Properties

Label 828.2.c.d.323.8
Level $828$
Weight $2$
Character 828.323
Analytic conductor $6.612$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,2,Mod(323,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.323"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 828.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,4,0,0,0,0,0,4,0,8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.61161328736\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.18939904.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 323.8
Root \(0.500000 - 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 828.323
Dual form 828.2.c.d.323.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.37456 + 0.332548i) q^{2} +(1.77882 + 0.914214i) q^{4} +1.74912i q^{5} +2.80853i q^{7} +(2.14108 + 1.84818i) q^{8} +(-0.581666 + 2.40426i) q^{10} -2.82843 q^{11} -1.88784 q^{13} +(-0.933971 + 3.86049i) q^{14} +(2.32843 + 3.25245i) q^{16} -2.25088i q^{17} +2.80853i q^{19} +(-1.59907 + 3.11137i) q^{20} +(-3.88784 - 0.940588i) q^{22} -1.00000 q^{23} +1.94059 q^{25} +(-2.59495 - 0.627797i) q^{26} +(-2.56760 + 4.99588i) q^{28} -3.41421i q^{29} -0.382941i q^{31} +(2.11896 + 5.24500i) q^{32} +(0.748526 - 3.09397i) q^{34} -4.91245 q^{35} +5.14343 q^{37} +(-0.933971 + 3.86049i) q^{38} +(-3.23269 + 3.74500i) q^{40} -7.15010i q^{41} +0.780391i q^{43} +(-5.03127 - 2.58579i) q^{44} +(-1.37456 - 0.332548i) q^{46} +9.30872 q^{47} -0.887839 q^{49} +(2.66745 + 0.645339i) q^{50} +(-3.35813 - 1.72589i) q^{52} +5.27549i q^{53} -4.94725i q^{55} +(-5.19068 + 6.01328i) q^{56} +(1.13539 - 4.69304i) q^{58} -4.58579 q^{59} +12.9191 q^{61} +(0.127346 - 0.526374i) q^{62} +(1.16843 + 7.91421i) q^{64} -3.30205i q^{65} +8.18794i q^{67} +(2.05779 - 4.00392i) q^{68} +(-6.75245 - 1.63363i) q^{70} -4.16804 q^{71} +12.6041 q^{73} +(7.06995 + 1.71044i) q^{74} +(-2.56760 + 4.99588i) q^{76} -7.94372i q^{77} +8.50295i q^{79} +(-5.68892 + 4.07269i) q^{80} +(2.37775 - 9.82823i) q^{82} -0.501765 q^{83} +3.93706 q^{85} +(-0.259517 + 1.07269i) q^{86} +(-6.05588 - 5.22746i) q^{88} -1.98509i q^{89} -5.30205i q^{91} +(-1.77882 - 0.914214i) q^{92} +(12.7954 + 3.09560i) q^{94} -4.91245 q^{95} -6.13048 q^{97} +(-1.22039 - 0.295249i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} + 4 q^{8} + 8 q^{10} + 8 q^{13} - 4 q^{16} - 8 q^{20} - 8 q^{22} - 8 q^{23} + 16 q^{25} + 8 q^{26} + 12 q^{28} + 4 q^{32} + 24 q^{34} + 24 q^{37} + 4 q^{40} - 4 q^{46} + 16 q^{47} + 16 q^{49}+ \cdots + 12 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.37456 + 0.332548i 0.971960 + 0.235147i
\(3\) 0 0
\(4\) 1.77882 + 0.914214i 0.889412 + 0.457107i
\(5\) 1.74912i 0.782229i 0.920342 + 0.391115i \(0.127910\pi\)
−0.920342 + 0.391115i \(0.872090\pi\)
\(6\) 0 0
\(7\) 2.80853i 1.06152i 0.847521 + 0.530762i \(0.178094\pi\)
−0.847521 + 0.530762i \(0.821906\pi\)
\(8\) 2.14108 + 1.84818i 0.756985 + 0.653432i
\(9\) 0 0
\(10\) −0.581666 + 2.40426i −0.183939 + 0.760295i
\(11\) −2.82843 −0.852803 −0.426401 0.904534i \(-0.640219\pi\)
−0.426401 + 0.904534i \(0.640219\pi\)
\(12\) 0 0
\(13\) −1.88784 −0.523592 −0.261796 0.965123i \(-0.584315\pi\)
−0.261796 + 0.965123i \(0.584315\pi\)
\(14\) −0.933971 + 3.86049i −0.249614 + 1.03176i
\(15\) 0 0
\(16\) 2.32843 + 3.25245i 0.582107 + 0.813112i
\(17\) 2.25088i 0.545919i −0.962025 0.272960i \(-0.911997\pi\)
0.962025 0.272960i \(-0.0880025\pi\)
\(18\) 0 0
\(19\) 2.80853i 0.644321i 0.946685 + 0.322160i \(0.104409\pi\)
−0.946685 + 0.322160i \(0.895591\pi\)
\(20\) −1.59907 + 3.11137i −0.357562 + 0.695724i
\(21\) 0 0
\(22\) −3.88784 0.940588i −0.828890 0.200534i
\(23\) −1.00000 −0.208514
\(24\) 0 0
\(25\) 1.94059 0.388118
\(26\) −2.59495 0.627797i −0.508911 0.123121i
\(27\) 0 0
\(28\) −2.56760 + 4.99588i −0.485230 + 0.944132i
\(29\) 3.41421i 0.634004i −0.948425 0.317002i \(-0.897324\pi\)
0.948425 0.317002i \(-0.102676\pi\)
\(30\) 0 0
\(31\) 0.382941i 0.0687781i −0.999409 0.0343891i \(-0.989051\pi\)
0.999409 0.0343891i \(-0.0109485\pi\)
\(32\) 2.11896 + 5.24500i 0.374584 + 0.927193i
\(33\) 0 0
\(34\) 0.748526 3.09397i 0.128371 0.530612i
\(35\) −4.91245 −0.830355
\(36\) 0 0
\(37\) 5.14343 0.845575 0.422788 0.906229i \(-0.361052\pi\)
0.422788 + 0.906229i \(0.361052\pi\)
\(38\) −0.933971 + 3.86049i −0.151510 + 0.626254i
\(39\) 0 0
\(40\) −3.23269 + 3.74500i −0.511133 + 0.592136i
\(41\) 7.15010i 1.11666i −0.829620 0.558329i \(-0.811443\pi\)
0.829620 0.558329i \(-0.188557\pi\)
\(42\) 0 0
\(43\) 0.780391i 0.119008i 0.998228 + 0.0595042i \(0.0189520\pi\)
−0.998228 + 0.0595042i \(0.981048\pi\)
\(44\) −5.03127 2.58579i −0.758493 0.389822i
\(45\) 0 0
\(46\) −1.37456 0.332548i −0.202668 0.0490315i
\(47\) 9.30872 1.35782 0.678908 0.734223i \(-0.262454\pi\)
0.678908 + 0.734223i \(0.262454\pi\)
\(48\) 0 0
\(49\) −0.887839 −0.126834
\(50\) 2.66745 + 0.645339i 0.377235 + 0.0912647i
\(51\) 0 0
\(52\) −3.35813 1.72589i −0.465689 0.239338i
\(53\) 5.27549i 0.724645i 0.932053 + 0.362322i \(0.118016\pi\)
−0.932053 + 0.362322i \(0.881984\pi\)
\(54\) 0 0
\(55\) 4.94725i 0.667087i
\(56\) −5.19068 + 6.01328i −0.693634 + 0.803558i
\(57\) 0 0
\(58\) 1.13539 4.69304i 0.149084 0.616226i
\(59\) −4.58579 −0.597019 −0.298509 0.954407i \(-0.596489\pi\)
−0.298509 + 0.954407i \(0.596489\pi\)
\(60\) 0 0
\(61\) 12.9191 1.65412 0.827061 0.562112i \(-0.190011\pi\)
0.827061 + 0.562112i \(0.190011\pi\)
\(62\) 0.127346 0.526374i 0.0161730 0.0668496i
\(63\) 0 0
\(64\) 1.16843 + 7.91421i 0.146053 + 0.989277i
\(65\) 3.30205i 0.409569i
\(66\) 0 0
