Properties

Label 828.1.j.b
Level $828$
Weight $1$
Character orbit 828.j
Analytic conductor $0.413$
Analytic rank $0$
Dimension $6$
Projective image $D_{18}$
CM discriminant -23
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [828,1,Mod(275,828)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("828.275"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(828, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5, 3])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 828 = 2^{2} \cdot 3^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 828.j (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.413225830460\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{18})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{18}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{18} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{18}^{2} q^{2} - \zeta_{18} q^{3} + \zeta_{18}^{4} q^{4} + \zeta_{18}^{3} q^{6} - \zeta_{18}^{6} q^{8} + \zeta_{18}^{2} q^{9} - \zeta_{18}^{5} q^{12} + (\zeta_{18}^{7} + \zeta_{18}^{5}) q^{13} + \cdots + \zeta_{18}^{8} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{6} + 3 q^{8} - 3 q^{23} + 3 q^{25} + 6 q^{26} - 3 q^{27} - 3 q^{36} + 3 q^{39} + 6 q^{48} + 3 q^{49} - 6 q^{52} - 6 q^{58} - 3 q^{59} - 3 q^{62} - 3 q^{64} - 3 q^{82} - 6 q^{87} - 3 q^{93} - 3 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/828\mathbb{Z}\right)^\times\).

\(n\) \(415\) \(461\) \(649\)
\(\chi(n)\) \(-1\) \(-\zeta_{18}^{6}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
275.1
0.939693 + 0.342020i
−0.766044 + 0.642788i
−0.173648 0.984808i
0.939693 0.342020i
−0.766044 0.642788i
−0.173648 + 0.984808i
−0.766044 0.642788i −0.939693 0.342020i 0.173648 + 0.984808i 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0.766044 + 0.642788i 0
275.2 −0.173648 + 0.984808i 0.766044 0.642788i −0.939693 0.342020i 0 0.500000 + 0.866025i 0 0.500000 0.866025i 0.173648 0.984808i 0
275.3 0.939693 0.342020i 0.173648 + 0.984808i 0.766044 0.642788i 0 0.500000 + 0.866025i 0 0.500000 0.866025i −0.939693 + 0.342020i 0
551.1 −0.766044 + 0.642788i −0.939693 + 0.342020i 0.173648 0.984808i 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0.766044 0.642788i 0
551.2 −0.173648 0.984808i 0.766044 + 0.642788i −0.939693 + 0.342020i 0 0.500000 0.866025i 0 0.500000 + 0.866025i 0.173648 + 0.984808i 0
551.3 0.939693 + 0.342020i 0.173648 0.984808i 0.766044 + 0.642788i 0 0.500000 0.866025i 0 0.500000 + 0.866025i −0.939693 0.342020i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 275.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 CM by \(\Q(\sqrt{-23}) \)
36.h even 6 1 inner
828.j odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 828.1.j.b yes 6
3.b odd 2 1 2484.1.j.a 6
4.b odd 2 1 828.1.j.a 6
9.c even 3 1 2484.1.j.b 6
9.d odd 6 1 828.1.j.a 6
12.b even 2 1 2484.1.j.b 6
23.b odd 2 1 CM 828.1.j.b yes 6
36.f odd 6 1 2484.1.j.a 6
36.h even 6 1 inner 828.1.j.b yes 6
69.c even 2 1 2484.1.j.a 6
92.b even 2 1 828.1.j.a 6
207.f odd 6 1 2484.1.j.b 6
207.g even 6 1 828.1.j.a 6
276.h odd 2 1 2484.1.j.b 6
828.j odd 6 1 inner 828.1.j.b yes 6
828.m even 6 1 2484.1.j.a 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
828.1.j.a 6 4.b odd 2 1
828.1.j.a 6 9.d odd 6 1
828.1.j.a 6 92.b even 2 1
828.1.j.a 6 207.g even 6 1
828.1.j.b yes 6 1.a even 1 1 trivial
828.1.j.b yes 6 23.b odd 2 1 CM
828.1.j.b yes 6 36.h even 6 1 inner
828.1.j.b yes 6 828.j odd 6 1 inner
2484.1.j.a 6 3.b odd 2 1
2484.1.j.a 6 36.f odd 6 1
2484.1.j.a 6 69.c even 2 1
2484.1.j.a 6 828.m even 6 1
2484.1.j.b 6 9.c even 3 1
2484.1.j.b 6 12.b even 2 1
2484.1.j.b 6 207.f odd 6 1
2484.1.j.b 6 276.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{31}^{6} - 3T_{31}^{4} + 9T_{31}^{2} + 9T_{31} + 3 \) acting on \(S_{1}^{\mathrm{new}}(828, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - T^{3} + 1 \) Copy content Toggle raw display
$3$ \( T^{6} + T^{3} + 1 \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( T^{6} \) Copy content Toggle raw display
$11$ \( T^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$17$ \( T^{6} \) Copy content Toggle raw display
$19$ \( T^{6} \) Copy content Toggle raw display
$23$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$29$ \( T^{6} - 3 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$31$ \( T^{6} - 3 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$37$ \( T^{6} \) Copy content Toggle raw display
$41$ \( T^{6} - 3 T^{4} + \cdots + 3 \) Copy content Toggle raw display
$43$ \( T^{6} \) Copy content Toggle raw display
$47$ \( T^{6} + 3 T^{4} + \cdots + 1 \) Copy content Toggle raw display
$53$ \( T^{6} \) Copy content Toggle raw display
$59$ \( (T^{2} + T + 1)^{3} \) Copy content Toggle raw display
$61$ \( T^{6} \) Copy content Toggle raw display
$67$ \( T^{6} \) Copy content Toggle raw display
$71$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 3 T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} \) Copy content Toggle raw display
$83$ \( T^{6} \) Copy content Toggle raw display
$89$ \( T^{6} \) Copy content Toggle raw display
$97$ \( T^{6} \) Copy content Toggle raw display
show more
show less