0.0983605i
\(753\) 0 0
\(754\) 43.5693 49.5933i 1.58670 1.80608i
\(755\) 12.9573 0.471565
\(756\) 0 0
\(757\) −6.07432 −0.220775 −0.110387 0.993889i \(-0.535209\pi\)
−0.110387 + 0.993889i \(0.535209\pi\)
\(758\) −5.38159 + 6.12567i −0.195468 + 0.222494i
\(759\) 0 0
\(760\) −16.7387 + 24.9089i −0.607177 + 0.903543i
\(761\) 8.37814i 0.303707i 0.988403 + 0.151854i \(0.0485243\pi\)
−0.988403 + 0.151854i \(0.951476\pi\)
\(762\) 0 0
\(763\) 50.0843i 1.81317i
\(764\) −0.812473 6.25624i −0.0293942 0.226343i
\(765\) 0 0
\(766\) 17.1693 + 15.0838i 0.620352 + 0.544999i
\(767\) 3.73431 0.134838
\(768\) 0 0
\(769\) 20.1540 0.726771 0.363385 0.931639i \(-0.381621\pi\)
0.363385 + 0.931639i \(0.381621\pi\)
\(770\) −9.87118 8.67214i −0.355733 0.312522i
\(771\) 0 0
\(772\) 0.681903 + 5.25082i 0.0245422 + 0.188981i
\(773\) 33.5388i 1.20631i −0.797626 0.603153i \(-0.793911\pi\)
0.797626 0.603153i \(-0.206089\pi\)
\(774\) 0 0
\(775\) 11.7848i 0.423321i
\(776\) −20.2158 + 30.0832i −0.725704 + 1.07992i
\(777\) 0 0
\(778\) 13.4361 15.2938i 0.481706 0.548309i
\(779\) 30.3481 1.08733
\(780\) 0 0
\(781\) 34.7547 1.24362
\(782\) 0.943523 1.07398i 0.0337403 0.0384054i
\(783\) 0 0
\(784\) 17.8561 4.71736i 0.637718 0.168477i
\(785\) 20.1775i 0.720167i
\(786\) 0 0
\(787\) 11.2448i 0.400835i −0.979711 0.200417i \(-0.935770\pi\)
0.979711 0.200417i \(-0.0642299\pi\)
\(788\) −5.51873 + 0.716695i −0.196596 + 0.0255312i
\(789\) 0 0
\(790\) −10.7802 9.47070i −0.383541 0.336952i
\(791\) −23.2707 −0.827410
\(792\) 0 0
\(793\) 46.0997 1.63705
\(794\) 22.1031 + 19.4183i 0.784411 + 0.689130i
\(795\) 0 0
\(796\) −27.4965 + 3.57085i −0.974586 + 0.126566i
\(797\) 13.6921i 0.484998i −0.970152 0.242499i \(-0.922033\pi\)
0.970152 0.242499i \(-0.0779671\pi\)
\(798\) 0 0
\(799\) 2.66869i 0.0944113i
\(800\) −17.6705 8.81079i −0.624745 0.311508i
\(801\) 0 0
\(802\) −5.02245 + 5.71687i −0.177349 + 0.201870i
\(803\) 22.2915 0.786649
\(804\) 0 0
\(805\) 4.18761 0.147594
\(806\) −15.1901 + 17.2904i −0.535049 + 0.609027i
\(807\) 0 0
\(808\) 30.0469 + 20.1914i 1.05704 + 0.710330i
\(809\) 5.56299i 0.195584i 0.995207 + 0.0977922i \(0.0311781\pi\)
−0.995207 + 0.0977922i \(0.968822\pi\)
\(810\) 0 0
\(811\) 11.5285i 0.404821i −0.979301 0.202410i \(-0.935123\pi\)
0.979301 0.202410i \(-0.0648775\pi\)
\(812\) −8.50152 65.4638i −0.298345 2.29733i
\(813\) 0 0
\(814\) 11.1519 + 9.79731i 0.390875 + 0.343396i
\(815\) 2.92705 0.102530
\(816\) 0 0
\(817\) 33.4311 1.16961
\(818\) 19.1807 + 16.8508i 0.670636 + 0.589175i