\(67\) 8.18794i 1.00032i 0.865934 + 0.500158i \(0.166725\pi\)
−0.865934 + 0.500158i \(0.833275\pi\)
\(68\) 2.05779 4.00392i 0.249543 0.485547i
\(69\) 0 0
\(70\) −6.75245 1.63363i −0.807072 0.195256i
\(71\) −4.16804 −0.494656 −0.247328 0.968932i \(-0.579552\pi\)
−0.247328 + 0.968932i \(0.579552\pi\)
\(72\) 0 0
\(73\) 12.6041 1.47520 0.737599 0.675238i \(-0.235959\pi\)
0.737599 + 0.675238i \(0.235959\pi\)
\(74\) 7.06995 + 1.71044i 0.821865 + 0.198834i
\(75\) 0 0
\(76\) −2.56760 + 4.99588i −0.294523 + 0.573067i
\(77\) 7.94372i 0.905271i
\(78\) 0 0
\(79\) 8.50295i 0.956656i 0.878181 + 0.478328i \(0.158757\pi\)
−0.878181 + 0.478328i \(0.841243\pi\)
\(80\) −5.68892 + 4.07269i −0.636040 + 0.455341i
\(81\) 0 0
\(82\) 2.37775 9.82823i 0.262579 1.08535i
\(83\) −0.501765 −0.0550759 −0.0275379 0.999621i \(-0.508767\pi\)
−0.0275379 + 0.999621i \(0.508767\pi\)
\(84\) 0 0
\(85\) 3.93706 0.427034
\(86\) −0.259517 + 1.07269i −0.0279845 + 0.115671i
\(87\) 0 0
\(88\) −6.05588 5.22746i −0.645559 0.557249i
\(89\) 1.98509i 0.210420i −0.994450 0.105210i \(-0.966449\pi\)
0.994450 0.105210i \(-0.0335514\pi\)
\(90\) 0 0
\(91\) 5.30205i 0.555806i
\(92\) −1.77882 0.914214i −0.185455 0.0953134i
\(93\) 0 0
\(94\) 12.7954 + 3.09560i 1.31974 + 0.319286i
\(95\) −4.91245 −0.504007
\(96\) 0 0
\(97\) −6.13048 −0.622456 −0.311228 0.950335i \(-0.600740\pi\)
−0.311228 + 0.950335i \(0.600740\pi\)
\(98\) −1.22039 0.295249i −0.123278 0.0298247i
\(99\) 0 0
\(100\) 3.45196 + 1.77411i 0.345196 + 0.177411i
\(101\) 13.7409i 1.36727i −0.729825 0.683634i \(-0.760398\pi\)
0.729825 0.683634i \(-0.239602\pi\)
\(102\) 0 0
\(103\) 15.7769i 1.55454i −0.629167 0.777270i \(-0.716604\pi\)
0.629167 0.777270i \(-0.283396\pi\)
\(104\) −4.04201 3.48908i −0.396352 0.342132i
\(105\) 0 0
\(106\) −1.75435 + 7.25147i −0.170398 + 0.704325i
\(107\) −12.9870 −1.25551 −0.627753 0.778413i \(-0.716025\pi\)
−0.627753 + 0.778413i \(0.716025\pi\)
\(108\) 0 0
\(109\) 14.3892 1.37824 0.689118 0.724649i \(-0.257998\pi\)
0.689118 + 0.724649i \(0.257998\pi\)
\(110\) 1.64520 6.80029i 0.156864 0.648382i
\(111\) 0 0
\(112\) −9.13460 + 6.53946i −0.863139 + 0.617921i
\(113\) 17.0114i 1.60030i −0.599803 0.800148i \(-0.704754\pi\)
0.599803 0.800148i \(-0.295246\pi\)
\(114\) 0 0
\(115\) 1.74912i 0.163106i
\(116\) 3.12132 6.07328i 0.289807 0.563890i
\(117\) 0 0
\(118\) −6.30343 1.52499i −0.580278 0.140387i
\(119\) 6.32167 0.579507
\(120\) 0 0
\(121\) −3.00000 −0.272727
\(122\) 17.7581 + 4.29623i 1.60774 + 0.388962i
\(123\) 0 0
\(124\) 0.350089 0.681184i 0.0314390 0.0611721i
\(125\) 12.1399i 1.08583i
\(126\) 0 0
\(127\) 5.22470i 0.463617i −0.972761 0.231808i \(-0.925536\pi\)
0.972761 0.231808i \(-0.0744642\pi\)
\(128\) −1.02578 + 11.2671i −0.0906673 + 0.995881i
\(129\) 0 0
\(130\) 1.09809 4.53887i 0.0963090 0.398085i
\(131\) −12.9004 −1.12711 −0.563556 0.826078i \(-0.690567\pi\)
−0.563556 + 0.826078i \(0.690567\pi\)
\(132\) 0 0
\(133\) −7.88784 −0.683962
\(134\) −2.72288 + 11.2548i −0.235221 + 0.972267i
\(135\) 0 0
\(136\) 4.16005 4.81931i 0.356721 0.413253i
\(137\) 3.68342i 0.314695i −0.987543 0.157348i \(-0.949706\pi\)
0.987543 0.157348i \(-0.0502943\pi\)
\(138\) 0 0
\(139\) 13.4514i 1.14093i −0.821321 0.570466i \(-0.806763\pi\)
0.821321 0.570466i \(-0.193237\pi\)
\(140\) −8.73838 4.49103i −0.738528 0.379561i
\(141\) 0 0
\(142\) −5.72922 1.38607i −0.480785 0.116317i
\(143\) 5.33962 0.446521
\(144\) 0 0
\(145\) 5.97186 0.495936
\(146\) 17.3251 + 4.19147i 1.43383 + 0.346889i
\(147\) 0 0
\(148\) 9.14926 + 4.70220i 0.752065 + 0.386518i
\(149\) 10.3908i 0.851246i 0.904900 + 0.425623i \(0.139945\pi\)
−0.904900 + 0.425623i \(0.860055\pi\)
\(150\) 0 0
\(151\) 4.40569i 0.358530i 0.983801 + 0.179265i \(0.0573720\pi\)
−0.983801 + 0.179265i \(0.942628\pi\)
\(152\) −5.19068 + 6.01328i −0.421020 + 0.487741i
\(153\) 0 0
\(154\) 2.64167 10.9191i 0.212872 0.879887i
\(155\) 0.669808 0.0538003
\(156\) 0 0
\(157\) −17.0474 −1.36053 −0.680264 0.732967i \(-0.738135\pi\)
−0.680264 + 0.732967i \(0.738135\pi\)
\(158\) −2.82764 + 11.6878i −0.224955 + 0.929831i
\(159\) 0 0
\(160\) −9.17412 + 3.70632i −0.725278 + 0.293010i
\(161\) 2.80853i 0.221343i
\(162\) 0 0
\(163\) 12.5643i 0.984113i −0.870563 0.492056i \(-0.836245\pi\)
0.870563 0.492056i \(-0.163755\pi\)
\(164\) 6.53672 12.7188i 0.510432 0.993168i
\(165\) 0 0
\(166\) −0.689705 0.166861i −0.0535315 0.0129509i
\(167\) 21.0496 1.62887 0.814433 0.580257i \(-0.197048\pi\)
0.814433 + 0.580257i \(0.197048\pi\)
\(168\) 0 0
\(169\) −9.43606 −0.725851
\(170\) 5.41172 + 1.30926i 0.415060 + 0.100416i
\(171\) 0 0
\(172\) −0.713444 + 1.38818i −0.0543996 + 0.105848i
\(173\) 1.12735i 0.0857105i −0.999081 0.0428553i \(-0.986355\pi\)
0.999081 0.0428553i \(-0.0136454\pi\)
\(174\) 0 0
\(175\) 5.45020i 0.411996i
\(176\) −6.58579 9.19932i −0.496422 0.693425i
\(177\) 0 0
\(178\) 0.660139 2.72863i 0.0494795 0.204519i
\(179\) 20.9585 1.56651 0.783256 0.621699i \(-0.213557\pi\)
0.783256 + 0.621699i \(0.213557\pi\)
\(180\) 0 0
\(181\) −11.6006 −0.862264 −0.431132 0.902289i \(-0.641886\pi\)
−0.431132 + 0.902289i \(0.641886\pi\)
\(182\) 1.76319 7.28798i 0.130696 0.540221i
\(183\) 0 0
\(184\) −2.14108 1.84818i −0.157842 0.136250i
\(185\) 8.99647i 0.661434i
\(186\) 0 0
\(187\) 6.36646i 0.465561i
\(188\) 16.5586 + 8.51015i 1.20766 + 0.620667i
\(189\) 0 0
\(190\) −6.75245 1.63363i −0.489874 0.118516i
\(191\) 1.77345 0.128322 0.0641611 0.997940i \(-0.479563\pi\)
0.0641611 + 0.997940i \(0.479563\pi\)
\(192\) 0 0
\(193\) −22.7977 −1.64101 −0.820506 0.571638i \(-0.806308\pi\)
−0.820506 + 0.571638i \(0.806308\pi\)
\(194\) −8.42671 2.03868i −0.605002 0.146369i
\(195\) 0 0
\(196\) −1.57931 0.811675i −0.112808 0.0579768i
\(197\) 15.1430i 1.07890i −0.842019 0.539448i \(-0.818633\pi\)
0.842019 0.539448i \(-0.181367\pi\)
\(198\) 0 0
\(199\) 18.0660i 1.28066i −0.768099 0.640331i \(-0.778797\pi\)
0.768099 0.640331i \(-0.221203\pi\)
\(200\) 4.15495 + 3.58656i 0.293799 + 0.253608i
\(201\) 0 0
\(202\) 4.56950 18.8876i 0.321509 1.32893i
\(203\) 9.58892 0.673010
\(204\) 0 0
\(205\) 12.5064 0.873482
\(206\) 5.24656 21.6862i 0.365545 1.51095i
\(207\) 0 0
\(208\) −4.39570 6.14010i −0.304787 0.425739i
\(209\) 7.94372i 0.549479i
\(210\) 0 0
\(211\) 12.9378i 0.890677i 0.895362 + 0.445338i \(0.146917\pi\)
−0.895362 + 0.445338i \(0.853083\pi\)
\(212\) −4.82293 + 9.38417i −0.331240 + 0.644507i
\(213\) 0 0
\(214\) −17.8515 4.31882i −1.22030 0.295228i
\(215\) −1.36499 −0.0930919
\(216\) 0 0
\(217\) 1.07550 0.0730097
\(218\) 19.7788 + 4.78510i 1.33959 + 0.324088i
\(219\) 0 0
\(220\) 4.52284 8.80029i 0.304930 0.593315i
\(221\) 4.24930i 0.285839i
\(222\) 0 0
\(223\) 4.77215i 0.319567i 0.987152 + 0.159783i \(0.0510796\pi\)
−0.987152 + 0.159783i \(0.948920\pi\)
\(224\) −14.7307 + 5.95117i −0.984238 + 0.397630i
\(225\) 0 0
\(226\) 5.65710 23.3831i 0.376305 1.55542i
\(227\) 9.47952 0.629178 0.314589 0.949228i \(-0.398133\pi\)
0.314589 + 0.949228i \(0.398133\pi\)
\(228\) 0 0
\(229\) −9.97019 −0.658849 −0.329424 0.944182i \(-0.606855\pi\)
−0.329424 + 0.944182i \(0.606855\pi\)
\(230\) 0.581666 2.40426i 0.0383539 0.158533i
\(231\) 0 0
\(232\) 6.31010 7.31010i 0.414278 0.479931i
\(233\) 23.8034i 1.55941i 0.626145 + 0.779707i \(0.284632\pi\)
−0.626145 + 0.779707i \(0.715368\pi\)
\(234\) 0 0
\(235\) 16.2820i 1.06212i
\(236\) −8.15731 4.19239i −0.530995 0.272901i
\(237\) 0 0
\(238\) 8.68951 + 2.10226i 0.563257 + 0.136269i
\(239\) −10.8745 −0.703412 −0.351706 0.936110i \(-0.614398\pi\)
−0.351706 + 0.936110i \(0.614398\pi\)
\(240\) 0 0
\(241\) −11.5983 −0.747115 −0.373558 0.927607i \(-0.621862\pi\)
−0.373558 + 0.927607i \(0.621862\pi\)
\(242\) −4.12368 0.997644i −0.265080 0.0641310i
\(243\) 0 0
\(244\) 22.9808 + 11.8108i 1.47120 + 0.756111i
\(245\) 1.55294i 0.0992134i
\(246\) 0 0
\(247\) 5.30205i 0.337362i
\(248\) 0.707745 0.819905i 0.0449418 0.0520640i
\(249\) 0 0
\(250\) −4.03710 + 16.6870i −0.255329 + 1.05538i
\(251\) −14.1791 −0.894979 −0.447490 0.894289i \(-0.647682\pi\)
−0.447490 + 0.894289i \(0.647682\pi\)
\(252\) 0 0
\(253\) 2.82843 0.177822
\(254\) 1.73746 7.18165i 0.109018 0.450617i
\(255\) 0 0
\(256\) −5.15685 + 15.1462i −0.322303 + 0.946636i
\(257\) 1.19932i 0.0748113i −0.999300 0.0374056i \(-0.988091\pi\)
0.999300 0.0374056i \(-0.0119094\pi\)
\(258\) 0 0
\(259\) 14.4455i 0.897599i
\(260\) 3.01878 5.87377i 0.187217 0.364276i
\(261\) 0 0
\(262\) −17.7324 4.29000i −1.09551 0.265037i
\(263\) 30.0046 1.85016 0.925081 0.379769i \(-0.123997\pi\)
0.925081 + 0.379769i \(0.123997\pi\)
\(264\) 0 0
\(265\) −9.22746 −0.566838
\(266\) −10.8423 2.62309i −0.664784 0.160832i
\(267\) 0 0
\(268\) −7.48553 + 14.5649i −0.457251 + 0.889693i
\(269\) 8.70145i 0.530537i 0.964175 + 0.265269i \(0.0854606\pi\)
−0.964175 + 0.265269i \(0.914539\pi\)
\(270\) 0 0
\(271\) 23.7029i 1.43985i −0.694052 0.719925i \(-0.744176\pi\)
0.694052 0.719925i \(-0.255824\pi\)
\(272\) 7.32088 5.24102i 0.443894 0.317783i
\(273\) 0 0
\(274\) 1.22491 5.06307i 0.0739997 0.305871i
\(275\) −5.48881 −0.330988
\(276\) 0 0
\(277\) 12.0929 0.726593 0.363296 0.931674i \(-0.381651\pi\)
0.363296 + 0.931674i \(0.381651\pi\)
\(278\) 4.47323 18.4897i 0.268286 1.10894i
\(279\) 0 0
\(280\) −10.5179 9.07911i −0.628567 0.542581i
\(281\) 22.2079i 1.32481i 0.749144 + 0.662407i \(0.230465\pi\)
−0.749144 + 0.662407i \(0.769535\pi\)
\(282\) 0 0
\(283\) 18.0636i 1.07377i 0.843656 + 0.536885i \(0.180399\pi\)
−0.843656 + 0.536885i \(0.819601\pi\)
\(284\) −7.41421 3.81048i −0.439953 0.226110i
\(285\) 0 0
\(286\) 7.33962 + 1.77568i 0.434001 + 0.104998i
\(287\) 20.0813 1.18536
\(288\) 0 0
\(289\) 11.9335 0.701972
\(290\) 8.20867 + 1.98593i 0.482030 + 0.116618i
\(291\) 0 0
\(292\) 22.4205 + 11.5228i 1.31206 + 0.674323i
\(293\) 15.3630i 0.897517i 0.893653 + 0.448759i \(0.148134\pi\)
−0.893653 + 0.448759i \(0.851866\pi\)
\(294\) 0 0
\(295\) 8.02108i 0.467005i
\(296\) 11.0125 + 9.50601i 0.640088 + 0.552526i
\(297\) 0 0
\(298\) −3.45544 + 14.2827i −0.200168 + 0.827377i
\(299\) 1.88784 0.109177
\(300\) 0 0
\(301\) −2.19175 −0.126330
\(302\) −1.46510 + 6.05588i −0.0843073 + 0.348477i
\(303\) 0 0
\(304\) −9.13460 + 6.53946i −0.523905 + 0.375064i
\(305\) 22.5970i 1.29390i
\(306\) 0 0
\(307\) 9.78510i 0.558465i 0.960223 + 0.279233i \(0.0900801\pi\)
−0.960223 + 0.279233i \(0.909920\pi\)
\(308\) 7.26226 14.1305i 0.413806 0.805159i
\(309\) 0 0
\(310\) 0.920690 + 0.222743i 0.0522917 + 0.0126510i
\(311\) −12.0013 −0.680530 −0.340265 0.940330i \(-0.610517\pi\)
−0.340265 + 0.940330i \(0.610517\pi\)
\(312\) 0 0
\(313\) 5.12472 0.289666 0.144833 0.989456i \(-0.453735\pi\)
0.144833 + 0.989456i \(0.453735\pi\)
\(314\) −23.4326 5.66907i −1.32238 0.319924i
\(315\) 0 0
\(316\) −7.77351 + 15.1252i −0.437294 + 0.850861i
\(317\) 28.6452i 1.60887i −0.594038 0.804437i \(-0.702467\pi\)
0.594038 0.804437i \(-0.297533\pi\)
\(318\) 0 0
\(319\) 9.65685i 0.540680i
\(320\) −13.8429 + 2.04372i −0.773841 + 0.114247i
\(321\) 0 0
\(322\) 0.933971 3.86049i 0.0520482 0.215137i
\(323\) 6.32167 0.351747