\(819\) 0 0
\(820\) −1.11206 8.56311i −0.0388347 0.299037i
\(821\) 47.3041i 1.65092i 0.564458 + 0.825462i \(0.309085\pi\)
−0.564458 + 0.825462i \(0.690915\pi\)
\(822\) 0 0
\(823\) 5.49929i 0.191693i −0.995396 0.0958466i \(-0.969444\pi\)
0.995396 0.0958466i \(-0.0305558\pi\)
\(824\) −14.2666 9.58709i −0.497000 0.333982i
\(825\) 0 0
\(826\) 2.46467 2.80544i 0.0857567 0.0976137i
\(827\) 14.1379 0.491624 0.245812 0.969318i \(-0.420945\pi\)
0.245812 + 0.969318i \(0.420945\pi\)
\(828\) 0 0
\(829\) 43.8496 1.52296 0.761480 0.648189i \(-0.224473\pi\)
0.761480 + 0.648189i \(0.224473\pi\)
\(830\) −2.48425 + 2.82773i −0.0862296 + 0.0981520i
\(831\) 0 0
\(832\) 14.5690 + 35.7036i 0.505088 + 1.23780i
\(833\) 4.66731i 0.161713i
\(834\) 0 0
\(835\) 0.914165i 0.0316360i
\(836\) 38.0023 4.93521i 1.31434 0.170688i
\(837\) 0 0
\(838\) −27.2302 23.9226i −0.940650 0.826391i
\(839\) 17.2099 0.594150 0.297075 0.954854i \(-0.403989\pi\)
0.297075 + 0.954854i \(0.403989\pi\)
\(840\) 0 0
\(841\) −64.7789 −2.23375
\(842\) −5.73860 5.04154i −0.197765 0.173743i
\(843\) 0 0
\(844\) 15.5461 2.01891i 0.535118 0.0694936i
\(845\) 12.5741i 0.432562i
\(846\) 0 0
\(847\) 20.7142i 0.711749i
\(848\) −13.8706 52.5028i −0.476318 1.80295i
\(849\) 0 0
\(850\) −3.29337 + 3.74872i −0.112962 + 0.128580i
\(851\) −4.73094 −0.162174
\(852\) 0 0
\(853\) −35.7347 −1.22353 −0.611766 0.791039i \(-0.709541\pi\)
−0.611766 + 0.791039i \(0.709541\pi\)
\(854\) 30.4261 34.6329i 1.04116 1.18511i
\(855\) 0 0
\(856\) −25.0344 + 37.2538i −0.855658 + 1.27331i
\(857\) 23.3758i 0.798502i −0.916842 0.399251i \(-0.869270\pi\)
0.916842 0.399251i \(-0.130730\pi\)
\(858\) 0 0
\(859\) 31.1150i 1.06163i −0.847488 0.530815i \(-0.821886\pi\)
0.847488 0.530815i \(-0.178114\pi\)
\(860\) −1.22503 9.43301i −0.0417731 0.321663i
\(861\) 0 0
\(862\) −10.1457 8.91335i −0.345565 0.303590i
\(863\) 36.1125 1.22928 0.614642 0.788806i \(-0.289301\pi\)
0.614642 + 0.788806i \(0.289301\pi\)
\(864\) 0 0
\(865\) 20.1275 0.684356
\(866\) 15.7380 + 13.8263i 0.534798 + 0.469837i
\(867\) 0 0
\(868\) 2.96399 + 22.8235i 0.100604 + 0.774679i
\(869\) 18.3232i 0.621570i
\(870\) 0 0
\(871\) 42.3483i 1.43492i
\(872\) 23.1816 34.4965i 0.785027 1.16820i
\(873\) 0 0
\(874\) −8.06079 + 9.17530i −0.272660 + 0.310359i
\(875\) −35.5549 −1.20198
\(876\) 0 0
\(877\) −6.99544 −0.236219 −0.118110 0.993001i \(-0.537683\pi\)
−0.118110 + 0.993001i \(0.537683\pi\)
\(878\) 32.0624 36.4955i 1.08205 1.23166i
\(879\) 0 0
\(880\) −2.78506 10.5420i −0.0938845 0.355371i