\(324\) 0 0
\(325\) −3.66352 −0.203215
\(326\) 4.17824 17.2704i 0.231411 0.956518i
\(327\) 0 0
\(328\) 13.2147 15.3089i 0.729660 0.845293i
\(329\) 26.1438i 1.44135i
\(330\) 0 0
\(331\) 18.4151i 1.01219i −0.862479 0.506093i \(-0.831089\pi\)
0.862479 0.506093i \(-0.168911\pi\)
\(332\) −0.892551 0.458720i −0.0489851 0.0251755i
\(333\) 0 0
\(334\) 28.9339 + 7.00000i 1.58319 + 0.383023i
\(335\) −14.3217 −0.782476
\(336\) 0 0
\(337\) 22.2158 1.21017 0.605085 0.796161i \(-0.293139\pi\)
0.605085 + 0.796161i \(0.293139\pi\)
\(338\) −12.9704 3.13794i −0.705498 0.170682i
\(339\) 0 0
\(340\) 7.00333 + 3.59931i 0.379809 + 0.195200i
\(341\) 1.08312i 0.0586542i
\(342\) 0 0
\(343\) 17.1662i 0.926887i
\(344\) −1.44231 + 1.67088i −0.0777639 + 0.0900876i
\(345\) 0 0
\(346\) 0.374897 1.54960i 0.0201546 0.0833072i
\(347\) −33.4205 −1.79411 −0.897053 0.441924i \(-0.854296\pi\)
−0.897053 + 0.441924i \(0.854296\pi\)
\(348\) 0 0
\(349\) −26.8414 −1.43678 −0.718392 0.695638i \(-0.755122\pi\)
−0.718392 + 0.695638i \(0.755122\pi\)
\(350\) −1.81245 + 7.49162i −0.0968797 + 0.400444i
\(351\) 0 0
\(352\) −5.99334 14.8351i −0.319446 0.790713i
\(353\) 6.37795i 0.339464i 0.985490 + 0.169732i \(0.0542902\pi\)
−0.985490 + 0.169732i \(0.945710\pi\)
\(354\) 0 0
\(355\) 7.29040i 0.386934i
\(356\) 1.81480 3.53113i 0.0961842 0.187150i
\(357\) 0 0
\(358\) 28.8087 + 6.96971i 1.52259 + 0.368361i
\(359\) −12.4307 −0.656066 −0.328033 0.944666i \(-0.606386\pi\)
−0.328033 + 0.944666i \(0.606386\pi\)
\(360\) 0 0
\(361\) 11.1122 0.584851
\(362\) −15.9457 3.85775i −0.838086 0.202759i
\(363\) 0 0
\(364\) 4.84721 9.43142i 0.254063 0.494341i
\(365\) 22.0461i 1.15394i
\(366\) 0 0
\(367\) 29.2227i 1.52541i −0.646744 0.762707i \(-0.723870\pi\)
0.646744 0.762707i \(-0.276130\pi\)
\(368\) −2.32843 3.25245i −0.121378 0.169546i
\(369\) 0 0
\(370\) −2.99176 + 12.3662i −0.155534 + 0.642887i
\(371\) −14.8164 −0.769228
\(372\) 0 0
\(373\) −28.2650 −1.46351 −0.731753 0.681570i \(-0.761298\pi\)
−0.731753 + 0.681570i \(0.761298\pi\)
\(374\) −2.11715 + 8.75107i −0.109475 + 0.452507i
\(375\) 0 0
\(376\) 19.9307 + 17.2042i 1.02785 + 0.887240i
\(377\) 6.44549i 0.331959i
\(378\) 0 0
\(379\) 7.91273i 0.406450i 0.979132 + 0.203225i \(0.0651422\pi\)
−0.979132 + 0.203225i \(0.934858\pi\)
\(380\) −8.73838 4.49103i −0.448269 0.230385i
\(381\) 0 0
\(382\) 2.43771 + 0.589756i 0.124724 + 0.0301746i
\(383\) 9.94595 0.508214 0.254107 0.967176i \(-0.418218\pi\)
0.254107 + 0.967176i \(0.418218\pi\)
\(384\) 0 0
\(385\) 13.8945 0.708129
\(386\) −31.3367 7.58132i −1.59500 0.385879i
\(387\) 0 0
\(388\) −10.9050 5.60457i −0.553620 0.284529i
\(389\) 13.3965i 0.679232i 0.940564 + 0.339616i \(0.110297\pi\)
−0.940564 + 0.339616i \(0.889703\pi\)
\(390\) 0 0
\(391\) 2.25088i 0.113832i
\(392\) −1.90093 1.64089i −0.0960116 0.0828775i
\(393\) 0 0
\(394\) 5.03579 20.8150i 0.253699 1.04864i
\(395\) −14.8727 −0.748324
\(396\) 0 0
\(397\) 22.2047 1.11442 0.557211 0.830371i \(-0.311872\pi\)
0.557211 + 0.830371i \(0.311872\pi\)
\(398\) 6.00780 24.8327i 0.301144 1.24475i
\(399\) 0 0
\(400\) 4.51852 + 6.31166i 0.225926 + 0.315583i
\(401\) 1.24420i 0.0621322i 0.999517 + 0.0310661i \(0.00989024\pi\)
−0.999517 + 0.0310661i \(0.990110\pi\)
\(402\) 0 0
\(403\) 0.722930i 0.0360117i
\(404\) 12.5621 24.4426i 0.624988 1.21606i
\(405\) 0 0
\(406\) 13.1805 + 3.18878i 0.654139 + 0.158256i
\(407\) −14.5478 −0.721109
\(408\) 0 0
\(409\) −6.14805 −0.304002 −0.152001 0.988380i \(-0.548572\pi\)
−0.152001 + 0.988380i \(0.548572\pi\)
\(410\) 17.1907 + 4.15897i 0.848990 + 0.205397i
\(411\) 0 0
\(412\) 14.4234 28.0643i 0.710591 1.38263i
\(413\) 12.8793i 0.633750i
\(414\) 0 0
\(415\) 0.877646i 0.0430819i
\(416\) −4.00026 9.90171i −0.196129 0.485471i
\(417\) 0 0
\(418\) 2.64167 10.9191i 0.129208 0.534071i
\(419\) −3.17784 −0.155248 −0.0776238 0.996983i \(-0.524733\pi\)
−0.0776238 + 0.996983i \(0.524733\pi\)
\(420\) 0 0
\(421\) 1.44275 0.0703153 0.0351576 0.999382i \(-0.488807\pi\)
0.0351576 + 0.999382i \(0.488807\pi\)
\(422\) −4.30245 + 17.7838i −0.209440 + 0.865702i
\(423\) 0 0
\(424\) −9.75008 + 11.2952i −0.473506 + 0.548545i
\(425\) 4.36804i 0.211881i
\(426\) 0 0
\(427\) 36.2837i 1.75589i
\(428\) −23.1017 11.8729i −1.11666 0.573900i
\(429\) 0 0
\(430\) −1.87627 0.453926i −0.0904816 0.0218903i
\(431\) 3.85842 0.185854 0.0929269 0.995673i \(-0.470378\pi\)
0.0929269 + 0.995673i \(0.470378\pi\)
\(432\) 0 0
\(433\) −24.4518 −1.17508 −0.587538 0.809196i \(-0.699903\pi\)
−0.587538 + 0.809196i \(0.699903\pi\)
\(434\) 1.47834 + 0.357655i 0.0709625 + 0.0171680i
\(435\) 0 0
\(436\) 25.5959 + 13.1548i 1.22582 + 0.630001i
\(437\) 2.80853i 0.134350i
\(438\) 0 0
\(439\) 22.7955i 1.08797i −0.839096 0.543984i \(-0.816915\pi\)
0.839096 0.543984i \(-0.183085\pi\)
\(440\) 9.14343 10.5925i 0.435896 0.504975i
\(441\) 0 0
\(442\) −1.41310 + 5.84092i −0.0672142 + 0.277824i
\(443\) 2.21726 0.105345 0.0526726 0.998612i \(-0.483226\pi\)
0.0526726 + 0.998612i \(0.483226\pi\)
\(444\) 0 0
\(445\) 3.47216 0.164596
\(446\) −1.58697 + 6.55960i −0.0751451 + 0.310606i
\(447\) 0 0
\(448\) −22.2273 + 3.28156i −1.05014 + 0.155039i
\(449\) 7.15952i 0.337879i −0.985626 0.168939i \(-0.945966\pi\)
0.985626 0.168939i \(-0.0540342\pi\)
\(450\) 0 0
\(451\) 20.2235i 0.952289i
\(452\) 15.5520 30.2602i 0.731506 1.42332i
\(453\) 0 0
\(454\) 13.0302 + 3.15240i 0.611536 + 0.147949i
\(455\) 9.27391 0.434768
\(456\) 0 0
\(457\) 0.601874 0.0281545 0.0140772 0.999901i \(-0.495519\pi\)
0.0140772 + 0.999901i \(0.495519\pi\)
\(458\) −13.7046 3.31557i −0.640374 0.154926i
\(459\) 0 0
\(460\) 1.59907 3.11137i 0.0745569 0.145068i
\(461\) 4.18009i 0.194686i 0.995251 + 0.0973432i \(0.0310344\pi\)
−0.995251 + 0.0973432i \(0.968966\pi\)
\(462\) 0 0
\(463\) 33.5647i 1.55988i 0.625852 + 0.779942i \(0.284751\pi\)
−0.625852 + 0.779942i \(0.715249\pi\)
\(464\) 11.1046 7.94975i 0.515516 0.369058i
\(465\) 0 0
\(466\) −7.91578 + 32.7192i −0.366691 + 1.51569i
\(467\) −1.96796 −0.0910662 −0.0455331 0.998963i \(-0.514499\pi\)
−0.0455331 + 0.998963i \(0.514499\pi\)
\(468\) 0 0
\(469\) −22.9961 −1.06186
\(470\) −5.41456 + 22.3806i −0.249755 + 1.03234i
\(471\) 0 0
\(472\) −9.81853 8.47538i −0.451934 0.390111i
\(473\) 2.20728i 0.101491i
\(474\) 0 0
\(475\) 5.45020i 0.250072i
\(476\) 11.2451 + 5.77936i 0.515420 + 0.264896i
\(477\) 0 0
\(478\) −14.9476 3.61629i −0.683688 0.165405i
\(479\) 36.4821 1.66691 0.833455 0.552587i \(-0.186359\pi\)
0.833455 + 0.552587i \(0.186359\pi\)
\(480\) 0 0
\(481\) −9.70998 −0.442737
\(482\) −15.9426 3.85701i −0.726166 0.175682i
\(483\) 0 0
\(484\) −5.33647 2.74264i −0.242567 0.124665i
\(485\) 10.7229i 0.486903i
\(486\) 0 0
\(487\) 32.9269i 1.49206i −0.665913 0.746029i \(-0.731958\pi\)
0.665913 0.746029i \(-0.268042\pi\)
\(488\) 27.6608 + 23.8769i 1.25215 + 1.08086i
\(489\) 0 0
\(490\) 0.516426 2.13460i 0.0233297 0.0964314i
\(491\) −33.4205 −1.50825 −0.754123 0.656734i \(-0.771938\pi\)
−0.754123 + 0.656734i \(0.771938\pi\)
\(492\) 0 0
\(493\) −7.68499 −0.346115
\(494\) 1.76319 7.28798i 0.0793295 0.327902i
\(495\) 0 0
\(496\) 1.24549 0.891649i 0.0559244 0.0400362i
\(497\) 11.7061i 0.525089i
\(498\) 0 0
\(499\) 40.5180i 1.81384i 0.421308 + 0.906918i \(0.361571\pi\)
−0.421308 + 0.906918i \(0.638429\pi\)
\(500\) −11.0985 + 21.5947i −0.496338 + 0.965746i
\(501\) 0 0
\(502\) −19.4901 4.71524i −0.869884 0.210452i
\(503\) 1.04648 0.0466603 0.0233301 0.999728i \(-0.492573\pi\)
0.0233301 + 0.999728i \(0.492573\pi\)
\(504\) 0 0
\(505\) 24.0344 1.06952
\(506\) 3.88784 + 0.940588i 0.172836 + 0.0418142i
\(507\) 0 0
\(508\) 4.77649 9.29381i 0.211922 0.412346i
\(509\) 3.47440i 0.154000i 0.997031 + 0.0769999i \(0.0245341\pi\)
−0.997031 + 0.0769999i \(0.975466\pi\)
\(510\) 0 0
\(511\) 35.3990i 1.56596i
\(512\) −12.1252 + 19.1044i −0.535865 + 0.844304i
\(513\) 0 0
\(514\) 0.398830 1.64853i 0.0175916 0.0727136i
\(515\) 27.5956 1.21601
\(516\) 0 0
\(517\) −26.3290 −1.15795
\(518\) −4.80382 + 19.8562i −0.211068 + 0.872430i
\(519\) 0 0
\(520\) 6.10280 7.06995i 0.267626 0.310038i
\(521\) 28.1892i 1.23499i −0.786574 0.617496i \(-0.788147\pi\)
0.786574 0.617496i \(-0.211853\pi\)
\(522\) 0 0
\(523\) 22.1809i 0.969902i 0.874541 + 0.484951i \(0.161163\pi\)
−0.874541 + 0.484951i \(0.838837\pi\)
\(524\) −22.9475 11.7937i −1.00247 0.515211i
\(525\) 0 0
\(526\) 41.2431 + 9.97797i 1.79828 + 0.435060i
\(527\) −0.861954 −0.0375473
\(528\) 0 0
\(529\) 1.00000 0.0434783
\(530\) −12.6837 3.06857i −0.550944 0.133290i
\(531\) 0 0
\(532\) −14.0311 7.21117i −0.608324 0.312644i
\(533\) 13.4982i 0.584673i
\(534\) 0 0
\(535\) 22.7159i 0.982093i
\(536\) −15.1328 + 17.5310i −0.653638 + 0.757225i
\(537\) 0 0
\(538\) −2.89365 + 11.9607i −0.124754 + 0.515661i
\(539\) 2.51119 0.108165
\(540\) 0 0
\(541\) 8.56707 0.368327 0.184164 0.982896i \(-0.441042\pi\)
0.184164 + 0.982896i \(0.441042\pi\)
\(542\) 7.88236 32.5811i 0.338576 1.39948i
\(543\) 0 0
\(544\) 11.8059 4.76954i 0.506173 0.204492i
\(545\) 25.1684i 1.07810i
\(546\) 0 0
\(547\) 32.8486i 1.40450i −0.711928 0.702252i \(-0.752178\pi\)
0.711928 0.702252i \(-0.247822\pi\)
\(548\) 3.36743 6.55215i 0.143849 0.279894i
\(549\) 0 0
\(550\) −7.54469 1.82529i −0.321707 0.0778308i
\(551\) 9.58892 0.408502
\(552\) 0 0
\(553\) −23.8808 −1.01551
\(554\) 16.6224 + 4.02148i 0.706219 + 0.170856i
\(555\) 0 0
\(556\) 12.2974 23.9276i 0.521527 1.01476i
\(557\) 18.7817i 0.795805i 0.917428 + 0.397902i \(0.130262\pi\)
−0.917428 + 0.397902i \(0.869738\pi\)
\(558\) 0 0
\(559\) 1.47325i 0.0623119i
\(560\) −11.4383 15.9775i −0.483355 0.675172i
\(561\) 0 0
\(562\) −7.38520 + 30.5261i −0.311526 + 1.28767i
\(563\) 18.9052 0.796760 0.398380 0.917220i \(-0.369572\pi\)
0.398380 + 0.917220i \(0.369572\pi\)
\(564\) 0 0
\(565\) 29.7549 1.25180
\(566\) −6.00701 + 24.8295i −0.252494 + 1.04366i
\(567\) 0 0
\(568\) −8.92410 7.70331i −0.374447 0.323224i
\(569\) 32.1916i 1.34954i 0.738028 + 0.674771i \(0.235757\pi\)
−0.738028 + 0.674771i \(0.764243\pi\)
\(570\) 0 0
\(571\) 40.0190i 1.67474i 0.546635 + 0.837371i \(0.315909\pi\)
−0.546635 + 0.837371i \(0.684091\pi\)
\(572\) 9.49824 + 4.88155i 0.397141 + 0.204108i
\(573\) 0 0
\(574\) 27.6029 + 6.67798i 1.15212 + 0.278734i
\(575\) −1.94059 −0.0809281
\(576\) 0 0
\(577\) 12.4223 0.517149 0.258574 0.965991i \(-0.416747\pi\)
0.258574 + 0.965991i \(0.416747\pi\)
\(578\) 16.4033 + 3.96847i 0.682289 + 0.165067i
\(579\) 0 0
\(580\) 10.6229 + 5.45956i 0.441091 + 0.226696i
\(581\) 1.40922i 0.0584644i
\(582\) 0 0
\(583\) 14.9213i 0.617979i
\(584\) 26.9864 + 23.2947i 1.11670 + 0.963942i
\(585\) 0 0
\(586\) −5.10894 + 21.1174i −0.211048 + 0.872351i
\(587\) 14.7949 0.610651 0.305325 0.952248i \(-0.401235\pi\)
0.305325 + 0.952248i \(0.401235\pi\)
\(588\) 0 0
\(589\) 1.07550 0.0443152
\(590\) 2.66739 11.0254i 0.109815 0.453910i
\(591\) 0 0
\(592\) 11.9761 + 16.7288i 0.492215 + 0.687548i
\(593\) 24.7412i 1.01600i −0.861357 0.508001i \(-0.830385\pi\)
0.861357 0.508001i \(-0.169615\pi\)
\(594\) 0 0
\(595\) 11.0573i 0.453307i