\(881\) 25.1312i 0.846692i −0.905968 0.423346i \(-0.860855\pi\)
0.905968 0.423346i \(-0.139145\pi\)
\(882\) 0 0
\(883\) 38.4680i 1.29455i 0.762256 + 0.647276i \(0.224092\pi\)
−0.762256 + 0.647276i \(0.775908\pi\)
\(884\) 9.66392 1.25501i 0.325033 0.0422107i
\(885\) 0 0
\(886\) −24.9409 21.9114i −0.837906 0.736127i
\(887\) 32.4015 1.08794 0.543969 0.839106i \(-0.316921\pi\)
0.543969 + 0.839106i \(0.316921\pi\)
\(888\) 0 0
\(889\) 52.4196 1.75810
\(890\) 6.27309 + 5.51111i 0.210275 + 0.184733i
\(891\) 0 0
\(892\) 8.28001 1.07529i 0.277235 0.0360034i
\(893\) 22.7993i 0.762951i
\(894\) 0 0
\(895\) 7.21382i 0.241132i
\(896\) 36.4383 + 12.6195i 1.21732 + 0.421587i
\(897\) 0 0
\(898\) −2.79054 + 3.17637i −0.0931216 + 0.105997i
\(899\) 32.6953 1.09045
\(900\) 0 0
\(901\) −13.7234 −0.457193
\(902\) −7.27741 + 8.28361i −0.242311 + 0.275814i
\(903\) 0 0
\(904\) −16.0281 10.7709i −0.533088 0.358233i
\(905\) 4.13248i 0.137368i
\(906\) 0 0
\(907\) 30.7057i 1.01957i 0.860303 + 0.509783i \(0.170274\pi\)
−0.860303 + 0.509783i \(0.829726\pi\)
\(908\) −1.68899 13.0056i −0.0560511 0.431608i
\(909\) 0 0
\(910\) 21.4456 + 18.8406i 0.710913 + 0.624560i
\(911\) 3.34011 0.110663 0.0553314 0.998468i \(-0.482378\pi\)
0.0553314 + 0.998468i \(0.482378\pi\)
\(912\) 0 0
\(913\) 4.80633 0.159066
\(914\) −13.3437 11.7229i −0.441371 0.387758i
\(915\) 0 0
\(916\) 0.338586 + 2.60720i 0.0111872 + 0.0861443i
\(917\) 0.262528i 0.00866942i
\(918\) 0 0
\(919\) 20.5895i 0.679185i −0.940573 0.339593i \(-0.889711\pi\)
0.940573 0.339593i \(-0.110289\pi\)
\(920\) 2.88430 + 1.93824i 0.0950926 + 0.0639019i
\(921\) 0 0
\(922\) 10.8972 12.4039i 0.358882 0.408502i
\(923\) −75.5061 −2.48532
\(924\) 0 0
\(925\) 16.5134 0.542956
\(926\) 17.2330 19.6156i 0.566310 0.644610i
\(927\) 0 0
\(928\) 24.4444 49.0244i 0.802427 1.60931i
\(929\) 53.1268i 1.74303i 0.490365 + 0.871517i \(0.336863\pi\)
−0.490365 + 0.871517i \(0.663137\pi\)
\(930\) 0 0
\(931\) 39.8742i 1.30682i
\(932\) −34.5508 + 4.48698i −1.13175 + 0.146976i
\(933\) 0 0
\(934\) −28.9865 25.4655i −0.948467 0.833258i
\(935\) −2.75551 −0.0901150
\(936\) 0 0
\(937\) 59.2470 1.93551 0.967757 0.251886i \(-0.0810508\pi\)
0.967757 + 0.251886i \(0.0810508\pi\)
\(938\) 31.8146 + 27.9501i 1.03878 + 0.912603i
\(939\) 0 0
\(940\) −6.43313 + 0.835444i −0.209826 + 0.0272492i
\(941\) 14.4291i 0.470375i 0.971950 + 0.235188i \(0.0755704\pi\)
−0.971950 + 0.235188i \(0.924430\pi\)
\(942\) 0 0
\(943\) 3.51413i 0.114436i
\(944\) 2.99609 0.791529i 0.0975144 0.0257621i
\(945\) 0 0