\(596\) −9.49940 + 18.4834i −0.389110 + 0.757109i
\(597\) 0 0
\(598\) 2.59495 + 0.627797i 0.106115 + 0.0256725i
\(599\) 1.11139 0.0454102 0.0227051 0.999742i \(-0.492772\pi\)
0.0227051 + 0.999742i \(0.492772\pi\)
\(600\) 0 0
\(601\) 44.0533 1.79697 0.898486 0.439003i \(-0.144668\pi\)
0.898486 + 0.439003i \(0.144668\pi\)
\(602\) −3.01269 0.728862i −0.122788 0.0297062i
\(603\) 0 0
\(604\) −4.02774 + 7.83695i −0.163887 + 0.318881i
\(605\) 5.24735i 0.213335i
\(606\) 0 0
\(607\) 21.4647i 0.871226i −0.900134 0.435613i \(-0.856532\pi\)
0.900134 0.435613i \(-0.143468\pi\)
\(608\) −14.7307 + 5.95117i −0.597410 + 0.241352i
\(609\) 0 0
\(610\) −7.51460 + 31.0610i −0.304257 + 1.25762i
\(611\) −17.5734 −0.710942
\(612\) 0 0
\(613\) −11.3926 −0.460143 −0.230072 0.973174i \(-0.573896\pi\)
−0.230072 + 0.973174i \(0.573896\pi\)
\(614\) −3.25402 + 13.4502i −0.131321 + 0.542806i
\(615\) 0 0
\(616\) 14.6815 17.0081i 0.591533 0.685277i
\(617\) 26.7776i 1.07803i −0.842297 0.539013i \(-0.818797\pi\)
0.842297 0.539013i \(-0.181203\pi\)
\(618\) 0 0
\(619\) 0.761543i 0.0306090i 0.999883 + 0.0153045i \(0.00487176\pi\)
−0.999883 + 0.0153045i \(0.995128\pi\)
\(620\) 1.19147 + 0.612348i 0.0478506 + 0.0245925i
\(621\) 0 0
\(622\) −16.4965 3.99100i −0.661448 0.160025i
\(623\) 5.57520 0.223366
\(624\) 0 0
\(625\) −11.5312 −0.461247
\(626\) 7.04423 + 1.70421i 0.281544 + 0.0681141i
\(627\) 0 0
\(628\) −30.3242 15.5849i −1.21007 0.621906i
\(629\) 11.5773i 0.461616i
\(630\) 0 0
\(631\) 19.4828i 0.775598i −0.921744 0.387799i \(-0.873235\pi\)
0.921744 0.387799i \(-0.126765\pi\)
\(632\) −15.7150 + 18.2055i −0.625110 + 0.724175i
\(633\) 0 0
\(634\) 9.52590 39.3745i 0.378322 1.56376i
\(635\) 9.13861 0.362655
\(636\) 0 0
\(637\) 1.67610 0.0664094
\(638\) −3.21137 + 13.2739i −0.127139 + 0.525519i
\(639\) 0 0
\(640\) −19.7075 1.79422i −0.779007 0.0709226i
\(641\) 45.4146i 1.79377i 0.442265 + 0.896885i \(0.354175\pi\)
−0.442265 + 0.896885i \(0.645825\pi\)
\(642\) 0 0
\(643\) 43.7604i 1.72574i −0.505425 0.862870i \(-0.668664\pi\)
0.505425 0.862870i \(-0.331336\pi\)
\(644\) 2.56760 4.99588i 0.101177 0.196865i
\(645\) 0 0
\(646\) 8.68951 + 2.10226i 0.341884 + 0.0827123i
\(647\) −20.6324 −0.811144 −0.405572 0.914063i \(-0.632928\pi\)
−0.405572 + 0.914063i \(0.632928\pi\)
\(648\) 0 0
\(649\) 12.9706 0.509139
\(650\) −5.03572 1.21830i −0.197517 0.0477855i
\(651\) 0 0
\(652\) 11.4865 22.3497i 0.449845 0.875282i
\(653\) 49.9638i 1.95524i 0.210387 + 0.977618i \(0.432528\pi\)
−0.210387 + 0.977618i \(0.567472\pi\)
\(654\) 0 0
\(655\) 22.5643i 0.881661i
\(656\) 23.2553 16.6485i 0.907968 0.650014i
\(657\) 0 0
\(658\) −8.69407 + 35.9362i −0.338930 + 1.40094i
\(659\) −3.00130 −0.116914 −0.0584570 0.998290i \(-0.518618\pi\)
−0.0584570 + 0.998290i \(0.518618\pi\)
\(660\) 0 0
\(661\) −34.1538 −1.32843 −0.664214 0.747542i \(-0.731234\pi\)
−0.664214 + 0.747542i \(0.731234\pi\)
\(662\) 6.12391 25.3127i 0.238013 0.983804i
\(663\) 0 0
\(664\) −1.07432 0.927354i −0.0416916 0.0359883i
\(665\) 13.7968i 0.535015i
\(666\) 0 0
\(667\) 3.41421i 0.132199i
\(668\) 37.4435 + 19.2438i 1.44873 + 0.744566i
\(669\) 0 0
\(670\) −19.6860 4.76264i −0.760536 0.183997i
\(671\) −36.5408 −1.41064
\(672\) 0 0
\(673\) −27.5117 −1.06050 −0.530250 0.847842i \(-0.677902\pi\)
−0.530250 + 0.847842i \(0.677902\pi\)
\(674\) 30.5369 + 7.38781i 1.17624 + 0.284568i
\(675\) 0 0
\(676\) −16.7851 8.62658i −0.645580 0.331791i
\(677\) 28.1804i 1.08306i −0.840682 0.541529i \(-0.817845\pi\)
0.840682 0.541529i \(-0.182155\pi\)
\(678\) 0 0
\(679\) 17.2176i 0.660752i
\(680\) 8.42955 + 7.27641i 0.323258 + 0.279038i
\(681\) 0 0
\(682\) −0.360189 + 1.48881i −0.0137924 + 0.0570095i
\(683\) −27.0800 −1.03619 −0.518093 0.855324i \(-0.673358\pi\)
−0.518093 + 0.855324i \(0.673358\pi\)
\(684\) 0 0
\(685\) 6.44273 0.246164
\(686\) −5.70858 + 23.5959i −0.217955 + 0.900897i
\(687\) 0 0
\(688\) −2.53818 + 1.81708i −0.0967672 + 0.0692756i
\(689\) 9.95928i 0.379418i
\(690\) 0 0
\(691\) 12.7057i 0.483348i 0.970358 + 0.241674i \(0.0776964\pi\)
−0.970358 + 0.241674i \(0.922304\pi\)
\(692\) 1.03064 2.00535i 0.0391789 0.0762320i
\(693\) 0 0
\(694\) −45.9384 11.1139i −1.74380 0.421878i
\(695\) 23.5280 0.892470
\(696\) 0 0
\(697\) −16.0940 −0.609605
\(698\) −36.8950 8.92604i −1.39650 0.337856i
\(699\) 0 0
\(700\) −4.98265 + 9.69494i −0.188326 + 0.366434i
\(701\) 11.7156i 0.442492i 0.975218 + 0.221246i \(0.0710123\pi\)
−0.975218 + 0.221246i \(0.928988\pi\)
\(702\) 0 0
\(703\) 14.4455i 0.544822i
\(704\) −3.30481 22.3848i −0.124555 0.843658i
\(705\) 0 0
\(706\) −2.12097 + 8.76687i −0.0798239 + 0.329945i
\(707\) 38.5917 1.45139
\(708\) 0 0
\(709\) 12.2217 0.458997 0.229498 0.973309i \(-0.426291\pi\)
0.229498 + 0.973309i \(0.426291\pi\)
\(710\) 2.42441 10.0211i 0.0909864 0.376084i
\(711\) 0 0
\(712\) 3.66882 4.25024i 0.137495 0.159285i
\(713\) 0.382941i 0.0143412i
\(714\) 0 0
\(715\) 9.33962i 0.349282i
\(716\) 37.2815 + 19.1606i 1.39327 + 0.716064i
\(717\) 0 0
\(718\) −17.0867 4.13380i −0.637670 0.154272i
\(719\) −12.4544 −0.464470 −0.232235 0.972660i \(-0.574604\pi\)
−0.232235 + 0.972660i \(0.574604\pi\)
\(720\) 0 0
\(721\) 44.3098 1.65018
\(722\) 15.2743 + 3.69533i 0.568451 + 0.137526i
\(723\) 0 0
\(724\) −20.6354 10.6054i −0.766908 0.394147i
\(725\) 6.62558i 0.246068i
\(726\) 0 0
\(727\) 25.5962i 0.949312i −0.880171 0.474656i \(-0.842572\pi\)
0.880171 0.474656i \(-0.157428\pi\)
\(728\) 9.79917 11.3521i 0.363181 0.420737i
\(729\) 0 0
\(730\) −7.33137 + 30.3036i −0.271346 + 1.12159i
\(731\) 1.75657 0.0649690
\(732\) 0 0
\(733\) 16.1390 0.596107 0.298053 0.954549i \(-0.403663\pi\)
0.298053 + 0.954549i \(0.403663\pi\)
\(734\) 9.71796 40.1683i 0.358696 1.48264i
\(735\) 0 0
\(736\) −2.11896 5.24500i −0.0781061 0.193333i
\(737\) 23.1590i 0.853072i
\(738\) 0 0
\(739\) 16.0500i 0.590408i 0.955434 + 0.295204i \(0.0953875\pi\)
−0.955434 + 0.295204i \(0.904612\pi\)
\(740\) −8.22470 + 16.0031i −0.302346 + 0.588287i
\(741\) 0 0
\(742\) −20.3660 4.92716i −0.747659 0.180882i
\(743\) −30.0368 −1.10194 −0.550971 0.834524i \(-0.685743\pi\)
−0.550971 + 0.834524i \(0.685743\pi\)
\(744\) 0 0
\(745\) −18.1747 −0.665870
\(746\) −38.8519 9.39947i −1.42247 0.344139i
\(747\) 0 0
\(748\) −5.82030 + 11.3248i −0.212811 + 0.414076i
\(749\) 36.4745i 1.33275i
\(750\) 0 0
\(751\) 32.0167i 1.16831i −0.811643 0.584154i \(-0.801427\pi\)
0.811643 0.584154i \(-0.198573\pi\)
\(752\) 21.6747 + 30.2761i 0.790394 + 1.10406i
\(753\) 0 0
\(754\) −2.14343 + 8.85970i −0.0780593 + 0.322651i
\(755\) −7.70607 −0.280453
\(756\) 0 0
\(757\) 47.2504 1.71734 0.858672 0.512526i \(-0.171290\pi\)
0.858672 + 0.512526i \(0.171290\pi\)
\(758\) −2.63136 + 10.8765i −0.0955754 + 0.395053i
\(759\) 0 0
\(760\) −10.5179 9.07911i −0.381526 0.329334i
\(761\) 35.9215i 1.30215i −0.759013 0.651076i \(-0.774318\pi\)
0.759013 0.651076i \(-0.225682\pi\)
\(762\) 0 0
\(763\) 40.4125i 1.46303i
\(764\) 3.15465 + 1.62131i 0.114131 + 0.0586569i
\(765\) 0 0
\(766\) 13.6713 + 3.30751i 0.493964 + 0.119505i
\(767\) 8.65723 0.312594
\(768\) 0 0
\(769\) −6.18118 −0.222899 −0.111450 0.993770i \(-0.535549\pi\)
−0.111450 + 0.993770i \(0.535549\pi\)
\(770\) 19.0988 + 4.62059i 0.688273 + 0.166514i
\(771\) 0 0
\(772\) −40.5530 20.8419i −1.45954 0.750117i
\(773\) 22.6175i 0.813494i 0.913541 + 0.406747i \(0.133337\pi\)
−0.913541 + 0.406747i \(0.866663\pi\)
\(774\) 0 0
\(775\) 0.743130i 0.0266940i
\(776\) −13.1258 11.3303i −0.471190 0.406733i
\(777\) 0 0
\(778\) −4.45500 + 18.4143i −0.159719 + 0.660186i
\(779\) 20.0813 0.719486
\(780\) 0 0
\(781\) 11.7890 0.421844
\(782\) −0.748526 + 3.09397i −0.0267673 + 0.110640i
\(783\) 0 0
\(784\) −2.06727 2.88765i −0.0738310 0.103130i
\(785\) 29.8178i 1.06424i
\(786\) 0 0
\(787\) 51.5449i 1.83738i −0.394982 0.918689i \(-0.629249\pi\)
0.394982 0.918689i \(-0.370751\pi\)
\(788\) 13.8440 26.9368i 0.493171 0.959584i
\(789\) 0 0
\(790\) −20.4433 4.94587i −0.727341 0.175966i
\(791\) 47.7770 1.69875
\(792\) 0 0
\(793\) −24.3892 −0.866086
\(794\) 30.5216 + 7.38412i 1.08317 + 0.262053i
\(795\) 0 0
\(796\) 16.5161 32.1362i 0.585399 1.13904i
\(797\) 32.7972i 1.16174i −0.813997 0.580869i \(-0.802713\pi\)
0.813997 0.580869i \(-0.197287\pi\)
\(798\) 0 0
\(799\) 20.9528i 0.741258i
\(800\) 4.11204 + 10.1784i 0.145382 + 0.359860i
\(801\) 0 0
\(802\) −0.413755 + 1.71022i −0.0146102 + 0.0603900i
\(803\) −35.6498 −1.25805
\(804\) 0 0
\(805\) 4.91245 0.173141
\(806\) −0.240409 + 0.993710i −0.00846805 + 0.0350019i
\(807\) 0 0
\(808\) 25.3957 29.4203i 0.893417 1.03500i
\(809\) 18.2052i 0.640061i −0.947407 0.320031i \(-0.896307\pi\)
0.947407 0.320031i \(-0.103693\pi\)
\(810\) 0 0
\(811\) 5.20431i 0.182748i 0.995817 + 0.0913740i \(0.0291259\pi\)
−0.995817 + 0.0913740i \(0.970874\pi\)
\(812\) 17.0570 + 8.76632i 0.598583 + 0.307638i
\(813\) 0 0
\(814\) −19.9968 4.83785i −0.700889 0.169567i
\(815\) 21.9765 0.769802
\(816\) 0 0
\(817\) −2.19175 −0.0766796
\(818\) −8.45086 2.04452i −0.295477 0.0714850i
\(819\) 0 0
\(820\) 22.2466 + 11.4335i 0.776885 + 0.399275i
\(821\) 7.95814i 0.277741i −0.990311 0.138870i \(-0.955653\pi\)
0.990311 0.138870i \(-0.0443472\pi\)
\(822\) 0 0
\(823\) 39.9772i 1.39352i −0.717305 0.696759i \(-0.754625\pi\)
0.717305 0.696759i \(-0.245375\pi\)
\(824\) 29.1586 33.7795i 1.01579 1.17676i
\(825\) 0 0
\(826\) 4.28299 17.7034i 0.149024 0.615979i
\(827\) 12.4938 0.434451 0.217226 0.976121i \(-0.430299\pi\)
0.217226 + 0.976121i \(0.430299\pi\)
\(828\) 0 0
\(829\) −22.2373 −0.772332 −0.386166 0.922429i \(-0.626201\pi\)
−0.386166 + 0.922429i \(0.626201\pi\)
\(830\) 0.291859 1.20638i 0.0101306 0.0418739i
\(831\) 0 0
\(832\) −2.20580 14.9408i −0.0764725 0.517978i
\(833\) 1.99842i 0.0692412i
\(834\) 0 0
\(835\) 36.8182i 1.27415i
\(836\) 7.26226 14.1305i 0.251170 0.488713i
\(837\) 0 0
\(838\) −4.36813 1.05678i −0.150895 0.0365060i
\(839\) 29.4497 1.01672 0.508358 0.861146i \(-0.330253\pi\)
0.508358 + 0.861146i \(0.330253\pi\)
\(840\) 0 0
\(841\) 17.3431 0.598040
\(842\) 1.98314 + 0.479783i 0.0683436 + 0.0165344i
\(843\) 0 0
\(844\) −11.8279 + 23.0141i −0.407134 + 0.792178i
\(845\) 16.5048i 0.567782i
\(846\) 0 0
\(847\) 8.42559i 0.289507i
\(848\) −17.1583 + 12.2836i −0.589217 + 0.421820i
\(849\) 0 0
\(850\) 1.45258 6.00412i 0.0498231 0.205940i
\(851\) −5.14343 −0.176315
\(852\) 0 0
\(853\) 42.5933 1.45837 0.729184 0.684318i \(-0.239900\pi\)
0.729184 + 0.684318i \(0.239900\pi\)
\(854\) −12.0661 + 49.8741i −0.412893 + 1.70666i
\(855\) 0 0
\(856\) −27.8063 24.0025i −0.950399 0.820387i
\(857\) 47.4210i 1.61987i −0.586518 0.809936i \(-0.699502\pi\)
0.586518 0.809936i \(-0.300498\pi\)
\(858\) 0 0
\(859\) 29.9892i 1.02322i −0.859218 0.511610i \(-0.829049\pi\)
0.859218 0.511610i \(-0.170951\pi\)
\(860\) −2.42809 1.24790i −0.0827970 0.0425529i
\(861\) 0 0
\(862\) 5.30363 + 1.28311i 0.180642 + 0.0437029i
\(863\) 42.0075 1.42995 0.714977 0.699148i \(-0.246437\pi\)
0.714977 + 0.699148i \(0.246437\pi\)
\(864\) 0 0
\(865\) 1.97186 0.0670453
\(866\) −33.6104 8.13138i −1.14213 0.276316i
\(867\) 0 0