\(946\) −8.01670 + 9.12511i −0.260645 + 0.296683i
\(947\) 18.2275 0.592314 0.296157 0.955139i \(-0.404295\pi\)
0.296157 + 0.955139i \(0.404295\pi\)
\(948\) 0 0
\(949\) −48.4292 −1.57208
\(950\) 28.1362 32.0264i 0.912859 1.03907i
\(951\) 0 0
\(952\) 5.43540 8.08844i 0.176162 0.262148i
\(953\) 17.6007i 0.570143i −0.958506 0.285072i \(-0.907983\pi\)
0.958506 0.285072i \(-0.0920174\pi\)
\(954\) 0 0
\(955\) 3.87553i 0.125409i
\(956\) −6.72669 51.7972i −0.217557 1.67524i
\(957\) 0 0
\(958\) −14.2414 12.5115i −0.460118 0.404228i
\(959\) −13.2694 −0.428492
\(960\) 0 0
\(961\) 19.6010 0.632291
\(962\) −24.2280 21.2851i −0.781143 0.686259i
\(963\) 0 0
\(964\) 2.09211 + 16.1097i 0.0673822 + 0.518860i
\(965\) 3.25271i 0.104708i
\(966\) 0 0
\(967\) 43.6238i 1.40285i −0.712744 0.701424i \(-0.752548\pi\)
0.712744 0.701424i \(-0.247452\pi\)
\(968\) 9.58760 14.2673i 0.308157 0.458570i
\(969\) 0 0
\(970\) −14.6953 + 16.7271i −0.471837 + 0.537075i
\(971\) −25.3544 −0.813662 −0.406831 0.913504i \(-0.633366\pi\)
−0.406831 + 0.913504i \(0.633366\pi\)
\(972\) 0 0
\(973\) −34.1145 −1.09366
\(974\) 3.41085 3.88245i 0.109291 0.124402i
\(975\) 0 0
\(976\) 36.9864 9.77135i 1.18391 0.312773i
\(977\) 13.9548i 0.446455i −0.974766 0.223228i \(-0.928341\pi\)
0.974766 0.223228i \(-0.0716593\pi\)
\(978\) 0 0
\(979\) 10.6625i 0.340773i
\(980\) 11.2510 1.46112i 0.359400 0.0466738i
\(981\) 0 0
\(982\) 41.8093 + 36.7308i 1.33419 + 1.17213i
\(983\) −29.6731 −0.946425 −0.473213 0.880948i \(-0.656906\pi\)
−0.473213 + 0.880948i \(0.656906\pi\)
\(984\) 0 0
\(985\) −3.41867 −0.108928
\(986\) −10.4003 9.13703i −0.331214 0.290982i
\(987\) 0 0
\(988\) −82.5616 + 10.7219i −2.62664 + 0.341111i
\(989\) 3.87111i 0.123094i
\(990\) 0 0
\(991\) 10.3399i 0.328457i 0.986422 + 0.164229i \(0.0525134\pi\)
−0.986422 + 0.164229i \(0.947487\pi\)
\(992\) −8.52236 + 17.0920i −0.270585 + 0.542672i
\(993\) 0 0
\(994\) −49.8345 + 56.7248i −1.58065 + 1.79920i
\(995\) −17.0331 −0.539987
\(996\) 0 0
\(997\) −6.35171 −0.201161 −0.100580 0.994929i \(-0.532070\pi\)
−0.100580 + 0.994929i \(0.532070\pi\)
\(998\) −19.5244 + 22.2239i −0.618034 + 0.703485i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.c.e.323.11 yes 12
3.2 odd 2 828.2.c.f.323.2 yes 12
4.3 odd 2 828.2.c.f.323.3 yes 12
12.11 even 2 inner 828.2.c.e.323.10 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
828.2.c.e.323.10 12 12.11 even 2 inner
828.2.c.e.323.11 yes 12 1.1 even 1 trivial
828.2.c.f.323.2 yes 12 3.2 odd 2
828.2.c.f.323.3 yes 12 4.3 odd 2