\(868\) 1.91312 + 0.983237i 0.0649357 + 0.0333732i
\(869\) 24.0500i 0.815839i
\(870\) 0 0
\(871\) 15.4575i 0.523758i
\(872\) 30.8084 + 26.5939i 1.04330 + 0.900584i
\(873\) 0 0
\(874\) 0.933971 3.86049i 0.0315920 0.130583i
\(875\) −34.0953 −1.15263
\(876\) 0 0
\(877\) −8.08293 −0.272941 −0.136471 0.990644i \(-0.543576\pi\)
−0.136471 + 0.990644i \(0.543576\pi\)
\(878\) 7.58058 31.3337i 0.255832 1.05746i
\(879\) 0 0
\(880\) 16.0907 11.5193i 0.542417 0.388316i
\(881\) 25.1701i 0.848003i −0.905661 0.424002i \(-0.860625\pi\)
0.905661 0.424002i \(-0.139375\pi\)
\(882\) 0 0
\(883\) 2.56431i 0.0862959i 0.999069 + 0.0431480i \(0.0137387\pi\)
−0.999069 + 0.0431480i \(0.986261\pi\)
\(884\) −3.88477 + 7.55876i −0.130659 + 0.254229i
\(885\) 0 0
\(886\) 3.04776 + 0.737346i 0.102391 + 0.0247716i
\(887\) −34.5654 −1.16059 −0.580296 0.814405i \(-0.697063\pi\)
−0.580296 + 0.814405i \(0.697063\pi\)
\(888\) 0 0
\(889\) 14.6737 0.492140
\(890\) 4.77269 + 1.15466i 0.159981 + 0.0387043i
\(891\) 0 0
\(892\) −4.36276 + 8.48881i −0.146076 + 0.284226i
\(893\) 26.1438i 0.874869i
\(894\) 0 0
\(895\) 36.6589i 1.22537i
\(896\) −31.6440 2.88094i −1.05715 0.0962455i
\(897\) 0 0
\(898\) 2.38088 9.84118i 0.0794511 0.328405i
\(899\) −1.30744 −0.0436056
\(900\) 0 0
\(901\) 11.8745 0.395597
\(902\) −6.72529 + 27.7984i −0.223928 + 0.925586i
\(903\) 0 0
\(904\) 31.4402 36.4227i 1.04568 1.21140i
\(905\) 20.2908i 0.674488i
\(906\) 0 0
\(907\) 35.1524i 1.16722i −0.812035 0.583609i \(-0.801640\pi\)
0.812035 0.583609i \(-0.198360\pi\)
\(908\) 16.8624 + 8.66631i 0.559598 + 0.287601i
\(909\) 0 0
\(910\) 12.7475 + 3.08402i 0.422577 + 0.102234i
\(911\) −28.1539 −0.932781 −0.466391 0.884579i \(-0.654446\pi\)
−0.466391 + 0.884579i \(0.654446\pi\)
\(912\) 0 0
\(913\) 1.41921 0.0469688
\(914\) 0.827311 + 0.200152i 0.0273650 + 0.00662044i
\(915\) 0 0
\(916\) −17.7352 9.11488i −0.585988 0.301164i
\(917\) 36.2311i 1.19646i
\(918\) 0 0
\(919\) 40.7332i 1.34366i −0.740704 0.671832i \(-0.765508\pi\)
0.740704 0.671832i \(-0.234492\pi\)
\(920\) 3.23269 3.74500i 0.106579 0.123469i
\(921\) 0 0
\(922\) −1.39008 + 5.74579i −0.0457799 + 0.189227i
\(923\) 7.86860 0.258998
\(924\) 0 0
\(925\) 9.98128 0.328183
\(926\) −11.1619 + 46.1366i −0.366802 + 1.51614i
\(927\) 0 0
\(928\) 17.9075 7.23460i 0.587844 0.237487i
\(929\) 47.9152i 1.57205i 0.618197 + 0.786023i \(0.287863\pi\)
−0.618197 + 0.786023i \(0.712137\pi\)
\(930\) 0 0
\(931\) 2.49352i 0.0817219i
\(932\) −21.7614 + 42.3421i −0.712819 + 1.38696i
\(933\) 0 0
\(934\) −2.70507 0.654440i −0.0885127 0.0214139i
\(935\) −11.1357 −0.364176
\(936\) 0 0
\(937\) −39.5090 −1.29070 −0.645351 0.763886i \(-0.723289\pi\)
−0.645351 + 0.763886i \(0.723289\pi\)
\(938\) −31.6095 7.64730i −1.03209 0.249693i
\(939\) 0 0
\(940\) −14.8853 + 28.9629i −0.485504 + 0.944665i
\(941\) 15.7264i 0.512665i 0.966589 + 0.256332i \(0.0825142\pi\)
−0.966589 + 0.256332i \(0.917486\pi\)
\(942\) 0 0
\(943\) 7.15010i 0.232839i
\(944\) −10.6777 14.9150i −0.347529 0.485443i
\(945\) 0 0
\(946\) 0.734026 3.03403i 0.0238652 0.0986449i
\(947\) 5.61597 0.182495 0.0912473 0.995828i \(-0.470915\pi\)
0.0912473 + 0.995828i \(0.470915\pi\)
\(948\) 0 0
\(949\) −23.7945 −0.772403
\(950\) −1.81245 + 7.49162i −0.0588037 + 0.243060i
\(951\) 0 0
\(952\) 13.5352 + 11.6836i 0.438678 + 0.378668i
\(953\) 13.7233i 0.444543i 0.974985 + 0.222271i \(0.0713471\pi\)
−0.974985 + 0.222271i \(0.928653\pi\)
\(954\) 0 0
\(955\) 3.10197i 0.100377i
\(956\) −19.3438 9.94161i −0.625623 0.321535i
\(957\) 0 0
\(958\) 50.1468 + 12.1321i 1.62017 + 0.391969i
\(959\) 10.3450 0.334057
\(960\) 0 0
\(961\) 30.8534 0.995270
\(962\) −13.3469 3.22903i −0.430322 0.104108i
\(963\) 0 0
\(964\) −20.6314 10.6034i −0.664493 0.341511i
\(965\) 39.8758i 1.28365i
\(966\) 0 0
\(967\) 26.4133i 0.849395i −0.905335 0.424697i \(-0.860380\pi\)
0.905335 0.424697i \(-0.139620\pi\)
\(968\) −6.42323 5.54455i −0.206451 0.178209i
\(969\) 0 0
\(970\) 3.56589 14.7393i 0.114494 0.473250i
\(971\) −20.6087 −0.661365 −0.330682 0.943742i \(-0.607279\pi\)
−0.330682 + 0.943742i \(0.607279\pi\)
\(972\) 0 0
\(973\) 37.7786 1.21113
\(974\) 10.9498 45.2599i 0.350853 1.45022i
\(975\) 0 0
\(976\) 30.0812 + 42.0188i 0.962876 + 1.34499i
\(977\) 12.7517i 0.407964i −0.978975 0.203982i \(-0.934612\pi\)
0.978975 0.203982i \(-0.0653884\pi\)
\(978\) 0 0
\(979\) 5.61470i 0.179446i
\(980\) 1.41971 2.76240i 0.0453511 0.0882416i
\(981\) 0 0
\(982\) −45.9384 11.1139i −1.46595 0.354659i
\(983\) 36.7981 1.17368 0.586838 0.809704i \(-0.300373\pi\)
0.586838 + 0.809704i \(0.300373\pi\)
\(984\) 0 0
\(985\) 26.4870 0.843945
\(986\) −10.5635 2.55563i −0.336410 0.0813878i
\(987\) 0 0
\(988\) 4.84721 9.43142i 0.154210 0.300053i
\(989\) 0.780391i 0.0248150i
\(990\) 0 0
\(991\) 30.2463i 0.960805i 0.877048 + 0.480402i \(0.159509\pi\)
−0.877048 + 0.480402i \(0.840491\pi\)
\(992\) 2.00852 0.811437i 0.0637706 0.0257632i
\(993\) 0 0
\(994\) 3.89283 16.0907i 0.123473 0.510366i
\(995\) 31.5995 1.00177
\(996\) 0 0
\(997\) 12.2794 0.388893 0.194446 0.980913i \(-0.437709\pi\)
0.194446 + 0.980913i \(0.437709\pi\)
\(998\) −13.4742 + 55.6944i −0.426518 + 1.76298i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 828.2.c.d.323.8 yes 8
3.2 odd 2 828.2.c.c.323.1 8
4.3 odd 2 828.2.c.c.323.2 yes 8
12.11 even 2 inner 828.2.c.d.323.7 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
828.2.c.c.323.1 8 3.2 odd 2
828.2.c.c.323.2 yes 8 4.3 odd 2
828.2.c.d.323.7 yes 8 12.11 even 2 inner
828.2.c.d.323.8 yes 8 1.1 even 1 trivial